3426 lines
110 KiB
Cython
3426 lines
110 KiB
Cython
![]() |
# Licensed to the Apache Software Foundation (ASF) under one
|
||
|
# or more contributor license agreements. See the NOTICE file
|
||
|
# distributed with this work for additional information
|
||
|
# regarding copyright ownership. The ASF licenses this file
|
||
|
# to you under the Apache License, Version 2.0 (the
|
||
|
# "License"); you may not use this file except in compliance
|
||
|
# with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing,
|
||
|
# software distributed under the License is distributed on an
|
||
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||
|
# KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations
|
||
|
# under the License.
|
||
|
|
||
|
# cython: language_level = 3
|
||
|
|
||
|
import sys
|
||
|
|
||
|
from cpython.object cimport Py_LT, Py_EQ, Py_GT, Py_LE, Py_NE, Py_GE
|
||
|
from cython.operator cimport dereference as deref
|
||
|
|
||
|
from collections import namedtuple
|
||
|
|
||
|
from pyarrow.lib import frombytes, tobytes, ArrowInvalid
|
||
|
from pyarrow.lib cimport *
|
||
|
from pyarrow.includes.common cimport *
|
||
|
from pyarrow.includes.libarrow cimport *
|
||
|
import pyarrow.lib as lib
|
||
|
from pyarrow.util import _DEPR_MSG
|
||
|
from libcpp cimport bool as c_bool
|
||
|
|
||
|
import inspect
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ImportError:
|
||
|
np = None
|
||
|
import warnings
|
||
|
|
||
|
|
||
|
# Call to initialize the compute module (register kernels) on import
|
||
|
check_status(InitializeCompute())
|
||
|
|
||
|
|
||
|
__pas = None
|
||
|
_substrait_msg = (
|
||
|
"The pyarrow installation is not built with support for Substrait."
|
||
|
)
|
||
|
|
||
|
|
||
|
SUPPORTED_INPUT_ARR_TYPES = (list, tuple)
|
||
|
if np is not None:
|
||
|
SUPPORTED_INPUT_ARR_TYPES += (np.ndarray, )
|
||
|
|
||
|
|
||
|
def _pas():
|
||
|
global __pas
|
||
|
if __pas is None:
|
||
|
try:
|
||
|
import pyarrow.substrait as pas
|
||
|
__pas = pas
|
||
|
except ImportError:
|
||
|
raise ImportError(_substrait_msg)
|
||
|
return __pas
|
||
|
|
||
|
|
||
|
def _forbid_instantiation(klass, subclasses_instead=True):
|
||
|
msg = f'{klass.__name__} is an abstract class thus cannot be initialized.'
|
||
|
if subclasses_instead:
|
||
|
subclasses = [cls.__name__ for cls in klass.__subclasses__]
|
||
|
msg += f' Use one of the subclasses instead: {", ".join(subclasses)}'
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
|
||
|
cdef vector[CSortKey] unwrap_sort_keys(sort_keys, allow_str=True):
|
||
|
cdef vector[CSortKey] c_sort_keys
|
||
|
if allow_str and isinstance(sort_keys, str):
|
||
|
c_sort_keys.push_back(
|
||
|
CSortKey(_ensure_field_ref(""), unwrap_sort_order(sort_keys))
|
||
|
)
|
||
|
else:
|
||
|
for name, order in sort_keys:
|
||
|
c_sort_keys.push_back(
|
||
|
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order))
|
||
|
)
|
||
|
return c_sort_keys
|
||
|
|
||
|
|
||
|
cdef wrap_scalar_function(const shared_ptr[CFunction]& sp_func):
|
||
|
"""
|
||
|
Wrap a C++ scalar Function in a ScalarFunction object.
|
||
|
"""
|
||
|
cdef ScalarFunction func = ScalarFunction.__new__(ScalarFunction)
|
||
|
func.init(sp_func)
|
||
|
return func
|
||
|
|
||
|
|
||
|
cdef wrap_vector_function(const shared_ptr[CFunction]& sp_func):
|
||
|
"""
|
||
|
Wrap a C++ vector Function in a VectorFunction object.
|
||
|
"""
|
||
|
cdef VectorFunction func = VectorFunction.__new__(VectorFunction)
|
||
|
func.init(sp_func)
|
||
|
return func
|
||
|
|
||
|
|
||
|
cdef wrap_scalar_aggregate_function(const shared_ptr[CFunction]& sp_func):
|
||
|
"""
|
||
|
Wrap a C++ aggregate Function in a ScalarAggregateFunction object.
|
||
|
"""
|
||
|
cdef ScalarAggregateFunction func = \
|
||
|
ScalarAggregateFunction.__new__(ScalarAggregateFunction)
|
||
|
func.init(sp_func)
|
||
|
return func
|
||
|
|
||
|
|
||
|
cdef wrap_hash_aggregate_function(const shared_ptr[CFunction]& sp_func):
|
||
|
"""
|
||
|
Wrap a C++ aggregate Function in a HashAggregateFunction object.
|
||
|
"""
|
||
|
cdef HashAggregateFunction func = \
|
||
|
HashAggregateFunction.__new__(HashAggregateFunction)
|
||
|
func.init(sp_func)
|
||
|
return func
|
||
|
|
||
|
|
||
|
cdef wrap_meta_function(const shared_ptr[CFunction]& sp_func):
|
||
|
"""
|
||
|
Wrap a C++ meta Function in a MetaFunction object.
