887 lines
39 KiB
Python
887 lines
39 KiB
Python
![]() |
# Copyright 2025 FLAIR Lab and The HuggingFace Team. All rights reserved.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
|
|||
|
# DISCLAIMER: check https://huggingface.co/papers/2204.13902 and https://github.com/qsh-zh/deis for more info
|
|||
|
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
|
|||
|
|
|||
|
import math
|
|||
|
from typing import List, Optional, Tuple, Union
|
|||
|
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
|
|||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
|||
|
from ..utils import deprecate, is_scipy_available
|
|||
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
|
|||
|
|
|||
|
|
|||
|
if is_scipy_available():
|
|||
|
import scipy.stats
|
|||
|
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
|||
|
def betas_for_alpha_bar(
|
|||
|
num_diffusion_timesteps,
|
|||
|
max_beta=0.999,
|
|||
|
alpha_transform_type="cosine",
|
|||
|
):
|
|||
|
"""
|
|||
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
|||
|
(1-beta) over time from t = [0,1].
|
|||
|
|
|||
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
|||
|
to that part of the diffusion process.
|
|||
|
|
|||
|
|
|||
|
Args:
|
|||
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
|||
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
|||
|
prevent singularities.
|
|||
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
|||
|
Choose from `cosine` or `exp`
|
|||
|
|
|||
|
Returns:
|
|||
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
|||
|
"""
|
|||
|
if alpha_transform_type == "cosine":
|
|||
|
|
|||
|
def alpha_bar_fn(t):
|
|||
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
|||
|
|
|||
|
elif alpha_transform_type == "exp":
|
|||
|
|
|||
|
def alpha_bar_fn(t):
|
|||
|
return math.exp(t * -12.0)
|
|||
|
|
|||
|
else:
|
|||
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
|||
|
|
|||
|
betas = []
|
|||
|
for i in range(num_diffusion_timesteps):
|
|||
|
t1 = i / num_diffusion_timesteps
|
|||
|
t2 = (i + 1) / num_diffusion_timesteps
|
|||
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
|||
|
return torch.tensor(betas, dtype=torch.float32)
|
|||
|
|
|||
|
|
|||
|
class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
"""
|
|||
|
`DEISMultistepScheduler` is a fast high order solver for diffusion ordinary differential equations (ODEs).
|
|||
|
|
|||
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
|||
|
methods the library implements for all schedulers such as loading and saving.
|
|||
|
|
|||
|
Args:
|
|||
|
num_train_timesteps (`int`, defaults to 1000):
|
|||
|
The number of diffusion steps to train the model.
|
|||
|
beta_start (`float`, defaults to 0.0001):
|
|||
|
The starting `beta` value of inference.
|
|||
|
beta_end (`float`, defaults to 0.02):
|
|||
|
The final `beta` value.
|
|||
|
beta_schedule (`str`, defaults to `"linear"`):
|
|||
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
|||
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
|||
|
trained_betas (`np.ndarray`, *optional*):
|
|||
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
|||
|
solver_order (`int`, defaults to 2):
|
|||
|
The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
|
|||
|
sampling, and `solver_order=3` for unconditional sampling.
|
|||
|
prediction_type (`str`, defaults to `epsilon`):
|
|||
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
|||
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
|||
|
Video](https://imagen.research.google/video/paper.pdf) paper).
|
|||
|
thresholding (`bool`, defaults to `False`):
|
|||
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
|||
|
as Stable Diffusion.
|
|||
|
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
|||
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
|||
|
sample_max_value (`float`, defaults to 1.0):
|
|||
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
|||
|
algorithm_type (`str`, defaults to `deis`):
|
|||
|
The algorithm type for the solver.
|
|||
|
lower_order_final (`bool`, defaults to `True`):
|
|||
|
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
|
|||
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
|||
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
|||
|
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
|||
|
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
|||
|
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
|||
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
|||
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
|||
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
|||
|
steps_offset (`int`, defaults to 0):
|
|||
|
An offset added to the inference steps, as required by some model families.
