1012 lines
46 KiB
Python
1012 lines
46 KiB
Python
![]() |
# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
|
|||
|
import html
|
|||
|
import inspect
|
|||
|
import re
|
|||
|
import urllib.parse as ul
|
|||
|
import warnings
|
|||
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|||
|
|
|||
|
import torch
|
|||
|
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
|
|||
|
|
|||
|
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
|||
|
from ...image_processor import PixArtImageProcessor
|
|||
|
from ...loaders import SanaLoraLoaderMixin
|
|||
|
from ...models import AutoencoderDC, SanaTransformer2DModel
|
|||
|
from ...schedulers import DPMSolverMultistepScheduler
|
|||
|
from ...utils import (
|
|||
|
BACKENDS_MAPPING,
|
|||
|
USE_PEFT_BACKEND,
|
|||
|
is_bs4_available,
|
|||
|
is_ftfy_available,
|
|||
|
is_torch_xla_available,
|
|||
|
logging,
|
|||
|
replace_example_docstring,
|
|||
|
scale_lora_layers,
|
|||
|
unscale_lora_layers,
|
|||
|
)
|
|||
|
from ...utils.torch_utils import get_device, is_torch_version, randn_tensor
|
|||
|
from ..pipeline_utils import DiffusionPipeline
|
|||
|
from ..pixart_alpha.pipeline_pixart_alpha import (
|
|||
|
ASPECT_RATIO_512_BIN,
|
|||
|
ASPECT_RATIO_1024_BIN,
|
|||
|
)
|
|||
|
from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
|
|||
|
from .pipeline_output import SanaPipelineOutput
|
|||
|
|
|||
|
|
|||
|
if is_torch_xla_available():
|
|||
|
import torch_xla.core.xla_model as xm
|
|||
|
|
|||
|
XLA_AVAILABLE = True
|
|||
|
else:
|
|||
|
XLA_AVAILABLE = False
|
|||
|
|
|||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|||
|
|
|||
|
if is_bs4_available():
|
|||
|
from bs4 import BeautifulSoup
|
|||
|
|
|||
|
if is_ftfy_available():
|
|||
|
import ftfy
|
|||
|
|
|||
|
|
|||
|
ASPECT_RATIO_4096_BIN = {
|
|||
|
"0.25": [2048.0, 8192.0],
|
|||
|
"0.26": [2048.0, 7936.0],
|
|||
|
"0.27": [2048.0, 7680.0],
|
|||
|
"0.28": [2048.0, 7424.0],
|
|||
|
"0.32": [2304.0, 7168.0],
|
|||
|
"0.33": [2304.0, 6912.0],
|
|||
|
"0.35": [2304.0, 6656.0],
|
|||
|
"0.4": [2560.0, 6400.0],
|
|||
|
"0.42": [2560.0, 6144.0],
|
|||
|
"0.48": [2816.0, 5888.0],
|
|||
|
"0.5": [2816.0, 5632.0],
|
|||
|
"0.52": [2816.0, 5376.0],
|
|||
|
"0.57": [3072.0, 5376.0],
|
|||
|
"0.6": [3072.0, 5120.0],
|
|||
|
"0.68": [3328.0, 4864.0],
|
|||
|
"0.72": [3328.0, 4608.0],
|
|||
|
"0.78": [3584.0, 4608.0],
|
|||
|
"0.82": [3584.0, 4352.0],
|
|||
|
"0.88": [3840.0, 4352.0],
|
|||
|
"0.94": [3840.0, 4096.0],
|
|||
|
"1.0": [4096.0, 4096.0],
|
|||
|
"1.07": [4096.0, 3840.0],
|
|||
|
"1.13": [4352.0, 3840.0],
|
|||
|
"1.21": [4352.0, 3584.0],
|
|||
|
"1.29": [4608.0, 3584.0],
|
|||
|
"1.38": [4608.0, 3328.0],
|
|||
|
"1.46": [4864.0, 3328.0],
|
|||
|
"1.67": [5120.0, 3072.0],
|
|||
|
"1.75": [5376.0, 3072.0],
|
|||
|
"2.0": [5632.0, 2816.0],
|
|||
|
"2.09": [5888.0, 2816.0],
|
|||
|
"2.4": [6144.0, 2560.0],
|
|||
|
"2.5": [6400.0, 2560.0],
|
|||
|
"2.89": [6656.0, 2304.0],
|
|||
|
"3.0": [6912.0, 2304.0],
|
|||
|
"3.11": [7168.0, 2304.0],
|
|||
|
"3.62": [7424.0, 2048.0],
|
|||
|
"3.75": [7680.0, 2048.0],
|
|||
|
"3.88": [7936.0, 2048.0],
|
|||
|
"4.0": [8192.0, 2048.0],
|
|||
|
}
|
|||
|
|
|||
|
EXAMPLE_DOC_STRING = """
|
|||
|
Examples:
|
|||
|
```py
|
|||
|
>>> import torch
|
|||
|
>>> from diffusers import SanaPipeline
|
|||
|
|
|||
|
>>> pipe = SanaPipeline.from_pretrained(
|
|||
|
... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32
|
|||
|
... )
|
|||
|
>>> pipe.to("cuda")
|
|||
|
>>> pipe.text_encoder.to(torch.bfloat16)
|
|||
|
>>> pipe.transformer = pipe.transformer.to(torch.bfloat16)
|
|||
|
|
|||
|
>>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
|
|||
|
>>> image[0].save("output.png")
|
|||
|
```
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|||
|
def retrieve_timesteps(
|
|||
|
scheduler,
|
|||
|