|
||
|
"""
|
||
|
cdef MetaFunction func = MetaFunction.__new__(MetaFunction)
|
||
|
func.init(sp_func)
|
||
|
return func
|
||
|
|
||
|
|
||
|
cdef wrap_function(const shared_ptr[CFunction]& sp_func):
|
||
|
"""
|
||
|
Wrap a C++ Function in a Function object.
|
||
|
|
||
|
This dispatches to specialized wrappers depending on the function kind.
|
||
|
"""
|
||
|
if sp_func.get() == NULL:
|
||
|
raise ValueError("Function was NULL")
|
||
|
|
||
|
cdef FunctionKind c_kind = sp_func.get().kind()
|
||
|
if c_kind == FunctionKind_SCALAR:
|
||
|
return wrap_scalar_function(sp_func)
|
||
|
elif c_kind == FunctionKind_VECTOR:
|
||
|
return wrap_vector_function(sp_func)
|
||
|
elif c_kind == FunctionKind_SCALAR_AGGREGATE:
|
||
|
return wrap_scalar_aggregate_function(sp_func)
|
||
|
elif c_kind == FunctionKind_HASH_AGGREGATE:
|
||
|
return wrap_hash_aggregate_function(sp_func)
|
||
|
elif c_kind == FunctionKind_META:
|
||
|
return wrap_meta_function(sp_func)
|
||
|
else:
|
||
|
raise NotImplementedError("Unknown Function::Kind")
|
||
|
|
||
|
|
||
|
cdef wrap_scalar_kernel(const CScalarKernel* c_kernel):
|
||
|
if c_kernel == NULL:
|
||
|
raise ValueError("Kernel was NULL")
|
||
|
cdef ScalarKernel kernel = ScalarKernel.__new__(ScalarKernel)
|
||
|
kernel.init(c_kernel)
|
||
|
return kernel
|
||
|
|
||
|
|
||
|
cdef wrap_vector_kernel(const CVectorKernel* c_kernel):
|
||
|
if c_kernel == NULL:
|
||
|
raise ValueError("Kernel was NULL")
|
||
|
cdef VectorKernel kernel = VectorKernel.__new__(VectorKernel)
|
||
|
kernel.init(c_kernel)
|
||
|
return kernel
|
||
|
|
||
|
|
||
|
cdef wrap_scalar_aggregate_kernel(const CScalarAggregateKernel* c_kernel):
|
||
|
if c_kernel == NULL:
|
||
|
raise ValueError("Kernel was NULL")
|
||
|
cdef ScalarAggregateKernel kernel = \
|
||
|
ScalarAggregateKernel.__new__(ScalarAggregateKernel)
|
||
|
kernel.init(c_kernel)
|
||
|
return kernel
|
||
|
|
||
|
|
||
|
cdef wrap_hash_aggregate_kernel(const CHashAggregateKernel* c_kernel):
|
||
|
if c_kernel == NULL:
|
||
|
raise ValueError("Kernel was NULL")
|
||
|
cdef HashAggregateKernel kernel = \
|
||
|
HashAggregateKernel.__new__(HashAggregateKernel)
|
||
|
kernel.init(c_kernel)
|
||
|
return kernel
|
||
|
|
||
|
|
||
|
cdef class Kernel(_Weakrefable):
|
||
|
"""
|
||
|
A kernel object.
|
||
|
|
||
|
Kernels handle the execution of a Function for a certain signature.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly")
|
||
|
|
||
|
|
||
|
cdef class ScalarKernel(Kernel):
|
||
|
cdef const CScalarKernel* kernel
|
||
|
|
||
|
cdef void init(self, const CScalarKernel* kernel) except *:
|
||
|
self.kernel = kernel
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"ScalarKernel<{frombytes(self.kernel.signature.get().ToString())}>"
|
||
|
|
||
|
|
||
|
cdef class VectorKernel(Kernel):
|
||
|
cdef const CVectorKernel* kernel
|
||
|
|
||
|
cdef void init(self, const CVectorKernel* kernel) except *:
|
||
|
self.kernel = kernel
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"VectorKernel<{frombytes(self.kernel.signature.get().ToString())}>"
|
||
|
|
||
|
|
||
|
cdef class ScalarAggregateKernel(Kernel):
|
||
|
cdef const CScalarAggregateKernel* kernel
|
||
|
|
||
|
cdef void init(self, const CScalarAggregateKernel* kernel) except *:
|
||
|
self.kernel = kernel
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"ScalarAggregateKernel<{frombytes(self.kernel.signature.get().ToString())}>"
|
||
|
|
||
|
|
||
|
cdef class HashAggregateKernel(Kernel):
|
||
|
cdef const CHashAggregateKernel* kernel
|
||
|
|
||
|
cdef void init(self, const CHashAggregateKernel* kernel) except *:
|
||
|
self.kernel = kernel
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"HashAggregateKernel<{frombytes(self.kernel.signature.get().ToString())}>"
|
||
|
|
||
|
|
||
|
FunctionDoc = namedtuple(
|
||
|
"FunctionDoc",
|
||
|
("summary", "description", "arg_names", "options_class",
|
||
|
"options_required"))
|
||
|
|
||
|
|
||
|
cdef class Function(_Weakrefable):
|
||
|
"""
|
||
|
A compute function.