|
|||
|
"""
|
|||
|
|
|||
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
|||
|
order = 1
|
|||
|
|
|||
|
@register_to_config
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
num_train_timesteps: int = 1000,
|
|||
|
beta_start: float = 0.0001,
|
|||
|
beta_end: float = 0.02,
|
|||
|
beta_schedule: str = "linear",
|
|||
|
trained_betas: Optional[np.ndarray] = None,
|
|||
|
solver_order: int = 2,
|
|||
|
prediction_type: str = "epsilon",
|
|||
|
thresholding: bool = False,
|
|||
|
dynamic_thresholding_ratio: float = 0.995,
|
|||
|
sample_max_value: float = 1.0,
|
|||
|
algorithm_type: str = "deis",
|
|||
|
solver_type: str = "logrho",
|
|||
|
lower_order_final: bool = True,
|
|||
|
use_karras_sigmas: Optional[bool] = False,
|
|||
|
use_exponential_sigmas: Optional[bool] = False,
|
|||
|
use_beta_sigmas: Optional[bool] = False,
|
|||
|
use_flow_sigmas: Optional[bool] = False,
|
|||
|
flow_shift: Optional[float] = 1.0,
|
|||
|
timestep_spacing: str = "linspace",
|
|||
|
steps_offset: int = 0,
|
|||
|
):
|
|||
|
if self.config.use_beta_sigmas and not is_scipy_available():
|
|||
|
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
|||
|
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
|||
|
raise ValueError(
|
|||
|
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
|||
|
)
|
|||
|
if trained_betas is not None:
|
|||
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
|||
|
elif beta_schedule == "linear":
|
|||
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
|||
|
elif beta_schedule == "scaled_linear":
|
|||
|
# this schedule is very specific to the latent diffusion model.
|
|||
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
|||
|
elif beta_schedule == "squaredcos_cap_v2":
|
|||
|
# Glide cosine schedule
|
|||
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
|||
|
else:
|
|||
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
|||
|
|
|||
|
self.alphas = 1.0 - self.betas
|
|||
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
|||
|
# Currently we only support VP-type noise schedule
|
|||
|
self.alpha_t = torch.sqrt(self.alphas_cumprod)
|
|||
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
|
|||
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
|
|||
|
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
|
|||
|
|
|||
|
# standard deviation of the initial noise distribution
|
|||
|
self.init_noise_sigma = 1.0
|
|||
|
|
|||
|
# settings for DEIS
|
|||
|
if algorithm_type not in ["deis"]:
|
|||
|
if algorithm_type in ["dpmsolver", "dpmsolver++"]:
|
|||
|
self.register_to_config(algorithm_type="deis")
|
|||
|
else:
|
|||
|
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
|||
|
|
|||
|
if solver_type not in ["logrho"]:
|
|||
|
if solver_type in ["midpoint", "heun", "bh1", "bh2"]:
|
|||
|
self.register_to_config(solver_type="logrho")
|
|||
|
else:
|
|||
|
raise NotImplementedError(f"solver type {solver_type} is not implemented for {self.__class__}")
|
|||
|
|
|||
|
# setable values
|
|||
|
self.num_inference_steps = None
|
|||
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
|||
|
self.timesteps = torch.from_numpy(timesteps)
|
|||
|
self.model_outputs = [None] * solver_order
|
|||
|
self.lower_order_nums = 0
|
|||
|
self._step_index = None
|
|||
|
self._begin_index = None
|
|||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
|||
|
|
|||
|
@property
|
|||
|
def step_index(self):
|
|||
|
"""
|
|||
|
The index counter for current timestep. It will increase 1 after each scheduler step.