num_inference_steps: Optional[int] = None,
|
|||
|
device: Optional[Union[str, torch.device]] = None,
|
|||
|
timesteps: Optional[List[int]] = None,
|
|||
|
sigmas: Optional[List[float]] = None,
|
|||
|
**kwargs,
|
|||
|
):
|
|||
|
r"""
|
|||
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|||
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|||
|
|
|||
|
Args:
|
|||
|
scheduler (`SchedulerMixin`):
|
|||
|
The scheduler to get timesteps from.
|
|||
|
num_inference_steps (`int`):
|
|||
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|||
|
must be `None`.
|
|||
|
device (`str` or `torch.device`, *optional*):
|
|||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|||
|
timesteps (`List[int]`, *optional*):
|
|||
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|||
|
`num_inference_steps` and `sigmas` must be `None`.
|
|||
|
sigmas (`List[float]`, *optional*):
|
|||
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|||
|
`num_inference_steps` and `timesteps` must be `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|||
|
second element is the number of inference steps.
|
|||
|
"""
|
|||
|
if timesteps is not None and sigmas is not None:
|
|||
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|||
|
if timesteps is not None:
|
|||
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|||
|
if not accepts_timesteps:
|
|||
|
raise ValueError(
|
|||
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|||
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|||
|
)
|
|||
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|||
|
timesteps = scheduler.timesteps
|
|||
|
num_inference_steps = len(timesteps)
|
|||
|
elif sigmas is not None:
|
|||
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|||
|
if not accept_sigmas:
|
|||
|
raise ValueError(
|
|||
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|||
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|||
|
)
|
|||
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|||
|
timesteps = scheduler.timesteps
|
|||
|
num_inference_steps = len(timesteps)
|
|||
|
else:
|
|||
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|||
|
timesteps = scheduler.timesteps
|
|||
|
return timesteps, num_inference_steps
|
|||
|
|
|||
|
|
|||
|
class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
|||
|
r"""
|
|||
|
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
|
|||
|
"""
|
|||
|
|
|||
|
# fmt: off
|
|||
|
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
|
|||
|
# fmt: on
|
|||
|
|
|||
|
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
|||
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
|
|||
|
text_encoder: Gemma2PreTrainedModel,
|
|||
|
vae: AutoencoderDC,
|
|||
|
transformer: SanaTransformer2DModel,
|
|||
|
scheduler: DPMSolverMultistepScheduler,
|
|||
|
):
|
|||
|
super().__init__()
|
|||
|
|
|||
|
self.register_modules(
|
|||
|
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
|||
|
)
|
|||
|
|
|||
|
self.vae_scale_factor = (
|
|||
|
2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
|
|||
|
if hasattr(self, "vae") and self.vae is not None
|
|||
|
else 32
|
|||
|
)
|
|||
|
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|||
|
|
|||
|
def enable_vae_slicing(self):
|
|||
|
r"""
|
|||
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
|||
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
|||
|
"""
|
|||
|
self.vae.enable_slicing()
|
|||
|
|
|||
|
def disable_vae_slicing(self):
|
|||
|
r"""
|
|||
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
|||
|
computing decoding in one step.
|
|||
|
"""
|
|||
|
self.vae.disable_slicing()
|
|||
|
|
|||
|
def enable_vae_tiling(self):
|
|||
|
r"""
|
|||
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
|||
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
|||
|
processing larger images.