|
||
|
|
||
|
A function implements a certain logical computation over a range of
|
||
|
possible input signatures. Each signature accepts a range of input
|
||
|
types and is implemented by a given Kernel.
|
||
|
|
||
|
Functions can be of different kinds:
|
||
|
|
||
|
* "scalar" functions apply an item-wise computation over all items
|
||
|
of their inputs. Each item in the output only depends on the values
|
||
|
of the inputs at the same position. Examples: addition, comparisons,
|
||
|
string predicates...
|
||
|
|
||
|
* "vector" functions apply a collection-wise computation, such that
|
||
|
each item in the output may depend on the values of several items
|
||
|
in each input. Examples: dictionary encoding, sorting, extracting
|
||
|
unique values...
|
||
|
|
||
|
* "scalar_aggregate" functions reduce the dimensionality of the inputs by
|
||
|
applying a reduction function. Examples: sum, min_max, mode...
|
||
|
|
||
|
* "hash_aggregate" functions apply a reduction function to an input
|
||
|
subdivided by grouping criteria. They may not be directly called.
|
||
|
Examples: hash_sum, hash_min_max...
|
||
|
|
||
|
* "meta" functions dispatch to other functions.
|
||
|
"""
|
||
|
|
||
|
cdef:
|
||
|
shared_ptr[CFunction] sp_func
|
||
|
CFunction* base_func
|
||
|
|
||
|
_kind_map = {
|
||
|
FunctionKind_SCALAR: "scalar",
|
||
|
FunctionKind_VECTOR: "vector",
|
||
|
FunctionKind_SCALAR_AGGREGATE: "scalar_aggregate",
|
||
|
FunctionKind_HASH_AGGREGATE: "hash_aggregate",
|
||
|
FunctionKind_META: "meta",
|
||
|
}
|
||
|
|
||
|
def __init__(self):
|
||
|
raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly")
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
|
||
|
self.sp_func = sp_func
|
||
|
self.base_func = sp_func.get()
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"arrow.compute.Function<name={self.name}, kind={self.kind}, arity={self.arity}, num_kernels={self.num_kernels}>"
|
||
|
|
||
|
def __reduce__(self):
|
||
|
# Reduction uses the global registry
|
||
|
return get_function, (self.name,)
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
"""
|
||
|
The function name.
|
||
|
"""
|
||
|
return frombytes(self.base_func.name())
|
||
|
|
||
|
@property
|
||
|
def arity(self):
|
||
|
"""
|
||
|
The function arity.
|
||
|
|
||
|
If Ellipsis (i.e. `...`) is returned, the function takes a variable
|
||
|
number of arguments.
|
||
|
"""
|
||
|
cdef CArity arity = self.base_func.arity()
|
||
|
if arity.is_varargs:
|
||
|
return ...
|
||
|
else:
|
||
|
return arity.num_args
|
||
|
|
||
|
@property
|
||
|
def kind(self):
|
||
|
"""
|
||
|
The function kind.
|
||
|
"""
|
||
|
cdef FunctionKind c_kind = self.base_func.kind()
|
||
|
try:
|
||
|
return self._kind_map[c_kind]
|
||
|
except KeyError:
|
||
|
raise NotImplementedError("Unknown Function::Kind")
|
||
|
|
||
|
@property
|
||
|
def _doc(self):
|
||
|
"""
|
||
|
The C++-like function documentation (for internal use).
|
||
|
"""
|
||
|
cdef CFunctionDoc c_doc = self.base_func.doc()
|
||
|
return FunctionDoc(frombytes(c_doc.summary),
|
||
|
frombytes(c_doc.description),
|
||
|
[frombytes(s) for s in c_doc.arg_names],
|
||
|
frombytes(c_doc.options_class),
|
||
|
c_doc.options_required)
|
||
|
|
||
|
@property
|
||
|
def num_kernels(self):
|
||
|
"""
|
||
|
The number of kernels implementing this function.
|
||
|
"""
|
||
|
return self.base_func.num_kernels()
|
||
|
|
||
|
def call(self, args, FunctionOptions options=None,
|
||
|
MemoryPool memory_pool=None, length=None):
|
||
|
"""
|
||
|
Call the function on the given arguments.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
args : iterable
|
||
|
The arguments to pass to the function. Accepted types depend
|
||
|
on the specific function.
|
||
|
options : FunctionOptions, optional
|
||
|
Options instance for executing this function. This should have
|
||
|
the right concrete options type.
|
||
|
memory_pool : pyarrow.MemoryPool, optional
|
||
|
If not passed, will allocate memory from the default memory pool.
|
||
|
length : int, optional
|
||
|
Batch size for execution, for nullary (no argument) functions. If
|
||
|
not passed, will be inferred from passed data.
