750 lines
34 KiB
Python
750 lines
34 KiB
Python
![]() |
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import logging
|
||
|
import os
|
||
|
import re
|
||
|
from contextlib import contextmanager
|
||
|
from functools import wraps
|
||
|
from typing import Optional, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from .hooks import (
|
||
|
AlignDevicesHook,
|
||
|
CpuOffload,
|
||
|
LayerwiseCastingHook,
|
||
|
UserCpuOffloadHook,
|
||
|
add_hook_to_module,
|
||
|
attach_align_device_hook,
|
||
|
attach_align_device_hook_on_blocks,
|
||
|
)
|
||
|
from .utils import (
|
||
|
OffloadedWeightsLoader,
|
||
|
check_cuda_p2p_ib_support,
|
||
|
check_device_map,
|
||
|
extract_submodules_state_dict,
|
||
|
find_tied_parameters,
|
||
|
get_balanced_memory,
|
||
|
infer_auto_device_map,
|
||
|
is_bnb_available,
|
||
|
is_mlu_available,
|
||
|
is_musa_available,
|
||
|
is_npu_available,
|
||
|
is_sdaa_available,
|
||
|
is_xpu_available,
|
||
|
load_checkpoint_in_model,
|
||
|
offload_state_dict,
|
||
|
parse_flag_from_env,
|
||
|
retie_parameters,
|
||
|
)
|
||
|
from .utils.constants import SUPPORTED_PYTORCH_LAYERS_FOR_UPCASTING
|
||
|
from .utils.other import recursive_getattr
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def init_empty_weights(include_buffers: bool = None):
|
||
|
"""
|
||
|
A context manager under which models are initialized with all parameters on the meta device, therefore creating an
|
||
|
empty model. Useful when just initializing the model would blow the available RAM.
|
||
|
|
||
|
Args:
|
||
|
include_buffers (`bool`, *optional*):
|
||
|
Whether or not to also put all buffers on the meta device while initializing.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
import torch.nn as nn
|
||
|
from accelerate import init_empty_weights
|
||
|
|
||
|
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
||
|
with init_empty_weights():
|
||
|
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
||
|
```
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
Any model created under this context manager has no weights. As such you can't do something like
|
||
|
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
||
|
Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not
|
||
|
called.
|
||
|
|
||
|
</Tip>
|
||
|
"""
|
||
|
if include_buffers is None:
|
||
|
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
|
||
|
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
|
||
|
yield f
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def init_on_device(device: torch.device, include_buffers: bool = None):
|
||
|
"""
|
||
|
A context manager under which models are initialized with all parameters on the specified device.
|
||
|
|
||
|
Args:
|
||
|
device (`torch.device`):
|
||
|
Device to initialize all parameters on.
|
||
|
include_buffers (`bool`, *optional*):
|
||
|
Whether or not to also put all buffers on the meta device while initializing.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
import torch.nn as nn
|
||
|
from accelerate import init_on_device
|
||
|
|
||
|
with init_on_device(device=torch.device("cuda")):
|
||
|
tst = nn.Linear(100, 100) # on `cuda` device
|
||
|
```
|
||
|
"""
|
||
|
if include_buffers is None:
|
||
|
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
|
||
|
|
||
|
if include_buffers:
|
||
|
with device:
|
||
|
yield
|
||
|
return
|
||
|
|
||
|
old_register_parameter = nn.Module.register_parameter
|
||
|
if include_buffers:
|
||
|
old_register_buffer = nn.Module.register_buffer
|
||
|
|
||
|
def register_empty_parameter(module, name, param):
|
||
|
old_register_parameter(module, name, param)
|
||
|
if param is not None:
|
||
|
param_cls = type(module._parameters[name])
|
||
|
kwargs = module._parameters[name].__dict__
|
||
|
kwargs["requires_grad"] = param.requires_grad
|
||
|