|
|||
|
"""
|
|||
|
self.vae.enable_tiling()
|
|||
|
|
|||
|
def disable_vae_tiling(self):
|
|||
|
r"""
|
|||
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
|||
|
computing decoding in one step.
|
|||
|
"""
|
|||
|
self.vae.disable_tiling()
|
|||
|
|
|||
|
def _get_gemma_prompt_embeds(
|
|||
|
self,
|
|||
|
prompt: Union[str, List[str]],
|
|||
|
device: torch.device,
|
|||
|
dtype: torch.dtype,
|
|||
|
clean_caption: bool = False,
|
|||
|
max_sequence_length: int = 300,
|
|||
|
complex_human_instruction: Optional[List[str]] = None,
|
|||
|
):
|
|||
|
r"""
|
|||
|
Encodes the prompt into text encoder hidden states.
|
|||
|
|
|||
|
Args:
|
|||
|
prompt (`str` or `List[str]`, *optional*):
|
|||
|
prompt to be encoded
|
|||
|
device: (`torch.device`, *optional*):
|
|||
|
torch device to place the resulting embeddings on
|
|||
|
clean_caption (`bool`, defaults to `False`):
|
|||
|
If `True`, the function will preprocess and clean the provided caption before encoding.
|
|||
|
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
|||
|
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
|||
|
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
|||
|
the prompt.
|
|||
|
"""
|
|||
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|||
|
|
|||
|
if getattr(self, "tokenizer", None) is not None:
|
|||
|
self.tokenizer.padding_side = "right"
|
|||
|
|
|||
|
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
|||
|
|
|||
|
# prepare complex human instruction
|
|||
|
if not complex_human_instruction:
|
|||
|
max_length_all = max_sequence_length
|
|||
|
else:
|
|||
|
chi_prompt = "\n".join(complex_human_instruction)
|
|||
|
prompt = [chi_prompt + p for p in prompt]
|
|||
|
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
|
|||
|
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
|
|||
|
|
|||
|
text_inputs = self.tokenizer(
|
|||
|
prompt,
|
|||
|
padding="max_length",
|
|||
|
max_length=max_length_all,
|
|||
|
truncation=True,
|
|||
|
add_special_tokens=True,
|
|||
|
return_tensors="pt",
|
|||
|
)
|
|||
|
text_input_ids = text_inputs.input_ids
|
|||
|
|
|||
|
prompt_attention_mask = text_inputs.attention_mask
|
|||
|
prompt_attention_mask = prompt_attention_mask.to(device)
|
|||
|
|
|||
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
|||
|
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
|
|||
|
|
|||
|
return prompt_embeds, prompt_attention_mask
|
|||
|
|
|||
|
def encode_prompt(
|
|||
|
self,
|
|||
|
prompt: Union[str, List[str]],
|
|||
|
do_classifier_free_guidance: bool = True,
|
|||
|
negative_prompt: str = "",
|
|||
|
num_images_per_prompt: int = 1,
|
|||
|
device: Optional[torch.device] = None,
|
|||
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
prompt_attention_mask: Optional[torch.Tensor] = None,
|
|||
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
|||
|
clean_caption: bool = False,
|
|||
|
max_sequence_length: int = 300,
|
|||
|
complex_human_instruction: Optional[List[str]] = None,
|
|||
|
lora_scale: Optional[float] = None,
|
|||
|
):
|
|||
|
r"""
|
|||
|
Encodes the prompt into text encoder hidden states.
|
|||
|
|
|||
|
Args:
|
|||
|
prompt (`str` or `List[str]`, *optional*):
|
|||
|
prompt to be encoded
|
|||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
|||
|
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
|||
|
PixArt-Alpha, this should be "".
|
|||
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
|||
|
whether to use classifier free guidance or not
|
|||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|||
|
number of images that should be generated per prompt
|
|||
|
device: (`torch.device`, *optional*):
|
|||
|
torch device to place the resulting embeddings on
|
|||
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|||
|
provided, text embeddings will be generated from `prompt` input argument.
|
|||
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
|
|||
|
clean_caption (`bool`, defaults to `False`):
|
|||
|
If `True`, the function will preprocess and clean the provided caption before encoding.
|
|||
|
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
|||
|
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
|||
|
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
|||
|
the prompt.