|
||
|
"""
|
||
|
cdef:
|
||
|
const CFunctionOptions* c_options = NULL
|
||
|
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
|
||
|
CExecContext c_exec_ctx = CExecContext(pool)
|
||
|
CExecBatch c_batch
|
||
|
CDatum result
|
||
|
|
||
|
_pack_compute_args(args, &c_batch.values)
|
||
|
|
||
|
if options is not None:
|
||
|
c_options = options.get_options()
|
||
|
|
||
|
if length is not None:
|
||
|
c_batch.length = length
|
||
|
with nogil:
|
||
|
result = GetResultValue(
|
||
|
self.base_func.Execute(c_batch, c_options, &c_exec_ctx)
|
||
|
)
|
||
|
else:
|
||
|
with nogil:
|
||
|
result = GetResultValue(
|
||
|
self.base_func.Execute(c_batch.values, c_options,
|
||
|
&c_exec_ctx)
|
||
|
)
|
||
|
|
||
|
return wrap_datum(result)
|
||
|
|
||
|
|
||
|
cdef class ScalarFunction(Function):
|
||
|
cdef const CScalarFunction* func
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
|
||
|
Function.init(self, sp_func)
|
||
|
self.func = <const CScalarFunction*> sp_func.get()
|
||
|
|
||
|
@property
|
||
|
def kernels(self):
|
||
|
"""
|
||
|
The kernels implementing this function.
|
||
|
"""
|
||
|
cdef vector[const CScalarKernel*] kernels = self.func.kernels()
|
||
|
return [wrap_scalar_kernel(k) for k in kernels]
|
||
|
|
||
|
|
||
|
cdef class VectorFunction(Function):
|
||
|
cdef const CVectorFunction* func
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
|
||
|
Function.init(self, sp_func)
|
||
|
self.func = <const CVectorFunction*> sp_func.get()
|
||
|
|
||
|
@property
|
||
|
def kernels(self):
|
||
|
"""
|
||
|
The kernels implementing this function.
|
||
|
"""
|
||
|
cdef vector[const CVectorKernel*] kernels = self.func.kernels()
|
||
|
return [wrap_vector_kernel(k) for k in kernels]
|
||
|
|
||
|
|
||
|
cdef class ScalarAggregateFunction(Function):
|
||
|
cdef const CScalarAggregateFunction* func
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
|
||
|
Function.init(self, sp_func)
|
||
|
self.func = <const CScalarAggregateFunction*> sp_func.get()
|
||
|
|
||
|
@property
|
||
|
def kernels(self):
|
||
|
"""
|
||
|
The kernels implementing this function.
|
||
|
"""
|
||
|
cdef vector[const CScalarAggregateKernel*] kernels = \
|
||
|
self.func.kernels()
|
||
|
return [wrap_scalar_aggregate_kernel(k) for k in kernels]
|
||
|
|
||
|
|
||
|
cdef class HashAggregateFunction(Function):
|
||
|
cdef const CHashAggregateFunction* func
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
|
||
|
Function.init(self, sp_func)
|
||
|
self.func = <const CHashAggregateFunction*> sp_func.get()
|
||
|
|
||
|
@property
|
||
|
def kernels(self):
|
||
|
"""
|
||
|
The kernels implementing this function.
|
||
|
"""
|
||
|
cdef vector[const CHashAggregateKernel*] kernels = self.func.kernels()
|
||
|
return [wrap_hash_aggregate_kernel(k) for k in kernels]
|
||
|
|
||
|
|
||
|
cdef class MetaFunction(Function):
|
||
|
cdef const CMetaFunction* func
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
|
||
|
Function.init(self, sp_func)
|
||
|
self.func = <const CMetaFunction*> sp_func.get()
|
||
|
|
||
|
# Since num_kernels is exposed, also expose a kernels property
|
||
|
@property
|
||
|
def kernels(self):
|
||
|
"""
|
||
|
The kernels implementing this function.
|
||
|
"""
|
||
|
return []
|
||
|
|
||
|
|
||
|
cdef _pack_compute_args(object values, vector[CDatum]* out):
|
||
|
for val in values:
|
||
|
if isinstance(val, SUPPORTED_INPUT_ARR_TYPES):
|
||
|
val = lib.asarray(val)
|
||
|
|
||
|
if isinstance(val, Array):
|
||
|
out.push_back(CDatum((<Array> val).sp_array))
|
||
|
continue
|
||
|
elif isinstance(val, ChunkedArray):
|
||
|
out.push_back(CDatum((<ChunkedArray> val).sp_chunked_array))
|
||
|
continue
|
||
|
elif isinstance(val, Scalar):
|
||
|
out.push_back(CDatum((<Scalar> val).unwrap()))
|
||
|
continue
|
||
|
elif isinstance(val, RecordBatch):
|
||
|
out.push_back(CDatum((<RecordBatch> val).sp_batch))
|
||
|
continue
|
||
|
elif isinstance(val, Table):
|
||
|
out.push_back(CDatum((<Table> val).sp_table))
|
||
|
continue
|
||
|
else:
|
||
|
# Is it a Python scalar?
|
||
|
try:
|
||
|
scal = lib.scalar(val)
|
||
|
except Exception:
|
||
|
# Raise dedicated error below
|
||
|
pass
|
||
|
else:
|
||
|
out.push_back(CDatum((<Scalar> scal).unwrap()))
|
||
|
continue
|
||
|
|
||
|
raise TypeError(f"Got unexpected argument type {type(val)} "
|
||
|
"for compute function")
|
||
|
|
||
|
|
||
|
cdef class FunctionRegistry(_Weakrefable):
|
||
|
cdef CFunctionRegistry* registry
|
||
|
|
||
|
def __init__(self):
|
||
|
self.registry = GetFunctionRegistry()
|
||
|
|
||
|
def list_functions(self):
|
||
|
"""
|
||
|
Return all function names in the registry.