|
|||
|
"""
|
|||
|
return self._step_index
|
|||
|
|
|||
|
@property
|
|||
|
def begin_index(self):
|
|||
|
"""
|
|||
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
|||
|
"""
|
|||
|
return self._begin_index
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
|||
|
def set_begin_index(self, begin_index: int = 0):
|
|||
|
"""
|
|||
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
|||
|
|
|||
|
Args:
|
|||
|
begin_index (`int`):
|
|||
|
The begin index for the scheduler.
|
|||
|
"""
|
|||
|
self._begin_index = begin_index
|
|||
|
|
|||
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
|||
|
"""
|
|||
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
|||
|
|
|||
|
Args:
|
|||
|
num_inference_steps (`int`):
|
|||
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
|||
|
device (`str` or `torch.device`, *optional*):
|
|||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|||
|
"""
|
|||
|
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
|||
|
if self.config.timestep_spacing == "linspace":
|
|||
|
timesteps = (
|
|||
|
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
|
|||
|
.round()[::-1][:-1]
|
|||
|
.copy()
|
|||
|
.astype(np.int64)
|
|||
|
)
|
|||
|
elif self.config.timestep_spacing == "leading":
|
|||
|
step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
|
|||
|
# creates integer timesteps by multiplying by ratio
|
|||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|||
|
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
|
|||
|
timesteps += self.config.steps_offset
|
|||
|
elif self.config.timestep_spacing == "trailing":
|
|||
|
step_ratio = self.config.num_train_timesteps / num_inference_steps
|
|||
|
# creates integer timesteps by multiplying by ratio
|
|||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|||
|
timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
|
|||
|
timesteps -= 1
|
|||
|
else:
|
|||
|
raise ValueError(
|
|||
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
|||
|
)
|
|||
|
|
|||
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
|||
|
log_sigmas = np.log(sigmas)
|
|||
|
if self.config.use_karras_sigmas:
|
|||
|
sigmas = np.flip(sigmas).copy()
|
|||
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
|||
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
|||
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
|||
|
elif self.config.use_exponential_sigmas:
|
|||
|
sigmas = np.flip(sigmas).copy()
|
|||
|
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
|||
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
|||
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
|||
|
elif self.config.use_beta_sigmas:
|
|||
|
sigmas = np.flip(sigmas).copy()
|
|||
|
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
|||
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
|||
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
|||
|
elif self.config.use_flow_sigmas:
|
|||
|
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
|
|||
|
sigmas = 1.0 - alphas
|
|||
|
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
|
|||
|
timesteps = (sigmas * self.config.num_train_timesteps).copy()
|
|||
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
|||
|
else:
|
|||
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
|||
|
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
|||
|
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
|||
|
|
|||
|
self.sigmas = torch.from_numpy(sigmas)
|
|||
|
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
|
|||
|
|
|||
|
self.num_inference_steps = len(timesteps)
|
|||
|
|
|||
|
self.model_outputs = [
|
|||
|
None,
|
|||
|
] * self.config.solver_order
|
|||
|
self.lower_order_nums = 0
|
|||
|
|
|||
|
# add an index counter for schedulers that allow duplicated timesteps
|
|||
|
self._step_index = None
|
|||
|
self._begin_index = None
|
|||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
|||
|
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
|||
|
"""
|
|||
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
|||
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
|||
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
|||
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
|||
|
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
|||
|
|
|||
|
https://huggingface.co/papers/2205.11487
|
|||
|
"""
|
|||
|
dtype = sample.dtype
|
|||
|
batch_size, channels, *remaining_dims = sample.shape
|
|||
|
|
|||
|
if dtype not in (torch.float32, torch.float64):
|
|||
|
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
|||
|
|
|||
|
# Flatten sample for doing quantile calculation along each image
|
|||
|
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
|||
|
|
|||
|