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
||
|
|
||
|
def register_empty_buffer(module, name, buffer, persistent=True):
|
||
|
old_register_buffer(module, name, buffer, persistent=persistent)
|
||
|
if buffer is not None:
|
||
|
module._buffers[name] = module._buffers[name].to(device)
|
||
|
|
||
|
# Patch tensor creation
|
||
|
if include_buffers:
|
||
|
tensor_constructors_to_patch = {
|
||
|
torch_function_name: getattr(torch, torch_function_name)
|
||
|
for torch_function_name in ["empty", "zeros", "ones", "full"]
|
||
|
}
|
||
|
else:
|
||
|
tensor_constructors_to_patch = {}
|
||
|
|
||
|
def patch_tensor_constructor(fn):
|
||
|
def wrapper(*args, **kwargs):
|
||
|
kwargs["device"] = device
|
||
|
return fn(*args, **kwargs)
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
try:
|
||
|
nn.Module.register_parameter = register_empty_parameter
|
||
|
if include_buffers:
|
||
|
nn.Module.register_buffer = register_empty_buffer
|
||
|
for torch_function_name in tensor_constructors_to_patch.keys():
|
||
|
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
||
|
yield
|
||
|
finally:
|
||
|
nn.Module.register_parameter = old_register_parameter
|
||
|
if include_buffers:
|
||
|
nn.Module.register_buffer = old_register_buffer
|
||
|
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
|
||
|
setattr(torch, torch_function_name, old_torch_function)
|
||
|
|
||
|
|
||
|
def cpu_offload(
|
||
|
model: nn.Module,
|
||
|
execution_device: Optional[torch.device] = None,
|
||
|
offload_buffers: bool = False,
|
||
|
state_dict: Optional[dict[str, torch.Tensor]] = None,
|
||
|
preload_module_classes: Optional[list[str]] = None,
|
||
|
):
|
||
|
"""
|
||
|
Activates full CPU offload for a model. As a result, all parameters of the model will be offloaded and only one
|
||
|
copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that
|
||
|
state dict and put on the execution device passed as they are needed, then offloaded again.
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`):
|
||
|
The model to offload.
|
||
|
execution_device (`torch.device`, *optional*):
|
||
|
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
|
||
|
model first parameter device.
|
||
|
offload_buffers (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to offload the buffers with the model parameters.
|
||
|
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
||
|
The state dict of the model that will be kept on CPU.
|
||
|
preload_module_classes (`List[str]`, *optional*):
|
||
|
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
||
|
of the forward. This should only be used for classes that have submodules which are registered but not
|
||
|
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
||
|
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
||
|
"""
|
||
|
if execution_device is None:
|
||
|
execution_device = next(iter(model.parameters())).device
|
||
|
if state_dict is None:
|
||
|
state_dict = {n: p.to("cpu") for n, p in model.state_dict().items()}
|
||
|
|
||
|
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
|
||
|
attach_align_device_hook(
|
||
|
model,
|
||
|
execution_device=execution_device,
|
||
|
offload=True,
|
||
|
offload_buffers=offload_buffers,
|
||
|
weights_map=state_dict,
|
||
|
preload_module_classes=preload_module_classes,
|
||
|
)
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
def cpu_offload_with_hook(
|
||
|
model: torch.nn.Module,
|
||
|
execution_device: Optional[Union[int, str, torch.device]] = None,
|
||
|
prev_module_hook: Optional[UserCpuOffloadHook] = None,
|
||
|
):
|
||
|
"""
|
||
|
Offloads a model on the CPU and puts it back to an execution device when executed. The difference with
|
||
|
[`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when
|
||
|
the `offload` method of the returned `hook` is called. Useful for pipelines running a model in a loop.