|
||
|
"""
|
||
|
cdef vector[c_string] names = self.registry.GetFunctionNames()
|
||
|
return [frombytes(name) for name in names]
|
||
|
|
||
|
def get_function(self, name):
|
||
|
"""
|
||
|
Look up a function by name in the registry.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
The name of the function to lookup
|
||
|
"""
|
||
|
cdef:
|
||
|
c_string c_name = tobytes(name)
|
||
|
shared_ptr[CFunction] func
|
||
|
with nogil:
|
||
|
func = GetResultValue(self.registry.GetFunction(c_name))
|
||
|
return wrap_function(func)
|
||
|
|
||
|
|
||
|
cdef FunctionRegistry _global_func_registry = FunctionRegistry()
|
||
|
|
||
|
|
||
|
def function_registry():
|
||
|
return _global_func_registry
|
||
|
|
||
|
|
||
|
def get_function(name):
|
||
|
"""
|
||
|
Get a function by name.
|
||
|
|
||
|
The function is looked up in the global registry
|
||
|
(as returned by `function_registry()`).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
The name of the function to lookup
|
||
|
"""
|
||
|
return _global_func_registry.get_function(name)
|
||
|
|
||
|
|
||
|
def list_functions():
|
||
|
"""
|
||
|
Return all function names in the global registry.
|
||
|
"""
|
||
|
return _global_func_registry.list_functions()
|
||
|
|
||
|
|
||
|
def call_function(name, args, options=None, memory_pool=None, length=None):
|
||
|
"""
|
||
|
Call a named function.
|
||
|
|
||
|
The function is looked up in the global registry
|
||
|
(as returned by `function_registry()`).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
The name of the function to call.
|
||
|
args : list
|
||
|
The arguments to the function.
|
||
|
options : optional
|
||
|
options provided to the function.
|
||
|
memory_pool : MemoryPool, optional
|
||
|
memory pool to use for allocations during function execution.
|
||
|
length : int, optional
|
||
|
Batch size for execution, for nullary (no argument) functions. If not
|
||
|
passed, inferred from data.
|
||
|
"""
|
||
|
func = _global_func_registry.get_function(name)
|
||
|
return func.call(args, options=options, memory_pool=memory_pool,
|
||
|
length=length)
|
||
|
|
||
|
|
||
|
cdef class FunctionOptions(_Weakrefable):
|
||
|
__slots__ = () # avoid mistakingly creating attributes
|
||
|
|
||
|
cdef const CFunctionOptions* get_options(self) except NULL:
|
||
|
return self.wrapped.get()
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunctionOptions]& sp):
|
||
|
self.wrapped = sp
|
||
|
|
||
|
cdef inline shared_ptr[CFunctionOptions] unwrap(self):
|
||
|
return self.wrapped
|
||
|
|
||
|
def serialize(self):
|
||
|
cdef:
|
||
|
CResult[shared_ptr[CBuffer]] res = self.get_options().Serialize()
|
||
|
shared_ptr[CBuffer] c_buf = GetResultValue(res)
|
||
|
return pyarrow_wrap_buffer(c_buf)
|
||
|
|
||
|
@staticmethod
|
||
|
def deserialize(buf):
|
||
|
"""
|
||
|
Deserialize options for a function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
buf : Buffer
|
||
|
The buffer containing the data to deserialize.
|
||
|
"""
|
||
|
cdef:
|
||
|
shared_ptr[CBuffer] c_buf = pyarrow_unwrap_buffer(buf)
|
||
|
CResult[unique_ptr[CFunctionOptions]] maybe_options = \
|
||
|
DeserializeFunctionOptions(deref(c_buf))
|
||
|
shared_ptr[CFunctionOptions] c_options
|
||
|
c_options = to_shared(GetResultValue(move(maybe_options)))
|
||
|
type_name = frombytes(c_options.get().options_type().type_name())
|
||
|
module = globals()
|
||
|
if type_name not in module:
|
||
|
raise ValueError(f'Cannot deserialize "{type_name}"')
|
||
|
klass = module[type_name]
|
||
|
options = klass.__new__(klass)
|
||
|
(<FunctionOptions> options).init(c_options)
|
||
|
return options
|
||
|
|
||
|
def __repr__(self):
|
||
|
type_name = self.__class__.__name__
|
||
|
# Remove {} so we can use our own braces
|
||
|
string_repr = frombytes(self.get_options().ToString())[1:-1]
|
||
|
return f"{type_name}({string_repr})"
|
||
|
|
||
|
def __eq__(self, FunctionOptions other):
|
||
|
return self.get_options().Equals(deref(other.get_options()))
|
||
|
|
||
|
|
||
|
def _raise_invalid_function_option(value, description, *,
|
||
|
exception_class=ValueError):
|
||
|
raise exception_class(f"\"{value}\" is not a valid {description}")
|
||
|
|
||
|
|
||
|
# NOTE:
|
||
|
# To properly expose the constructor signature of FunctionOptions
|