|
|||
|
"""
|
|||
|
|
|||
|
if device is None:
|
|||
|
device = self._execution_device
|
|||
|
|
|||
|
if self.text_encoder is not None:
|
|||
|
dtype = self.text_encoder.dtype
|
|||
|
else:
|
|||
|
dtype = None
|
|||
|
|
|||
|
# set lora scale so that monkey patched LoRA
|
|||
|
# function of text encoder can correctly access it
|
|||
|
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
|
|||
|
self._lora_scale = lora_scale
|
|||
|
|
|||
|
# dynamically adjust the LoRA scale
|
|||
|
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
|||
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|||
|
|
|||
|
if prompt is not None and isinstance(prompt, str):
|
|||
|
batch_size = 1
|
|||
|
elif prompt is not None and isinstance(prompt, list):
|
|||
|
batch_size = len(prompt)
|
|||
|
else:
|
|||
|
batch_size = prompt_embeds.shape[0]
|
|||
|
|
|||
|
if getattr(self, "tokenizer", None) is not None:
|
|||
|
self.tokenizer.padding_side = "right"
|
|||
|
|
|||
|
# See Section 3.1. of the paper.
|
|||
|
max_length = max_sequence_length
|
|||
|
select_index = [0] + list(range(-max_length + 1, 0))
|
|||
|
|
|||
|
if prompt_embeds is None:
|
|||
|
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
|
|||
|
prompt=prompt,
|
|||
|
device=device,
|
|||
|
dtype=dtype,
|
|||
|
clean_caption=clean_caption,
|
|||
|
max_sequence_length=max_sequence_length,
|
|||
|
complex_human_instruction=complex_human_instruction,
|
|||
|
)
|
|||
|
|
|||
|
prompt_embeds = prompt_embeds[:, select_index]
|
|||
|
prompt_attention_mask = prompt_attention_mask[:, select_index]
|
|||
|
|
|||
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|||
|
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
|||
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|||
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|||
|
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
|||
|
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
|||
|
|
|||
|
# get unconditional embeddings for classifier free guidance
|
|||
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|||
|
negative_prompt = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
|||
|
negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds(
|
|||
|
prompt=negative_prompt,
|
|||
|
device=device,
|
|||
|
dtype=dtype,
|
|||
|
clean_caption=clean_caption,
|
|||
|
max_sequence_length=max_sequence_length,
|
|||
|
complex_human_instruction=False,
|
|||
|
)
|
|||
|
|
|||
|
if do_classifier_free_guidance:
|
|||
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|||
|
seq_len = negative_prompt_embeds.shape[1]
|
|||
|
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
|||
|
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|||
|
|
|||
|
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
|||
|
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
|||
|
else:
|
|||
|
negative_prompt_embeds = None
|
|||
|
negative_prompt_attention_mask = None
|
|||
|
|
|||
|
if self.text_encoder is not None:
|
|||
|
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|||
|
# Retrieve the original scale by scaling back the LoRA layers
|
|||
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|||
|
|
|||
|
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|||
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|||
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|||
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|||
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|||
|
# and should be between [0, 1]
|
|||
|
|
|||
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|||
|
extra_step_kwargs = {}
|
|||
|
if accepts_eta:
|
|||
|
extra_step_kwargs["eta"] = eta
|
|||
|
|
|||
|
# check if the scheduler accepts generator
|
|||
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|||
|
if accepts_generator:
|
|||
|
extra_step_kwargs["generator"] = generator
|
|||
|
return extra_step_kwargs
|
|||
|
|
|||
|
def check_inputs(
|
|||
|
self,
|
|||
|
prompt,
|
|||
|
height,
|
|||
|
width,
|
|||
|
callback_on_step_end_tensor_inputs=None,
|
|||
|
negative_prompt=None,
|
|||
|
prompt_embeds=None,
|
|||
|
negative_prompt_embeds=None,
|
|||
|
prompt_attention_mask=None,
|
|||
|
negative_prompt_attention_mask=None,
|
|||
|
):
|
|||
|
if height % 32 != 0 or width % 32 != 0:
|
|||
|
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
|
|||
|
|
|||
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|||
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|||
|
):
|
|||
|
raise ValueError(
|
|||
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|||
|
)
|
|||
|
|
|||
|
if prompt is not None and prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|||
|
" only forward one of the two."