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`):
|
||
|
The model to offload.
|
||
|
execution_device(`str`, `int` or `torch.device`, *optional*):
|
||
|
The device on which the model should be executed. Will default to the MPS device if it's available, then
|
||
|
GPU 0 if there is a GPU, and finally to the CPU.
|
||
|
prev_module_hook (`UserCpuOffloadHook`, *optional*):
|
||
|
The hook sent back by this function for a previous model in the pipeline you are running. If passed, its
|
||
|
offload method will be called just before the forward of the model to which this hook is attached.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```py
|
||
|
model_1, hook_1 = cpu_offload_with_hook(model_1, cuda_device)
|
||
|
model_2, hook_2 = cpu_offload_with_hook(model_2, cuda_device, prev_module_hook=hook_1)
|
||
|
model_3, hook_3 = cpu_offload_with_hook(model_3, cuda_device, prev_module_hook=hook_2)
|
||
|
|
||
|
hid_1 = model_1(input)
|
||
|
for i in range(50):
|
||
|
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
|
||
|
hid_2 = model_2(hid_1)
|
||
|
# model2 is offloaded to the CPU just before this forward.
|
||
|
hid_3 = model_3(hid_3)
|
||
|
|
||
|
# For model3, you need to manually call the hook offload method.
|
||
|
hook_3.offload()
|
||
|
```
|
||
|
"""
|
||
|
hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook)
|
||
|
add_hook_to_module(model, hook, append=True)
|
||
|
user_hook = UserCpuOffloadHook(model, hook)
|
||
|
return model, user_hook
|
||
|
|
||
|
|
||
|
def disk_offload(
|
||
|
model: nn.Module,
|
||
|
offload_dir: Union[str, os.PathLike],
|
||
|
execution_device: Optional[torch.device] = None,
|
||
|
offload_buffers: bool = False,
|
||
|
preload_module_classes: Optional[list[str]] = None,
|
||
|
):
|
||
|
"""
|
||
|
Activates full disk offload for a model. As a result, all parameters of the model will be offloaded as
|
||
|
memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and
|
||
|
put on the execution device passed as they are needed, then offloaded again.
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`): The model to offload.
|
||
|
offload_dir (`str` or `os.PathLike`):
|
||
|
The folder in which to offload the model weights (or where the model weights are already offloaded).
|
||
|
execution_device (`torch.device`, *optional*):
|
||
|
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
|
||
|
model's first parameter device.
|
||
|
offload_buffers (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to offload the buffers with the model parameters.
|
||
|
preload_module_classes (`List[str]`, *optional*):
|
||
|
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
||
|
of the forward. This should only be used for classes that have submodules which are registered but not
|
||
|
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
||
|
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
||
|
"""
|
||
|
if not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")):
|
||
|
offload_state_dict(offload_dir, model.state_dict())
|
||
|
if execution_device is None:
|
||
|
execution_device = next(iter(model.parameters())).device
|
||
|
weights_map = OffloadedWeightsLoader(save_folder=offload_dir)
|
||
|
|
||
|
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
|
||
|
attach_align_device_hook(
|
||
|
model,
|
||
|
execution_device=execution_device,
|
||
|
offload=True,
|
||
|
offload_buffers=offload_buffers,
|
||
|
weights_map=weights_map,
|
||
|
preload_module_classes=preload_module_classes,
|
||
|
)
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
def dispatch_model(
|
||
|
model: nn.Module,
|
||
|
device_map: dict[str, Union[str, int, torch.device]],
|
||
|
main_device: Optional[torch.device] = None,
|
||
|
state_dict: Optional[dict[str, torch.Tensor]] = None,
|
||
|
offload_dir: Optional[Union[str, os.PathLike]] = None,
|
||
|
offload_index: Optional[dict[str, str]] = None,
|
||
|
offload_buffers: bool = False,
|
||
|
skip_keys: Optional[Union[str, list[str]]] = None,
|
||
|
preload_module_classes: Optional[list[str]] = None,
|
||
|
force_hooks: bool = False,
|
||
|
):
|
||
|
"""
|
||
|
Dispatches a model according to a given device map. Layers of the model might be spread across GPUs, offloaded on
|
||
|
the CPU or even the disk.