||
|
# subclasses, we use a two-level inheritance:
|
||
|
# 1. a C extension class that implements option validation and setting
|
||
|
# (won't expose function signatures because of
|
||
|
# https://github.com/cython/cython/issues/3873)
|
||
|
# 2. a Python derived class that implements the constructor
|
||
|
|
||
|
cdef class _CastOptions(FunctionOptions):
|
||
|
cdef CCastOptions* options
|
||
|
|
||
|
cdef void init(self, const shared_ptr[CFunctionOptions]& sp):
|
||
|
FunctionOptions.init(self, sp)
|
||
|
self.options = <CCastOptions*> self.wrapped.get()
|
||
|
|
||
|
def _set_options(self, DataType target_type, allow_int_overflow,
|
||
|
allow_time_truncate, allow_time_overflow,
|
||
|
allow_decimal_truncate, allow_float_truncate,
|
||
|
allow_invalid_utf8):
|
||
|
cdef:
|
||
|
shared_ptr[CCastOptions] wrapped = make_shared[CCastOptions]()
|
||
|
self.init(<shared_ptr[CFunctionOptions]> wrapped)
|
||
|
self._set_type(target_type)
|
||
|
if allow_int_overflow is not None:
|
||
|
self.allow_int_overflow = allow_int_overflow
|
||
|
if allow_time_truncate is not None:
|
||
|
self.allow_time_truncate = allow_time_truncate
|
||
|
if allow_time_overflow is not None:
|
||
|
self.allow_time_overflow = allow_time_overflow
|
||
|
if allow_decimal_truncate is not None:
|
||
|
self.allow_decimal_truncate = allow_decimal_truncate
|
||
|
if allow_float_truncate is not None:
|
||
|
self.allow_float_truncate = allow_float_truncate
|
||
|
if allow_invalid_utf8 is not None:
|
||
|
self.allow_invalid_utf8 = allow_invalid_utf8
|
||
|
|
||
|
def _set_type(self, target_type=None):
|
||
|
if target_type is not None:
|
||
|
deref(self.options).to_type = \
|
||
|
(<DataType> ensure_type(target_type)).sp_type
|
||
|
|
||
|
def _set_safe(self):
|
||
|
self.init(shared_ptr[CFunctionOptions](
|
||
|
new CCastOptions(CCastOptions.Safe())))
|
||
|
|
||
|
def _set_unsafe(self):
|
||
|
self.init(shared_ptr[CFunctionOptions](
|
||
|
new CCastOptions(CCastOptions.Unsafe())))
|
||
|
|
||
|
def is_safe(self):
|
||
|
return not (deref(self.options).allow_int_overflow or
|
||
|
deref(self.options).allow_time_truncate or
|
||
|
deref(self.options).allow_time_overflow or
|
||
|
deref(self.options).allow_decimal_truncate or
|
||
|
deref(self.options).allow_float_truncate or
|
||
|
deref(self.options).allow_invalid_utf8)
|
||
|
|
||
|
@property
|
||
|
def allow_int_overflow(self):
|
||
|
return deref(self.options).allow_int_overflow
|
||
|
|
||
|
@allow_int_overflow.setter
|
||
|
def allow_int_overflow(self, c_bool flag):
|
||
|
deref(self.options).allow_int_overflow = flag
|
||
|
|
||
|
@property
|
||
|
def allow_time_truncate(self):
|
||
|
return deref(self.options).allow_time_truncate
|
||
|
|
||
|
@allow_time_truncate.setter
|
||
|
def allow_time_truncate(self, c_bool flag):
|
||
|
deref(self.options).allow_time_truncate = flag
|
||
|
|
||
|
@property
|
||
|
def allow_time_overflow(self):
|
||
|
return deref(self.options).allow_time_overflow
|
||
|
|
||
|
@allow_time_overflow.setter
|
||
|
def allow_time_overflow(self, c_bool flag):
|
||
|
deref(self.options).allow_time_overflow = flag
|
||
|
|
||
|
@property
|
||
|
def allow_decimal_truncate(self):
|
||
|
return deref(self.options).allow_decimal_truncate
|
||
|
|
||
|
@allow_decimal_truncate.setter
|
||
|
def allow_decimal_truncate(self, c_bool flag):
|
||
|
deref(self.options).allow_decimal_truncate = flag
|
||
|
|
||
|
@property
|
||
|
def allow_float_truncate(self):
|
||
|
return deref(self.options).allow_float_truncate
|
||
|
|
||
|
@allow_float_truncate.setter
|
||
|
def allow_float_truncate(self, c_bool flag):
|
||
|
deref(self.options).allow_float_truncate = flag
|
||
|
|
||
|
@property
|
||
|
def allow_invalid_utf8(self):
|
||
|
return deref(self.options).allow_invalid_utf8
|
||
|
|
||
|
@allow_invalid_utf8.setter
|
||
|
def allow_invalid_utf8(self, c_bool flag):
|
||
|
deref(self.options).allow_invalid_utf8 = flag
|
||
|
|
||
|
|
||
|
class CastOptions(_CastOptions):
|
||
|
"""
|
||
|
Options for the `cast` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
target_type : DataType, optional
|
||
|
The PyArrow type to cast to.
|
||
|
allow_int_overflow : bool, default False
|
||
|
Whether integer overflow is allowed when casting.
