144 lines
5.7 KiB
Python
144 lines
5.7 KiB
Python
![]() |
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
Adapted from
|
||
|
https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/quantizers/auto.py
|
||
|
"""
|
||
|
|
||
|
import warnings
|
||
|
from typing import Dict, Optional, Union
|
||
|
|
||
|
from .bitsandbytes import BnB4BitDiffusersQuantizer, BnB8BitDiffusersQuantizer
|
||
|
from .gguf import GGUFQuantizer
|
||
|
from .quantization_config import (
|
||
|
BitsAndBytesConfig,
|
||
|
GGUFQuantizationConfig,
|
||
|
QuantizationConfigMixin,
|
||
|
QuantizationMethod,
|
||
|
QuantoConfig,
|
||
|
TorchAoConfig,
|
||
|
)
|
||
|
from .quanto import QuantoQuantizer
|
||
|
from .torchao import TorchAoHfQuantizer
|
||
|
|
||
|
|
||
|
AUTO_QUANTIZER_MAPPING = {
|
||
|
"bitsandbytes_4bit": BnB4BitDiffusersQuantizer,
|
||
|
"bitsandbytes_8bit": BnB8BitDiffusersQuantizer,
|
||
|
"gguf": GGUFQuantizer,
|
||
|
"quanto": QuantoQuantizer,
|
||
|
"torchao": TorchAoHfQuantizer,
|
||
|
}
|
||
|
|
||
|
AUTO_QUANTIZATION_CONFIG_MAPPING = {
|
||
|
"bitsandbytes_4bit": BitsAndBytesConfig,
|
||
|
"bitsandbytes_8bit": BitsAndBytesConfig,
|
||
|
"gguf": GGUFQuantizationConfig,
|
||
|
"quanto": QuantoConfig,
|
||
|
"torchao": TorchAoConfig,
|
||
|
}
|
||
|
|
||
|
|
||
|
class DiffusersAutoQuantizer:
|
||
|
"""
|
||
|
The auto diffusers quantizer class that takes care of automatically instantiating to the correct
|
||
|
`DiffusersQuantizer` given the `QuantizationConfig`.
|
||
|
"""
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, quantization_config_dict: Dict):
|
||
|
quant_method = quantization_config_dict.get("quant_method", None)
|
||
|
# We need a special care for bnb models to make sure everything is BC ..
|
||
|
if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False):
|
||
|
suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit"
|
||
|
quant_method = QuantizationMethod.BITS_AND_BYTES + suffix
|
||
|
elif quant_method is None:
|
||
|
raise ValueError(
|
||
|
"The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized"
|
||
|
)
|
||
|
|
||
|
if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys():
|
||
|
raise ValueError(
|
||
|
f"Unknown quantization type, got {quant_method} - supported types are:"
|
||
|
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
|
||
|
)
|
||
|
|
||
|
target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method]
|
||
|
return target_cls.from_dict(quantization_config_dict)
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs):
|
||
|
# Convert it to a QuantizationConfig if the q_config is a dict
|
||
|
if isinstance(quantization_config, dict):
|
||
|
quantization_config = cls.from_dict(quantization_config)
|
||
|
|
||
|
quant_method = quantization_config.quant_method
|
||
|
|
||
|
# Again, we need a special care for bnb as we have a single quantization config
|
||
|
# class for both 4-bit and 8-bit quantization
|
||
|
if quant_method == QuantizationMethod.BITS_AND_BYTES:
|
||
|
if quantization_config.load_in_8bit:
|
||
|
quant_method += "_8bit"
|
||
|
else:
|
||
|
quant_method += "_4bit"
|
||
|
|
||
|
if quant_method not in AUTO_QUANTIZER_MAPPING.keys():
|
||
|
raise ValueError(
|
||
|
f"Unknown quantization type, got {quant_method} - supported types are:"
|
||
|
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
|
||
|
)
|
||
|
|
||
|
target_cls = AUTO_QUANTIZER_MAPPING[quant_method]
|
||
|
return target_cls(quantization_config, **kwargs)
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
||
|
model_config = cls.load_config(pretrained_model_name_or_path, **kwargs)
|
||
|
if getattr(model_config, "quantization_config", None) is None:
|
||
|
raise ValueError(
|
||
|
f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized."
|
||
|
)
|
||
|
quantization_config_dict = model_config.quantization_config
|
||
|
quantization_config = cls.from_dict(quantization_config_dict)
|
||
|
# Update with potential kwargs that are passed through from_pretrained.
|
||
|
quantization_config.update(kwargs)
|
||
|
|
||
|
return cls.from_config(quantization_config)
|
||
|
|
||
|
@classmethod
|
||
|
def merge_quantization_configs(
|
||
|
cls,
|
||
|
quantization_config: Union[dict, QuantizationConfigMixin],
|
||
|
quantization_config_from_args: Optional[QuantizationConfigMixin],
|
||
|
):
|
||
|
"""
|
||
|
handles situations where both quantization_config from args and quantization_config from model config are
|
||
|
present.
|
||
|
"""
|
||
|
if quantization_config_from_args is not None:
|
||
|
warning_msg = (
|
||
|
"You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading"
|
||
|
" already has a `quantization_config` attribute. The `quantization_config` from the model will be used."
|
||
|
)
|
||
|
else:
|
||
|
warning_msg = ""
|
||
|
|
||
|
if isinstance(quantization_config, dict):
|
||
|
quantization_config = cls.from_dict(quantization_config)
|
||
|
|
||
|
if warning_msg != "":
|
||
|
warnings.warn(warning_msg)
|
||
|
|
||
|
return quantization_config
|