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
|||
|
|
|||
|
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
|||
|
s = torch.clamp(
|
|||
|
s, min=1, max=self.config.sample_max_value
|
|||
|
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
|||
|
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
|||
|
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
|||
|
|
|||
|
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
|||
|
sample = sample.to(dtype)
|
|||
|
|
|||
|
return sample
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
|||
|
def _sigma_to_t(self, sigma, log_sigmas):
|
|||
|
# get log sigma
|
|||
|
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
|||
|
|
|||
|
# get distribution
|
|||
|
dists = log_sigma - log_sigmas[:, np.newaxis]
|
|||
|
|
|||
|
# get sigmas range
|
|||
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
|||
|
high_idx = low_idx + 1
|
|||
|
|
|||
|
low = log_sigmas[low_idx]
|
|||
|
high = log_sigmas[high_idx]
|
|||
|
|
|||
|
# interpolate sigmas
|
|||
|
w = (low - log_sigma) / (low - high)
|
|||
|
w = np.clip(w, 0, 1)
|
|||
|
|
|||
|
# transform interpolation to time range
|
|||
|
t = (1 - w) * low_idx + w * high_idx
|
|||
|
t = t.reshape(sigma.shape)
|
|||
|
return t
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
|||
|
def _sigma_to_alpha_sigma_t(self, sigma):
|
|||
|
if self.config.use_flow_sigmas:
|
|||
|
alpha_t = 1 - sigma
|
|||
|
sigma_t = sigma
|
|||
|
else:
|
|||
|
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
|
|||
|
sigma_t = sigma * alpha_t
|
|||
|
|
|||
|
return alpha_t, sigma_t
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
|||
|
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
|||
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
|||
|
|
|||
|
# Hack to make sure that other schedulers which copy this function don't break
|
|||
|
# TODO: Add this logic to the other schedulers
|
|||
|
if hasattr(self.config, "sigma_min"):
|
|||
|
sigma_min = self.config.sigma_min
|
|||
|
else:
|
|||
|
sigma_min = None
|
|||
|
|
|||
|
if hasattr(self.config, "sigma_max"):
|
|||
|
sigma_max = self.config.sigma_max
|
|||
|
else:
|
|||
|
sigma_max = None
|
|||
|
|
|||
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
|||
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
|||
|
|
|||
|
rho = 7.0 # 7.0 is the value used in the paper
|
|||
|
ramp = np.linspace(0, 1, num_inference_steps)
|
|||
|
min_inv_rho = sigma_min ** (1 / rho)
|
|||
|
max_inv_rho = sigma_max ** (1 / rho)
|
|||
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
|||
|
return sigmas
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
|||
|
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
|||
|
"""Constructs an exponential noise schedule."""
|
|||
|
|
|||
|
# Hack to make sure that other schedulers which copy this function don't break
|
|||
|
# TODO: Add this logic to the other schedulers
|
|||
|
if hasattr(self.config, "sigma_min"):
|
|||
|
sigma_min = self.config.sigma_min
|
|||
|
else:
|
|||
|
sigma_min = None
|
|||
|
|
|||
|
if hasattr(self.config, "sigma_max"):
|
|||
|
sigma_max = self.config.sigma_max
|
|||
|
else:
|
|||
|
sigma_max = None
|
|||
|
|
|||
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
|||
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
|||
|
|
|||
|
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
|||
|
return sigmas
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
|||
|
def _convert_to_beta(
|
|||
|
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
|||
|
) -> torch.Tensor:
|
|||
|
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
|||
|
|
|||
|
# Hack to make sure that other schedulers which copy this function don't break
|
|||
|
# TODO: Add this logic to the other schedulers
|
|||
|
if hasattr(self.config, "sigma_min"):
|
|||
|
sigma_min = self.config.sigma_min
|
|||
|
else:
|
|||
|
sigma_min = None
|
|||
|
|
|||
|
if hasattr(self.config, "sigma_max"):
|
|||
|
sigma_max = self.config.sigma_max
|
|||
|
else:
|
|||
|
sigma_max = None
|
|||
|
|
|||
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
|||
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
|||
|
|
|||
|
sigmas = np.array(
|
|||
|
[
|
|||
|
sigma_min + (ppf * (sigma_max - sigma_min))
|
|||
|
for ppf in [
|
|||
|
scipy.stats.beta.ppf(timestep, alpha, beta)
|
|||
|
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
|||
|
]
|
|||
|
]
|
|||
|
)
|
|||
|
return sigmas
|
|||
|
|
|||
|
def convert_model_output(
|
|||
|
self,
|
|||
|
model_output: torch.Tensor,
|
|||
|
*args,
|
|||
|
sample: torch.Tensor = None,
|
|||
|
**kwargs,
|
|||
|
) -> torch.Tensor:
|
|||
|
"""
|
|||
|
Convert the model output to the corresponding type the DEIS algorithm needs.