|
|||
|
)
|
|||
|
elif prompt is None and prompt_embeds is None:
|
|||
|
raise ValueError(
|
|||
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|||
|
)
|
|||
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|||
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|||
|
|
|||
|
if prompt is not None and negative_prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
|||
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|||
|
)
|
|||
|
|
|||
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|||
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|||
|
)
|
|||
|
|
|||
|
if prompt_embeds is not None and prompt_attention_mask is None:
|
|||
|
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
|||
|
|
|||
|
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
|||
|
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
|||
|
|
|||
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|||
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|||
|
raise ValueError(
|
|||
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|||
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|||
|
f" {negative_prompt_embeds.shape}."
|
|||
|
)
|
|||
|
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
|||
|
raise ValueError(
|
|||
|
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
|||
|
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
|||
|
f" {negative_prompt_attention_mask.shape}."
|
|||
|
)
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
|||
|
def _text_preprocessing(self, text, clean_caption=False):
|
|||
|
if clean_caption and not is_bs4_available():
|
|||
|
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
|||
|
logger.warning("Setting `clean_caption` to False...")
|
|||
|
clean_caption = False
|
|||
|
|
|||
|
if clean_caption and not is_ftfy_available():
|
|||
|
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
|||
|
logger.warning("Setting `clean_caption` to False...")
|
|||
|
clean_caption = False
|
|||
|
|
|||
|
if not isinstance(text, (tuple, list)):
|
|||
|
text = [text]
|
|||
|
|
|||
|
def process(text: str):
|
|||
|
if clean_caption:
|
|||
|
text = self._clean_caption(text)
|
|||
|
text = self._clean_caption(text)
|
|||
|
else:
|
|||
|
text = text.lower().strip()
|
|||
|
return text
|
|||
|
|
|||
|
return [process(t) for t in text]
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
|||
|
def _clean_caption(self, caption):
|
|||
|
caption = str(caption)
|
|||
|
caption = ul.unquote_plus(caption)
|
|||
|
caption = caption.strip().lower()
|
|||
|
caption = re.sub("<person>", "person", caption)
|
|||
|
# urls:
|
|||
|
caption = re.sub(
|
|||
|
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
|||
|
"",
|
|||
|
caption,
|
|||
|
) # regex for urls
|
|||
|
caption = re.sub(
|
|||
|
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
|||
|
"",
|
|||
|
caption,
|
|||
|
) # regex for urls
|
|||
|
# html:
|
|||
|
caption = BeautifulSoup(caption, features="html.parser").text
|
|||
|
|
|||
|
# @<nickname>
|
|||
|
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
|||
|
|
|||
|
# 31C0—31EF CJK Strokes
|
|||
|
# 31F0—31FF Katakana Phonetic Extensions
|
|||
|
# 3200—32FF Enclosed CJK Letters and Months
|
|||
|
# 3300—33FF CJK Compatibility
|
|||
|
# 3400—4DBF CJK Unified Ideographs Extension A
|
|||
|
# 4DC0—4DFF Yijing Hexagram Symbols
|
|||
|
# 4E00—9FFF CJK Unified Ideographs
|
|||
|
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
|||
|
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
|||
|
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
|||
|
#######################################################
|
|||
|
|
|||
|
# все виды тире / all types of dash --> "-"
|
|||
|
caption = re.sub(
|
|||
|
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
|||
|
"-",
|
|||
|
caption,
|
|||
|
)
|
|||
|
|
|||
|
# кавычки к одному стандарту
|
|||
|
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
|||
|
caption = re.sub(r"[‘’]", "'", caption)
|
|||
|
|
|||
|
# "
|
|||
|
caption = re.sub(r""?", "", caption)
|
|||
|
# &
|
|||
|
caption = re.sub(r"&", "", caption)
|
|||
|
|
|||
|
# ip addresses:
|
|||
|
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
|||
|
|
|||
|
# article ids:
|
|||
|
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
|||
|
|
|||
|
# \n
|
|||
|
caption = re.sub(r"\\n", " ", caption)
|
|||
|
|
|||
|
# "#123"
|
|||
|
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
|||
|
# "#12345.."
|
|||
|
caption = re.sub(r"#\d{5,}\b", "", caption)