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`):
|
||
|
The model to dispatch.
|
||
|
device_map (`Dict[str, Union[str, int, torch.device]]`):
|
||
|
A dictionary mapping module names in the models `state_dict` to the device they should go to. Note that
|
||
|
`"disk"` is accepted even if it's not a proper value for `torch.device`.
|
||
|
main_device (`str`, `int` or `torch.device`, *optional*):
|
||
|
The main execution device. Will default to the first device in the `device_map` different from `"cpu"` or
|
||
|
`"disk"`.
|
||
|
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
||
|
The state dict of the part of the model that will be kept on CPU.
|
||
|
offload_dir (`str` or `os.PathLike`):
|
||
|
The folder in which to offload the model weights (or where the model weights are already offloaded).
|
||
|
offload_index (`Dict`, *optional*):
|
||
|
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
|
||
|
to the index saved in `save_folder`.
|
||
|
offload_buffers (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to offload the buffers with the model parameters.
|
||
|
skip_keys (`str` or `List[str]`, *optional*):
|
||
|
A list of keys to ignore when moving inputs or outputs between devices.
|
||
|
preload_module_classes (`List[str]`, *optional*):
|
||
|
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
||
|
of the forward. This should only be used for classes that have submodules which are registered but not
|
||
|
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
||
|
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
||
|
force_hooks (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
|
||
|
single device.
|
||
|
"""
|
||
|
# Error early if the device map is incomplete.
|
||
|
check_device_map(model, device_map)
|
||
|
|
||
|
# We need to force hook for quantized model that can't be moved with to()
|
||
|
if getattr(model, "quantization_method", "bitsandbytes") == "bitsandbytes":
|
||
|
# since bnb 0.43.2, we can move 4-bit model
|
||
|
if getattr(model, "is_loaded_in_8bit", False) or (
|
||
|
getattr(model, "is_loaded_in_4bit", False) and not is_bnb_available(min_version="0.43.2")
|
||
|
):
|
||
|
force_hooks = True
|
||
|
|
||
|
# We attach hooks if the device_map has at least 2 different devices or if
|
||
|
# force_hooks is set to `True`. Otherwise, the model in already loaded
|
||
|
# in the unique device and the user can decide where to dispatch the model.
|
||
|
# If the model is quantized, we always force-dispatch the model
|
||
|
if (len(set(device_map.values())) > 1) or force_hooks:
|
||
|
if main_device is None:
|
||
|
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
|
||
|
main_device = "cpu"
|
||
|
else:
|
||
|
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
|
||
|
|
||
|
if main_device != "cpu":
|
||
|
cpu_modules = [name for name, device in device_map.items() if device == "cpu"]
|
||
|
if state_dict is None and len(cpu_modules) > 0:
|
||
|
state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules)
|
||
|
|
||
|
disk_modules = [name for name, device in device_map.items() if device == "disk"]
|
||
|
if offload_dir is None and offload_index is None and len(disk_modules) > 0:
|
||
|
raise ValueError(
|
||
|
"We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules "
|
||
|
f"need to be offloaded: {', '.join(disk_modules)}."
|
||
|
)
|
||
|
if (
|
||
|
len(disk_modules) > 0
|
||
|
and offload_index is None
|
||
|
and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")))
|
||
|
):
|
||
|
disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules)
|
||
|
offload_state_dict(offload_dir, disk_state_dict)
|
||
|
|
||
|
execution_device = {
|
||
|
name: main_device if device in ["cpu", "disk"] else device for name, device in device_map.items()
|
||
|
}
|
||
|
execution_device[""] = main_device
|
||
|
offloaded_devices = ["disk"] if main_device == "cpu" or main_device == "mps" else ["cpu", "disk"]
|
||
|
offload = {name: device in offloaded_devices for name, device in device_map.items()}
|
||
|
save_folder = offload_dir if len(disk_modules) > 0 else None
|
||
|
if state_dict is not None or save_folder is not None or offload_index is not None:
|
||
|
device = main_device if offload_index is not None else None
|
||
|
weights_map = OffloadedWeightsLoader(
|
||
|
state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device
|
||
|
)
|
||
|
else:
|
||
|
weights_map = None
|
||
|
|
||
|
# When dispatching the model's parameters to the devices specified in device_map, we want to avoid allocating memory several times for the
|
||
|
# tied parameters. The dictionary tied_params_map keeps track of the already allocated data for a given tied parameter (represented by its