|
|||
|
|
|||
|
Args:
|
|||
|
model_output (`torch.Tensor`):
|
|||
|
The direct output from the learned diffusion model.
|
|||
|
timestep (`int`):
|
|||
|
The current discrete timestep in the diffusion chain.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
|
|||
|
Returns:
|
|||
|
`torch.Tensor`:
|
|||
|
The converted model output.
|
|||
|
"""
|
|||
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
|||
|
if sample is None:
|
|||
|
if len(args) > 1:
|
|||
|
sample = args[1]
|
|||
|
else:
|
|||
|
raise ValueError("missing `sample` as a required keyword argument")
|
|||
|
if timestep is not None:
|
|||
|
deprecate(
|
|||
|
"timesteps",
|
|||
|
"1.0.0",
|
|||
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|||
|
)
|
|||
|
|
|||
|
sigma = self.sigmas[self.step_index]
|
|||
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
|||
|
if self.config.prediction_type == "epsilon":
|
|||
|
x0_pred = (sample - sigma_t * model_output) / alpha_t
|
|||
|
elif self.config.prediction_type == "sample":
|
|||
|
x0_pred = model_output
|
|||
|
elif self.config.prediction_type == "v_prediction":
|
|||
|
x0_pred = alpha_t * sample - sigma_t * model_output
|
|||
|
elif self.config.prediction_type == "flow_prediction":
|
|||
|
sigma_t = self.sigmas[self.step_index]
|
|||
|
x0_pred = sample - sigma_t * model_output
|
|||
|
else:
|
|||
|
raise ValueError(
|
|||
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
|
|||
|
"`v_prediction`, or `flow_prediction` for the DEISMultistepScheduler."
|
|||
|
)
|
|||
|
|
|||
|
if self.config.thresholding:
|
|||
|
x0_pred = self._threshold_sample(x0_pred)
|
|||
|
|
|||
|
if self.config.algorithm_type == "deis":
|
|||
|
return (sample - alpha_t * x0_pred) / sigma_t
|
|||
|
else:
|
|||
|
raise NotImplementedError("only support log-rho multistep deis now")
|
|||
|
|
|||
|
def deis_first_order_update(
|
|||
|
self,
|
|||
|
model_output: torch.Tensor,
|
|||
|
*args,
|
|||
|
sample: torch.Tensor = None,
|
|||
|
**kwargs,
|
|||
|
) -> torch.Tensor:
|
|||
|
"""
|
|||
|
One step for the first-order DEIS (equivalent to DDIM).
|
|||
|
|
|||
|
Args:
|
|||
|
model_output (`torch.Tensor`):
|
|||
|
The direct output from the learned diffusion model.
|
|||
|
timestep (`int`):
|
|||
|
The current discrete timestep in the diffusion chain.
|
|||
|
prev_timestep (`int`):
|
|||
|
The previous discrete timestep in the diffusion chain.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
|
|||
|
Returns:
|
|||
|
`torch.Tensor`:
|
|||
|
The sample tensor at the previous timestep.