|
||
|
allow_time_truncate : bool, default False
|
||
|
Whether time precision truncation is allowed when casting.
|
||
|
allow_time_overflow : bool, default False
|
||
|
Whether date/time range overflow is allowed when casting.
|
||
|
allow_decimal_truncate : bool, default False
|
||
|
Whether decimal precision truncation is allowed when casting.
|
||
|
allow_float_truncate : bool, default False
|
||
|
Whether floating-point precision truncation is allowed when casting.
|
||
|
allow_invalid_utf8 : bool, default False
|
||
|
Whether producing invalid utf8 data is allowed when casting.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, target_type=None, *, allow_int_overflow=None,
|
||
|
allow_time_truncate=None, allow_time_overflow=None,
|
||
|
allow_decimal_truncate=None, allow_float_truncate=None,
|
||
|
allow_invalid_utf8=None):
|
||
|
self._set_options(target_type, allow_int_overflow, allow_time_truncate,
|
||
|
allow_time_overflow, allow_decimal_truncate,
|
||
|
allow_float_truncate, allow_invalid_utf8)
|
||
|
|
||
|
@staticmethod
|
||
|
def safe(target_type=None):
|
||
|
""""
|
||
|
Create a CastOptions for a safe cast.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
target_type : optional
|
||
|
Target cast type for the safe cast.
|
||
|
"""
|
||
|
self = CastOptions()
|
||
|
self._set_safe()
|
||
|
self._set_type(target_type)
|
||
|
return self
|
||
|
|
||
|
@staticmethod
|
||
|
def unsafe(target_type=None):
|
||
|
""""
|
||
|
Create a CastOptions for an unsafe cast.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
target_type : optional
|
||
|
Target cast type for the unsafe cast.
|
||
|
"""
|
||
|
self = CastOptions()
|
||
|
self._set_unsafe()
|
||
|
self._set_type(target_type)
|
||
|
return self
|
||
|
|
||
|
|
||
|
def _skip_nulls_doc():
|
||
|
# (note the weird indent because of how the string is inserted
|
||
|
# by callers)
|
||
|
return """skip_nulls : bool, default True
|
||
|
Whether to skip (ignore) nulls in the input.
|
||
|
If False, any null in the input forces the output to null.
|
||
|
"""
|
||
|
|
||
|
|
||
|
def _min_count_doc(*, default):
|
||
|
return f"""min_count : int, default {default}
|
||
|
Minimum number of non-null values in the input. If the number
|
||
|
of non-null values is below `min_count`, the output is null.
|
||
|
"""
|
||
|
|
||
|
|
||
|
cdef class _ElementWiseAggregateOptions(FunctionOptions):
|
||
|
def _set_options(self, skip_nulls):
|
||
|
self.wrapped.reset(new CElementWiseAggregateOptions(skip_nulls))
|
||
|
|
||
|
|
||
|
class ElementWiseAggregateOptions(_ElementWiseAggregateOptions):
|
||
|
__doc__ = f"""
|
||
|
Options for element-wise aggregate functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{_skip_nulls_doc()}
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, skip_nulls=True):
|
||
|
self._set_options(skip_nulls)
|
||
|
|
||
|
|
||
|
cdef CRoundMode unwrap_round_mode(round_mode) except *:
|
||
|
if round_mode == "down":
|
||
|
return CRoundMode_DOWN
|
||
|
elif round_mode == "up":
|
||
|
return CRoundMode_UP
|
||
|
elif round_mode == "towards_zero":
|
||
|
return CRoundMode_TOWARDS_ZERO
|
||
|
elif round_mode == "towards_infinity":
|
||
|
return CRoundMode_TOWARDS_INFINITY
|
||
|
elif round_mode == "half_down":
|
||
|
return CRoundMode_HALF_DOWN
|
||
|
elif round_mode == "half_up":
|
||
|
return CRoundMode_HALF_UP
|
||
|
elif round_mode == "half_towards_zero":
|
||
|
return CRoundMode_HALF_TOWARDS_ZERO
|
||
|
elif round_mode == "half_towards_infinity":
|
||
|
return CRoundMode_HALF_TOWARDS_INFINITY
|
||
|
elif round_mode == "half_to_even":
|
||
|
return CRoundMode_HALF_TO_EVEN
|
||
|
elif round_mode == "half_to_odd":
|
||
|
return CRoundMode_HALF_TO_ODD
|
||
|
_raise_invalid_function_option(round_mode, "round mode")
|
||
|
|
||
|
|
||
|
cdef class _RoundOptions(FunctionOptions):
|
||
|
def _set_options(self, ndigits, round_mode):
|
||
|
self.wrapped.reset(
|
||
|
new CRoundOptions(ndigits, unwrap_round_mode(round_mode))
|
||
|
)
|
||
|
|
||
|
|
||
|
class RoundOptions(_RoundOptions):
|
||
|
"""
|
||
|
Options for rounding numbers.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ndigits : int, default 0
|
||
|
Number of fractional digits to round to.
|
||
|
round_mode : str, default "half_to_even"
|
||
|
Rounding and tie-breaking mode.