|
||
|
# original pointer) on each devices.
|
||
|
tied_params = find_tied_parameters(model)
|
||
|
|
||
|
tied_params_map = {}
|
||
|
for group in tied_params:
|
||
|
for param_name in group:
|
||
|
# data_ptr() is enough here, as `find_tied_parameters` finds tied params simply by comparing `param1 is param2`, so we don't need
|
||
|
# to care about views of tensors through storage_offset.
|
||
|
data_ptr = recursive_getattr(model, param_name).data_ptr()
|
||
|
tied_params_map[data_ptr] = {}
|
||
|
|
||
|
# Note: To handle the disk offloading case, we can not simply use weights_map[param_name].data_ptr() as the reference pointer,
|
||
|
# as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
|
||
|
|
||
|
attach_align_device_hook_on_blocks(
|
||
|
model,
|
||
|
execution_device=execution_device,
|
||
|
offload=offload,
|
||
|
offload_buffers=offload_buffers,
|
||
|
weights_map=weights_map,
|
||
|
skip_keys=skip_keys,
|
||
|
preload_module_classes=preload_module_classes,
|
||
|
tied_params_map=tied_params_map,
|
||
|
)
|
||
|
|
||
|
# warn if there is any params on the meta device
|
||
|
offloaded_devices_str = " and ".join(
|
||
|
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
|
||
|
)
|
||
|
if len(offloaded_devices_str) > 0:
|
||
|
logger.warning(
|
||
|
f"Some parameters are on the meta device because they were offloaded to the {offloaded_devices_str}."
|
||
|
)
|
||
|
|
||
|
# Attaching the hook may break tied weights, so we retie them
|
||
|
retie_parameters(model, tied_params)
|
||
|
|
||
|
# add warning to cuda and to method
|
||
|
def add_warning(fn, model):
|
||
|
@wraps(fn)
|
||
|
def wrapper(*args, **kwargs):
|
||
|
warning_msg = "You shouldn't move a model that is dispatched using accelerate hooks."
|
||
|
if str(fn.__name__) == "to":
|
||
|
to_device = torch._C._nn._parse_to(*args, **kwargs)[0]
|
||
|
if to_device is not None:
|
||
|
logger.warning(warning_msg)
|
||
|
else:
|
||
|
logger.warning(warning_msg)
|
||
|
for param in model.parameters():
|
||
|
if param.device == torch.device("meta"):
|
||
|
raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.")
|
||
|
return fn(*args, **kwargs)
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
# Make sure to update _accelerate_added_attributes in hooks.py if you add any hook
|
||
|
model.to = add_warning(model.to, model)
|
||
|
if is_npu_available():
|
||
|
model.npu = add_warning(model.npu, model)
|
||
|
elif is_mlu_available():
|
||
|
model.mlu = add_warning(model.mlu, model)
|
||
|
elif is_sdaa_available():
|
||
|
model.sdaa = add_warning(model.sdaa, model)
|
||
|
elif is_musa_available():
|
||
|
model.musa = add_warning(model.musa, model)
|
||
|
elif is_xpu_available():
|
||
|
model.xpu = add_warning(model.xpu, model)
|
||
|
else:
|
||
|
model.cuda = add_warning(model.cuda, model)
|
||
|
|
||
|
# Check if we are using multi-gpus with RTX 4000 series
|
||
|
use_multi_gpu = len([device for device in set(device_map.values()) if device not in ("cpu", "disk")]) > 1
|
||
|
if use_multi_gpu and not check_cuda_p2p_ib_support():
|
||
|
logger.warning(
|
||
|
"We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. "
|
||
|
"This can affect the multi-gpu inference when using accelerate device_map."
|
||
|
"Please make sure to update your driver to the latest version which resolves this."