|
|||
|
# "123456.."
|
|||
|
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
|||
|
# filenames:
|
|||
|
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
|||
|
|
|||
|
#
|
|||
|
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
|||
|
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
|||
|
|
|||
|
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
|||
|
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
|||
|
|
|||
|
# this-is-my-cute-cat / this_is_my_cute_cat
|
|||
|
regex2 = re.compile(r"(?:\-|\_)")
|
|||
|
if len(re.findall(regex2, caption)) > 3:
|
|||
|
caption = re.sub(regex2, " ", caption)
|
|||
|
|
|||
|
caption = ftfy.fix_text(caption)
|
|||
|
caption = html.unescape(html.unescape(caption))
|
|||
|
|
|||
|
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
|||
|
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
|||
|
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
|||
|
|
|||
|
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
|||
|
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
|||
|
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
|||
|
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
|||
|
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
|||
|
|
|||
|
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
|||
|
|
|||
|
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
|||
|
|
|||
|
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
|||
|
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
|||
|
caption = re.sub(r"\s+", " ", caption)
|
|||
|
|
|||
|
caption.strip()
|
|||
|
|
|||
|
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
|||
|
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
|||
|
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
|||
|
caption = re.sub(r"^\.\S+$", "", caption)
|
|||
|
|
|||
|
return caption.strip()
|
|||
|
|
|||
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|||
|
if latents is not None:
|
|||
|
return latents.to(device=device, dtype=dtype)
|
|||
|
|
|||
|
shape = (
|
|||
|
batch_size,
|
|||
|
num_channels_latents,
|
|||
|
int(height) // self.vae_scale_factor,
|
|||
|
int(width) // self.vae_scale_factor,
|
|||
|
)
|
|||
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|||
|
raise ValueError(
|
|||
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|||
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|||
|
)
|
|||
|
|
|||
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|||
|
return latents
|
|||
|
|
|||
|
@property
|
|||
|
def guidance_scale(self):
|
|||
|
return self._guidance_scale
|
|||
|
|
|||
|
@property
|
|||
|
def attention_kwargs(self):
|
|||
|
return self._attention_kwargs
|
|||
|
|
|||
|
@property
|
|||
|
def do_classifier_free_guidance(self):
|
|||
|
return self._guidance_scale > 1.0
|
|||
|
|
|||
|
@property
|
|||
|
def num_timesteps(self):
|
|||
|
return self._num_timesteps
|
|||
|
|
|||
|
@property
|
|||
|
def interrupt(self):
|
|||
|
return self._interrupt
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|||
|
def __call__(
|
|||
|
self,
|
|||
|
prompt: Union[str, List[str]] = None,
|
|||
|
negative_prompt: str = "",
|
|||
|
num_inference_steps: int = 20,
|
|||
|
timesteps: List[int] = None,
|
|||
|
sigmas: List[float] = None,
|
|||
|
guidance_scale: float = 4.5,
|
|||
|
num_images_per_prompt: Optional[int] = 1,
|
|||
|
height: int = 1024,
|
|||
|
width: int = 1024,
|
|||
|
eta: float = 0.0,
|
|||
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|||
|
latents: Optional[torch.Tensor] = None,
|
|||
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
prompt_attention_mask: Optional[torch.Tensor] = None,
|
|||
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
|||
|
output_type: Optional[str] = "pil",
|
|||
|
return_dict: bool = True,
|
|||
|
clean_caption: bool = False,
|
|||
|
use_resolution_binning: bool = True,
|
|||
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
|||
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|||
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|||
|
max_sequence_length: int = 300,
|
|||
|
complex_human_instruction: List[str] = [
|
|||
|
"Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
|
|||
|
"- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
|
|||
|
"- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
|
|||
|
"Here are examples of how to transform or refine prompts:",
|
|||
|
"- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
|
|||
|
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
|
|||
|
"Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
|
|||
|
"User Prompt: ",
|
|||
|
],
|
|||
|
) -> Union[SanaPipelineOutput, Tuple]:
|
|||
|
"""
|
|||
|
Function invoked when calling the pipeline for generation.
|
|||
|
|
|||
|
Args:
|
|||
|
prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|||
|
instead.
|
|||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|||
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|||
|
less than `1`).
|
|||
|
num_inference_steps (`int`, *optional*, defaults to 20):
|
|||
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|||
|
expense of slower inference.
|
|||
|
timesteps (`List[int]`, *optional*):
|
|||
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|||
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|||
|
passed will be used. Must be in descending order.
|
|||
|
sigmas (`List[float]`, *optional*):
|
|||
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
|||
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
|||
|
will be used.
|
|||
|
guidance_scale (`float`, *optional*, defaults to 4.5):
|
|||
|
Guidance scale as defined in [Classifier-Free Diffusion
|
|||
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
|||
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
|||
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
|||
|
the text `prompt`, usually at the expense of lower image quality.