|
|||
|
"""
|
|||
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
|||
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
|
|||
|
if sample is None:
|
|||
|
if len(args) > 2:
|
|||
|
sample = args[2]
|
|||
|
else:
|
|||
|
raise ValueError("missing `sample` as a required keyword argument")
|
|||
|
if timestep is not None:
|
|||
|
deprecate(
|
|||
|
"timesteps",
|
|||
|
"1.0.0",
|
|||
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|||
|
)
|
|||
|
|
|||
|
if prev_timestep is not None:
|
|||
|
deprecate(
|
|||
|
"prev_timestep",
|
|||
|
"1.0.0",
|
|||
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|||
|
)
|
|||
|
|
|||
|
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
|||
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
|||
|
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
|||
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
|||
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
|||
|
|
|||
|
h = lambda_t - lambda_s
|
|||
|
if self.config.algorithm_type == "deis":
|
|||
|
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
|
|||
|
else:
|
|||
|
raise NotImplementedError("only support log-rho multistep deis now")
|
|||
|
return x_t
|
|||
|
|
|||
|
def multistep_deis_second_order_update(
|
|||
|
self,
|
|||
|
model_output_list: List[torch.Tensor],
|
|||
|
*args,
|
|||
|
sample: torch.Tensor = None,
|
|||
|
**kwargs,
|
|||
|
) -> torch.Tensor:
|
|||
|
"""
|
|||
|
One step for the second-order multistep DEIS.
|
|||
|
|
|||
|
Args:
|
|||
|
model_output_list (`List[torch.Tensor]`):
|
|||
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
|
|||
|
Returns:
|
|||
|
`torch.Tensor`:
|
|||
|
The sample tensor at the previous timestep.
|
|||
|
"""
|
|||
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
|
|||
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
|
|||
|
if sample is None:
|
|||
|
if len(args) > 2:
|
|||
|
sample = args[2]
|
|||
|
else:
|
|||
|
raise ValueError("missing `sample` as a required keyword argument")
|
|||
|
if timestep_list is not None:
|
|||
|
deprecate(
|
|||
|
"timestep_list",
|
|||
|
"1.0.0",
|
|||
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|||
|
)
|
|||
|
|
|||
|
if prev_timestep is not None:
|
|||
|
deprecate(
|
|||
|
"prev_timestep",
|
|||
|
"1.0.0",
|
|||
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|||
|
)
|
|||
|
|
|||
|
sigma_t, sigma_s0, sigma_s1 = (
|
|||
|
self.sigmas[self.step_index + 1],
|
|||
|
self.sigmas[self.step_index],
|
|||
|
self.sigmas[self.step_index - 1],
|
|||
|
)
|
|||
|
|
|||
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
|||
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
|||
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
|||
|
|
|||
|
m0, m1 = model_output_list[-1], model_output_list[-2]
|
|||
|
|
|||
|
rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1
|
|||
|
|
|||
|
if self.config.algorithm_type == "deis":
|
|||
|
|
|||
|
def ind_fn(t, b, c):
|
|||
|
# Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}]
|
|||
|
return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c))
|
|||
|
|
|||
|
coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1)
|
|||
|
coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0)
|
|||
|
|
|||
|
x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1)
|
|||
|
return x_t
|
|||
|
else:
|
|||
|
raise NotImplementedError("only support log-rho multistep deis now")
|
|||
|
|
|||
|
def multistep_deis_third_order_update(
|
|||
|
self,
|
|||
|
model_output_list: List[torch.Tensor],
|
|||
|
*args,
|
|||
|
sample: torch.Tensor = None,
|
|||
|
**kwargs,
|
|||
|
) -> torch.Tensor:
|
|||
|
"""
|
|||
|
One step for the third-order multistep DEIS.
|
|||
|
|
|||
|
Args:
|
|||
|
model_output_list (`List[torch.Tensor]`):
|
|||
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by diffusion process.
|
|||
|
|
|||
|
Returns:
|
|||
|
`torch.Tensor`:
|
|||
|
The sample tensor at the previous timestep.