|
||
|
)
|
||
|
else:
|
||
|
device = list(device_map.values())[0]
|
||
|
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
|
||
|
if is_npu_available() and isinstance(device, int):
|
||
|
device = f"npu:{device}"
|
||
|
elif is_mlu_available() and isinstance(device, int):
|
||
|
device = f"mlu:{device}"
|
||
|
elif is_sdaa_available() and isinstance(device, int):
|
||
|
device = f"sdaa:{device}"
|
||
|
elif is_musa_available() and isinstance(device, int):
|
||
|
device = f"musa:{device}"
|
||
|
if device != "disk":
|
||
|
model.to(device)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead."
|
||
|
)
|
||
|
# Convert OrderedDict back to dict for easier usage
|
||
|
model.hf_device_map = dict(device_map)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def load_checkpoint_and_dispatch(
|
||
|
model: nn.Module,
|
||
|
checkpoint: Union[str, os.PathLike],
|
||
|
device_map: Optional[Union[str, dict[str, Union[int, str, torch.device]]]] = None,
|
||
|
max_memory: Optional[dict[Union[int, str], Union[int, str]]] = None,
|
||
|
no_split_module_classes: Optional[list[str]] = None,
|
||
|
offload_folder: Optional[Union[str, os.PathLike]] = None,
|
||
|
offload_buffers: bool = False,
|
||
|
dtype: Optional[Union[str, torch.dtype]] = None,
|
||
|
offload_state_dict: Optional[bool] = None,
|
||
|
skip_keys: Optional[Union[str, list[str]]] = None,
|
||
|
preload_module_classes: Optional[list[str]] = None,
|
||
|
force_hooks: bool = False,
|
||
|
strict: bool = False,
|
||
|
full_state_dict: bool = True,
|
||
|
broadcast_from_rank0: bool = False,
|
||
|
):
|
||
|
"""
|
||
|
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
|
||
|
loaded and adds the various hooks that will make this model run properly (even if split across devices).
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`): The model in which we want to load a checkpoint.
|
||
|
checkpoint (`str` or `os.PathLike`):
|
||
|
The folder checkpoint to load. It can be:
|
||
|
- a path to a file containing a whole model state dict
|
||
|
- a path to a `.json` file containing the index to a sharded checkpoint
|
||
|
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
|
||
|
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
|
||
|
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
|
||
|
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
||
|
|
||
|
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more
|
||
|
information about each option see [here](../concept_guides/big_model_inference#designing-a-device-map).
|
||
|
Defaults to None, which means [`dispatch_model`] will not be called.
|
||
|
max_memory (`Dict`, *optional*):
|
||
|
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU
|
||
|
and the available CPU RAM if unset.
|
||
|
no_split_module_classes (`List[str]`, *optional*):
|
||
|
A list of layer class names that should never be split across device (for instance any layer that has a
|
||
|
residual connection).
|
||
|
offload_folder (`str` or `os.PathLike`, *optional*):
|
||
|
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
||
|
offload_buffers (`bool`, *optional*, defaults to `False`):
|
||
|
In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as
|
||
|
well as the parameters.
|
||
|
dtype (`str` or `torch.dtype`, *optional*):
|
||
|
If provided, the weights will be converted to that type when loaded.
|
||
|
offload_state_dict (`bool`, *optional*):
|
||
|
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
|
||
|
the weight of the CPU state dict + the biggest shard does not fit. Will default to `True` if the device map
|
||
|
picked contains `"disk"` values.
|
||
|
skip_keys (`str` or `List[str]`, *optional*):
|
||
|
A list of keys to ignore when moving inputs or outputs between devices.
|
||
|
preload_module_classes (`List[str]`, *optional*):
|
||
|
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
||
|
of the forward. This should only be used for classes that have submodules which are registered but not
|
||
|
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
||
|
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
||
|
force_hooks (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
|
||
|
single device.
|
||
|
strict (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's
|
||
|
state_dict.
|
||
|
full_state_dict (`bool`, *optional*, defaults to `True`): if this is set to `True`, all the tensors in the
|
||
|
loaded state_dict will be gathered. No ShardedTensor and DTensor will be in the loaded state_dict.