|
|||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|||
|
The number of images to generate per prompt.
|
|||
|
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|||
|
The height in pixels of the generated image.
|
|||
|
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|||
|
The width in pixels of the generated image.
|
|||
|
eta (`float`, *optional*, defaults to 0.0):
|
|||
|
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
|
|||
|
applies to [`schedulers.DDIMScheduler`], will be ignored for others.
|
|||
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|||
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|||
|
to make generation deterministic.
|
|||
|
latents (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|||
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|||
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|||
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|||
|
provided, text embeddings will be generated from `prompt` input argument.
|
|||
|
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
|||
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
|||
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
|||
|
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated attention mask for negative text embeddings.
|
|||
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|||
|
The output format of the generate image. Choose between
|
|||
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|||
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
|||
|
attention_kwargs:
|
|||
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|||
|
`self.processor` in
|
|||
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|||
|
clean_caption (`bool`, *optional*, defaults to `True`):
|
|||
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
|||
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
|||
|
prompt.
|
|||
|
use_resolution_binning (`bool` defaults to `True`):
|
|||
|
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
|||
|
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
|||
|
the requested resolution. Useful for generating non-square images.
|
|||
|
callback_on_step_end (`Callable`, *optional*):
|
|||
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|||
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|||
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|||
|
`callback_on_step_end_tensor_inputs`.
|
|||
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|||
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|||
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|||
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|||
|
max_sequence_length (`int` defaults to `300`):
|
|||
|
Maximum sequence length to use with the `prompt`.
|
|||
|
complex_human_instruction (`List[str]`, *optional*):
|
|||
|
Instructions for complex human attention:
|
|||
|
https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
|
|||
|
|
|||
|
Examples:
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
|
|||
|
If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
|
|||
|
otherwise a `tuple` is returned where the first element is a list with the generated images
|
|||
|
"""
|
|||
|
|
|||
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|||
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|||
|
|
|||
|
# 1. Check inputs. Raise error if not correct
|
|||
|
if use_resolution_binning:
|
|||
|
if self.transformer.config.sample_size == 128:
|
|||
|
aspect_ratio_bin = ASPECT_RATIO_4096_BIN
|
|||
|
elif self.transformer.config.sample_size == 64:
|
|||
|
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
|
|||
|
elif self.transformer.config.sample_size == 32:
|
|||
|
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
|||
|
elif self.transformer.config.sample_size == 16:
|
|||
|
aspect_ratio_bin = ASPECT_RATIO_512_BIN
|
|||
|
else:
|
|||
|
raise ValueError("Invalid sample size")
|
|||
|
orig_height, orig_width = height, width
|
|||
|
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
|
|||
|
|
|||
|
self.check_inputs(
|
|||
|
prompt,
|
|||
|
height,
|
|||
|
width,
|
|||
|
callback_on_step_end_tensor_inputs,
|
|||
|
negative_prompt,
|
|||
|
prompt_embeds,
|
|||
|
negative_prompt_embeds,
|
|||
|
prompt_attention_mask,
|
|||
|
negative_prompt_attention_mask,
|
|||
|
)
|
|||
|
|
|||
|
self._guidance_scale = guidance_scale
|
|||
|
self._attention_kwargs = attention_kwargs
|
|||
|
self._interrupt = False
|
|||
|
|
|||
|
# 2. Default height and width to transformer
|
|||
|
if prompt is not None and isinstance(prompt, str):
|
|||
|
batch_size = 1
|
|||
|
elif prompt is not None and isinstance(prompt, list):
|
|||
|
batch_size = len(prompt)
|
|||
|
else:
|
|||
|
batch_size = prompt_embeds.shape[0]
|
|||
|
|
|||
|
device = self._execution_device
|
|||
|
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
|||
|
|
|||
|
# 3. Encode input prompt
|
|||
|
(
|
|||
|
prompt_embeds,
|
|||
|
prompt_attention_mask,
|
|||
|
negative_prompt_embeds,
|
|||
|
negative_prompt_attention_mask,
|
|||
|
) = self.encode_prompt(
|
|||
|
prompt,
|
|||
|
self.do_classifier_free_guidance,
|
|||
|
negative_prompt=negative_prompt,
|
|||
|
num_images_per_prompt=num_images_per_prompt,
|
|||
|
device=device,
|
|||
|
prompt_embeds=prompt_embeds,
|
|||
|
negative_prompt_embeds=negative_prompt_embeds,
|
|||
|
prompt_attention_mask=prompt_attention_mask,
|
|||
|
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
|||
|
clean_caption=clean_caption,
|
|||
|
max_sequence_length=max_sequence_length,
|
|||
|
complex_human_instruction=complex_human_instruction,
|
|||
|
lora_scale=lora_scale,
|
|||
|
)
|
|||
|
if self.do_classifier_free_guidance:
|
|||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|||
|
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
|||
|
|
|||
|
# 4. Prepare timesteps
|
|||
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|||
|
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
|||
|
)