|
|||
|
"""
|
|||
|
|
|||
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
|
|||
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
|
|||
|
if sample is None:
|
|||
|
if len(args) > 2:
|
|||
|
sample = args[2]
|
|||
|
else:
|
|||
|
raise ValueError("missing `sample` as a required keyword argument")
|
|||
|
if timestep_list is not None:
|
|||
|
deprecate(
|
|||
|
"timestep_list",
|
|||
|
"1.0.0",
|
|||
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|||
|
)
|
|||
|
|
|||
|
if prev_timestep is not None:
|
|||
|
deprecate(
|
|||
|
"prev_timestep",
|
|||
|
"1.0.0",
|
|||
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|||
|
)
|
|||
|
|
|||
|
sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
|
|||
|
self.sigmas[self.step_index + 1],
|
|||
|
self.sigmas[self.step_index],
|
|||
|
self.sigmas[self.step_index - 1],
|
|||
|
self.sigmas[self.step_index - 2],
|
|||
|
)
|
|||
|
|
|||
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
|||
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
|||
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
|||
|
alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
|
|||
|
|
|||
|
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
|
|||
|
|
|||
|
rho_t, rho_s0, rho_s1, rho_s2 = (
|
|||
|
sigma_t / alpha_t,
|
|||
|
sigma_s0 / alpha_s0,
|
|||
|
sigma_s1 / alpha_s1,
|
|||
|
sigma_s2 / alpha_s2,
|
|||
|
)
|
|||
|
|
|||
|
if self.config.algorithm_type == "deis":
|
|||
|
|
|||
|
def ind_fn(t, b, c, d):
|
|||
|
# Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}]
|
|||
|
numerator = t * (
|
|||
|
np.log(c) * (np.log(d) - np.log(t) + 1)
|
|||
|
- np.log(d) * np.log(t)
|
|||
|
+ np.log(d)
|
|||
|
+ np.log(t) ** 2
|
|||
|
- 2 * np.log(t)
|
|||
|
+ 2
|
|||
|
)
|
|||
|
denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d))
|
|||
|
return numerator / denominator
|
|||
|
|
|||
|
coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2)
|
|||
|
coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0)
|
|||
|
coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1)
|
|||
|
|
|||
|
x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2)
|
|||
|
|
|||
|
return x_t
|
|||
|
else:
|
|||
|
raise NotImplementedError("only support log-rho multistep deis now")
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
|||
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
|||
|
if schedule_timesteps is None:
|
|||
|
schedule_timesteps = self.timesteps
|
|||
|
|
|||
|
index_candidates = (schedule_timesteps == timestep).nonzero()
|
|||
|
|
|||
|
if len(index_candidates) == 0:
|
|||
|
step_index = len(self.timesteps) - 1
|
|||
|
# The sigma index that is taken for the **very** first `step`
|
|||
|
# is always the second index (or the last index if there is only 1)
|
|||
|
# This way we can ensure we don't accidentally skip a sigma in
|
|||
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
|||
|
elif len(index_candidates) > 1:
|
|||
|
step_index = index_candidates[1].item()
|
|||
|
else:
|
|||
|
step_index = index_candidates[0].item()
|
|||
|
|
|||
|
return step_index
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
|||
|
def _init_step_index(self, timestep):
|
|||
|
"""
|
|||
|
Initialize the step_index counter for the scheduler.
|
|||
|
"""
|
|||
|
|
|||
|
if self.begin_index is None:
|
|||
|
if isinstance(timestep, torch.Tensor):
|
|||
|
timestep = timestep.to(self.timesteps.device)
|
|||
|
self._step_index = self.index_for_timestep(timestep)
|
|||
|
else:
|
|||
|
self._step_index = self._begin_index
|
|||
|
|
|||
|
def step(
|
|||
|
self,
|
|||
|
model_output: torch.Tensor,
|
|||
|
timestep: Union[int, torch.Tensor],
|
|||
|
sample: torch.Tensor,
|
|||
|
return_dict: bool = True,
|
|||
|
) -> Union[SchedulerOutput, Tuple]:
|
|||
|
"""
|
|||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
|||
|
the multistep DEIS.