|
||
|
broadcast_from_rank0 (`False`, *optional*, defaults to `False`): when the option is `True`, a distributed
|
||
|
`ProcessGroup` must be initialized. rank0 should receive a full state_dict and will broadcast the tensors
|
||
|
in the state_dict one by one to other ranks. Other ranks will receive the tensors and shard (if applicable)
|
||
|
according to the local shards in the model.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
||
|
>>> from huggingface_hub import hf_hub_download
|
||
|
>>> from transformers import AutoConfig, AutoModelForCausalLM
|
||
|
|
||
|
>>> # Download the Weights
|
||
|
>>> checkpoint = "EleutherAI/gpt-j-6B"
|
||
|
>>> weights_location = hf_hub_download(checkpoint, "pytorch_model.bin")
|
||
|
|
||
|
>>> # Create a model and initialize it with empty weights
|
||
|
>>> config = AutoConfig.from_pretrained(checkpoint)
|
||
|
>>> with init_empty_weights():
|
||
|
... model = AutoModelForCausalLM.from_config(config)
|
||
|
|
||
|
>>> # Load the checkpoint and dispatch it to the right devices
|
||
|
>>> model = load_checkpoint_and_dispatch(
|
||
|
... model, weights_location, device_map="auto", no_split_module_classes=["GPTJBlock"]
|
||
|
... )
|
||
|
```
|
||
|
"""
|
||
|
if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
|
||
|
raise ValueError(
|
||
|
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or 'sequential'."
|
||
|
)
|
||
|
if isinstance(device_map, str):
|
||
|
if device_map != "sequential":
|
||
|
max_memory = get_balanced_memory(
|
||
|
model,
|
||
|
max_memory=max_memory,
|
||
|
no_split_module_classes=no_split_module_classes,
|
||
|
dtype=dtype,
|
||
|
low_zero=(device_map == "balanced_low_0"),
|
||
|
)
|
||
|
device_map = infer_auto_device_map(
|
||
|
model,
|
||
|
max_memory=max_memory,
|
||
|
no_split_module_classes=no_split_module_classes,
|
||
|
dtype=dtype,
|
||
|
offload_buffers=offload_buffers,
|
||
|
)
|
||
|
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
|
||
|
offload_state_dict = True
|
||
|
load_checkpoint_in_model(
|
||
|
model,
|
||
|
checkpoint,
|
||
|
device_map=device_map,
|
||
|
offload_folder=offload_folder,
|
||
|
dtype=dtype,
|
||
|
offload_state_dict=offload_state_dict,
|
||
|
offload_buffers=offload_buffers,
|
||
|
strict=strict,
|
||
|
full_state_dict=full_state_dict,
|
||
|
broadcast_from_rank0=broadcast_from_rank0,
|
||
|
)
|
||
|
if device_map is None:
|
||
|
return model
|
||
|
return dispatch_model(
|
||
|
model,
|
||
|
device_map=device_map,
|
||
|
offload_dir=offload_folder,
|
||
|
offload_buffers=offload_buffers,
|
||
|
skip_keys=skip_keys,
|
||
|
preload_module_classes=preload_module_classes,
|
||
|
force_hooks=force_hooks,
|
||
|
)
|
||
|
|
||
|
|
||
|
def attach_layerwise_casting_hooks(
|
||
|
module: torch.nn.Module,
|
||
|
storage_dtype: torch.dtype,
|
||
|
compute_dtype: torch.dtype,
|
||
|
skip_modules_pattern: Union[str, tuple[str, ...]] = None,
|
||
|
skip_modules_classes: Optional[tuple[type[torch.nn.Module], ...]] = None,
|
||
|
non_blocking: bool = False,
|
||
|
) -> None:
|
||
|
r"""
|
||
|
Applies layerwise casting to a given module. The module expected here is a PyTorch `nn.Module`. This is helpful for
|
||
|
reducing memory requirements when one doesn't want to fully quantize a model. Model params can be kept in say,
|
||
|
`torch.float8_e4m3fn` and upcasted to a higher precision like `torch.bfloat16` during forward pass and downcasted
|
||
|
back to `torch.float8_e4m3fn` to realize memory savings.