|
|||
|
|
|||
|
# 5. Prepare latents.
|
|||
|
latent_channels = self.transformer.config.in_channels
|
|||
|
latents = self.prepare_latents(
|
|||
|
batch_size * num_images_per_prompt,
|
|||
|
latent_channels,
|
|||
|
height,
|
|||
|
width,
|
|||
|
torch.float32,
|
|||
|
device,
|
|||
|
generator,
|
|||
|
latents,
|
|||
|
)
|
|||
|
|
|||
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|||
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|||
|
|
|||
|
# 7. Denoising loop
|
|||
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|||
|
self._num_timesteps = len(timesteps)
|
|||
|
|
|||
|
transformer_dtype = self.transformer.dtype
|
|||
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|||
|
for i, t in enumerate(timesteps):
|
|||
|
if self.interrupt:
|
|||
|
continue
|
|||
|
|
|||
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|||
|
|
|||
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|||
|
timestep = t.expand(latent_model_input.shape[0])
|
|||
|
timestep = timestep * self.transformer.config.timestep_scale
|
|||
|
|
|||
|
# predict noise model_output
|
|||
|
noise_pred = self.transformer(
|
|||
|
latent_model_input.to(dtype=transformer_dtype),
|
|||
|
encoder_hidden_states=prompt_embeds.to(dtype=transformer_dtype),
|
|||
|
encoder_attention_mask=prompt_attention_mask,
|
|||
|
timestep=timestep,
|
|||
|
return_dict=False,
|
|||
|
attention_kwargs=self.attention_kwargs,
|
|||
|
)[0]
|
|||
|
noise_pred = noise_pred.float()
|
|||
|
|
|||
|
# perform guidance
|
|||
|
if self.do_classifier_free_guidance:
|
|||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|||
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|||
|
|
|||
|
# learned sigma
|
|||
|
if self.transformer.config.out_channels // 2 == latent_channels:
|
|||
|
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
|||
|
|
|||
|
# compute previous image: x_t -> x_t-1
|
|||
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|||
|
|
|||
|
if callback_on_step_end is not None:
|
|||
|
callback_kwargs = {}
|
|||
|
for k in callback_on_step_end_tensor_inputs:
|
|||
|
callback_kwargs[k] = locals()[k]
|
|||
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|||
|
|
|||
|
latents = callback_outputs.pop("latents", latents)
|
|||
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|||
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|||
|
|
|||
|
# call the callback, if provided
|
|||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|||
|
progress_bar.update()
|
|||
|
|
|||
|
if XLA_AVAILABLE:
|
|||
|
xm.mark_step()
|
|||
|
|
|||
|
if output_type == "latent":
|
|||
|
image = latents
|
|||
|
else:
|
|||
|
latents = latents.to(self.vae.dtype)
|
|||
|
torch_accelerator_module = getattr(torch, get_device(), torch.cuda)
|
|||
|
oom_error = (
|
|||
|
torch.OutOfMemoryError
|
|||
|
if is_torch_version(">=", "2.5.0")
|
|||
|
else torch_accelerator_module.OutOfMemoryError
|
|||
|
)
|
|||
|
try:
|
|||
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|||
|
except oom_error as e:
|
|||
|
warnings.warn(
|
|||
|
f"{e}. \n"
|
|||
|
f"Try to use VAE tiling for large images. For example: \n"
|
|||
|
f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)"
|
|||
|
)
|
|||
|
if use_resolution_binning:
|
|||
|
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
|
|||
|
|
|||
|
if not output_type == "latent":
|
|||
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|||
|
|
|||
|
# Offload all models
|
|||
|
self.maybe_free_model_hooks()
|
|||
|
|
|||
|
if not return_dict:
|
|||
|
return (image,)
|
|||
|
|
|||
|
return SanaPipelineOutput(images=image)
|