|
|||
|
|
|||
|
Args:
|
|||
|
model_output (`torch.Tensor`):
|
|||
|
The direct output from learned diffusion model.
|
|||
|
timestep (`int`):
|
|||
|
The current discrete timestep in the diffusion chain.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
return_dict (`bool`):
|
|||
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
|||
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
|||
|
tuple is returned where the first element is the sample tensor.
|
|||
|
|
|||
|
"""
|
|||
|
if self.num_inference_steps is None:
|
|||
|
raise ValueError(
|
|||
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
|||
|
)
|
|||
|
|
|||
|
if self.step_index is None:
|
|||
|
self._init_step_index(timestep)
|
|||
|
|
|||
|
lower_order_final = (
|
|||
|
(self.step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
|
|||
|
)
|
|||
|
lower_order_second = (
|
|||
|
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
|
|||
|
)
|
|||
|
|
|||
|
model_output = self.convert_model_output(model_output, sample=sample)
|
|||
|
for i in range(self.config.solver_order - 1):
|
|||
|
self.model_outputs[i] = self.model_outputs[i + 1]
|
|||
|
self.model_outputs[-1] = model_output
|
|||
|
|
|||
|
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
|
|||
|
prev_sample = self.deis_first_order_update(model_output, sample=sample)
|
|||
|
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
|
|||
|
prev_sample = self.multistep_deis_second_order_update(self.model_outputs, sample=sample)
|
|||
|
else:
|
|||
|
prev_sample = self.multistep_deis_third_order_update(self.model_outputs, sample=sample)
|
|||
|
|
|||
|
if self.lower_order_nums < self.config.solver_order:
|
|||
|
self.lower_order_nums += 1
|
|||
|
|
|||
|
# upon completion increase step index by one
|
|||
|
self._step_index += 1
|
|||
|
|
|||
|
if not return_dict:
|
|||
|
return (prev_sample,)
|
|||
|
|
|||
|
return SchedulerOutput(prev_sample=prev_sample)
|
|||
|
|
|||
|
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
|||
|
"""
|
|||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
|||
|
current timestep.
|
|||
|
|
|||
|
Args:
|
|||
|
sample (`torch.Tensor`):
|
|||
|
The input sample.
|
|||
|
|
|||
|
Returns:
|
|||
|
`torch.Tensor`:
|
|||
|
A scaled input sample.
|
|||
|
"""
|
|||
|
return sample
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
|
|||
|
def add_noise(
|
|||
|
self,
|
|||
|
original_samples: torch.Tensor,
|
|||
|
noise: torch.Tensor,
|
|||
|
timesteps: torch.IntTensor,
|
|||
|
) -> torch.Tensor:
|
|||
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
|||
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
|||
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
|||
|
# mps does not support float64
|
|||
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
|||
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
|||
|
else:
|
|||
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
|||
|
timesteps = timesteps.to(original_samples.device)
|
|||
|
|
|||
|
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
|
|||
|
if self.begin_index is None:
|
|||
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
|||
|
elif self.step_index is not None:
|
|||
|
# add_noise is called after first denoising step (for inpainting)
|
|||
|
step_indices = [self.step_index] * timesteps.shape[0]
|
|||
|
else:
|
|||
|
# add noise is called before first denoising step to create initial latent(img2img)
|
|||
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
|||
|
|
|||
|
sigma = sigmas[step_indices].flatten()
|
|||
|
while len(sigma.shape) < len(original_samples.shape):
|
|||
|
sigma = sigma.unsqueeze(-1)
|
|||
|
|
|||
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
|||
|
noisy_samples = alpha_t * original_samples + sigma_t * noise
|
|||
|
return noisy_samples
|
|||
|
|
|||
|
def __len__(self):
|
|||
|
return self.config.num_train_timesteps
|