|
||
|
|
||
|
Args:
|
||
|
module (`torch.nn.Module`):
|
||
|
The module whose leaf modules will be cast to a high precision dtype for computation, and to a low
|
||
|
precision dtype for storage.
|
||
|
storage_dtype (`torch.dtype`):
|
||
|
The dtype to cast the module to before/after the forward pass for storage.
|
||
|
compute_dtype (`torch.dtype`):
|
||
|
The dtype to cast the module to during the forward pass for computation.
|
||
|
skip_modules_pattern (`tuple[str, ...]`, defaults to `None`):
|
||
|
A list of patterns to match the names of the modules to skip during the layerwise casting process. If set
|
||
|
to `None` alongside `skip_modules_classes` being `None`, the layerwise casting is applied directly to the
|
||
|
module instead of its internal submodules.
|
||
|
skip_modules_classes (`tuple[type[torch.nn.Module], ...]`, defaults to `None`):
|
||
|
A list of module classes to skip during the layerwise casting process.
|
||
|
non_blocking (`bool`, defaults to `False`):
|
||
|
If `True`, the weight casting operations are non-blocking.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from accelerate.hooks import attach_layerwise_casting_hooks
|
||
|
>>> from transformers import AutoModelForCausalLM
|
||
|
>>> import torch
|
||
|
|
||
|
>>> # Model
|
||
|
>>> checkpoint = "EleutherAI/gpt-j-6B"
|
||
|
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
||
|
|
||
|
>>> # Attach hooks and perform inference
|
||
|
>>> attach_layerwise_casting_hooks(model, storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
|
||
|
>>> with torch.no_grad():
|
||
|
... model(...)
|
||
|
```
|
||
|
|
||
|
Users can also pass modules they want to avoid from getting downcasted.
|
||
|
|
||
|
```py
|
||
|
>>> attach_layerwise_casting_hooks(
|
||
|
... model, storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16, skip_modules_pattern=["norm"]
|
||
|
... )
|
||
|
```
|
||
|
"""
|
||
|
_attach_layerwise_casting_hooks(
|
||
|
module, storage_dtype, compute_dtype, skip_modules_pattern, skip_modules_classes, non_blocking
|
||
|
)
|
||
|
|
||
|
|
||
|
def _attach_layerwise_casting_hooks(
|
||
|
module: torch.nn.Module,
|
||
|
storage_dtype: torch.dtype,
|
||
|
compute_dtype: torch.dtype,
|
||
|
skip_modules_pattern: Union[str, tuple[str, ...]] = None,
|
||
|
skip_modules_classes: Optional[tuple[type[torch.nn.Module], ...]] = None,
|
||
|
non_blocking: bool = False,
|
||
|
_prefix: str = "",
|
||
|
):
|
||
|
should_skip = (skip_modules_classes is not None and isinstance(module, skip_modules_classes)) or (
|
||
|
skip_modules_pattern is not None and any(re.search(pattern, _prefix) for pattern in skip_modules_pattern)
|
||
|
)
|
||
|
if should_skip:
|
||
|
logger.debug(f'Skipping layerwise casting for layer "{_prefix}"')
|
||
|
return
|
||
|
|
||
|
if isinstance(module, SUPPORTED_PYTORCH_LAYERS_FOR_UPCASTING):
|
||
|
logger.debug(f'Applying layerwise casting to layer "{_prefix}"')
|
||
|
add_hook_to_module(
|
||
|
module,
|
||
|
LayerwiseCastingHook(storage_dtype=storage_dtype, compute_dtype=compute_dtype, non_blocking=non_blocking),
|
||
|
append=True,
|
||
|
)
|
||
|
return
|
||
|
|
||
|
for name, submodule in module.named_children():
|
||
|
layer_name = f"{_prefix}.{name}" if _prefix else name
|
||
|
_attach_layerwise_casting_hooks(
|
||
|
submodule,
|
||
|
storage_dtype,
|
||
|
compute_dtype,
|
||
|
skip_modules_pattern,
|
||
|
skip_modules_classes,
|
||
|
non_blocking,
|
||
|
_prefix=layer_name,
|
||
|
)
|