|
||
|
Accepted values are "down", "up", "towards_zero", "towards_infinity",
|
||
|
"half_down", "half_up", "half_towards_zero", "half_towards_infinity",
|
||
|
"half_to_even", "half_to_odd".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, ndigits=0, round_mode="half_to_even"):
|
||
|
self._set_options(ndigits, round_mode)
|
||
|
|
||
|
|
||
|
cdef class _RoundBinaryOptions(FunctionOptions):
|
||
|
def _set_options(self, round_mode):
|
||
|
self.wrapped.reset(
|
||
|
new CRoundBinaryOptions(unwrap_round_mode(round_mode))
|
||
|
)
|
||
|
|
||
|
|
||
|
class RoundBinaryOptions(_RoundBinaryOptions):
|
||
|
"""
|
||
|
Options for rounding numbers when ndigits is provided by a second array
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
round_mode : str, default "half_to_even"
|
||
|
Rounding and tie-breaking mode.
|
||
|
Accepted values are "down", "up", "towards_zero", "towards_infinity",
|
||
|
"half_down", "half_up", "half_towards_zero", "half_towards_infinity",
|
||
|
"half_to_even", "half_to_odd".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, round_mode="half_to_even"):
|
||
|
self._set_options(round_mode)
|
||
|
|
||
|
|
||
|
cdef CCalendarUnit unwrap_round_temporal_unit(unit) except *:
|
||
|
if unit == "nanosecond":
|
||
|
return CCalendarUnit_NANOSECOND
|
||
|
elif unit == "microsecond":
|
||
|
return CCalendarUnit_MICROSECOND
|
||
|
elif unit == "millisecond":
|
||
|
return CCalendarUnit_MILLISECOND
|
||
|
elif unit == "second":
|
||
|
return CCalendarUnit_SECOND
|
||
|
elif unit == "minute":
|
||
|
return CCalendarUnit_MINUTE
|
||
|
elif unit == "hour":
|
||
|
return CCalendarUnit_HOUR
|
||
|
elif unit == "day":
|
||
|
return CCalendarUnit_DAY
|
||
|
elif unit == "week":
|
||
|
return CCalendarUnit_WEEK
|
||
|
elif unit == "month":
|
||
|
return CCalendarUnit_MONTH
|
||
|
elif unit == "quarter":
|
||
|
return CCalendarUnit_QUARTER
|
||
|
elif unit == "year":
|
||
|
return CCalendarUnit_YEAR
|
||
|
_raise_invalid_function_option(unit, "Calendar unit")
|
||
|
|
||
|
|
||
|
cdef class _RoundTemporalOptions(FunctionOptions):
|
||
|
def _set_options(self, multiple, unit, week_starts_monday,
|
||
|
ceil_is_strictly_greater, calendar_based_origin):
|
||
|
self.wrapped.reset(
|
||
|
new CRoundTemporalOptions(
|
||
|
multiple, unwrap_round_temporal_unit(unit),
|
||
|
week_starts_monday, ceil_is_strictly_greater,
|
||
|
calendar_based_origin)
|
||
|
)
|
||
|
|
||
|
|
||
|
class RoundTemporalOptions(_RoundTemporalOptions):
|
||
|
"""
|
||
|
Options for rounding temporal values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
multiple : int, default 1
|
||
|
Number of units to round to.
|
||
|
unit : str, default "day"
|
||
|
The unit in which `multiple` is expressed.
|
||
|
Accepted values are "year", "quarter", "month", "week", "day",
|
||
|
"hour", "minute", "second", "millisecond", "microsecond",
|
||
|
"nanosecond".
|
||
|
week_starts_monday : bool, default True
|
||
|
If True, weeks start on Monday; if False, on Sunday.
|
||
|
ceil_is_strictly_greater : bool, default False
|
||
|
If True, ceil returns a rounded value that is strictly greater than the
|
||
|
input. For example: ceiling 1970-01-01T00:00:00 to 3 hours would
|
||
|
yield 1970-01-01T03:00:00 if set to True and 1970-01-01T00:00:00
|
||
|
if set to False.
|
||
|
This applies to the ceil_temporal function only.
|
||
|
calendar_based_origin : bool, default False
|
||
|
By default, the origin is 1970-01-01T00:00:00. By setting this to True,
|
||
|
rounding origin will be beginning of one less precise calendar unit.
|
||
|
E.g.: rounding to hours will use beginning of day as origin.
|
||
|
|
||
|
By default time is rounded to a multiple of units since
|
||
|
1970-01-01T00:00:00. By setting calendar_based_origin to true,
|
||
|
time will be rounded to number of units since the last greater
|
||
|
calendar unit.
|
||
|
For example: rounding to multiple of days since the beginning of the
|
||
|
month or to hours since the beginning of the day.
|
||
|
Exceptions: week and quarter are not used as greater units,
|
||
|
therefore days will be rounded to the beginning of the month not
|
||
|
week. Greater unit of week is a year.
|
||
|
Note that ceiling and rounding might change sorting order of an array
|
||
|
near greater unit change. For example rounding YYYY-mm-dd 23:00:00 to
|
||
|
5 hours will ceil and round to YYYY-mm-dd+1 01:00:00 and floor to
|
||
|
YYYY-mm-dd 20:00:00. On the other hand YYYY-mm-dd+1 00:00:00 will
|
||
|
ceil, round and floor to YYYY-mm-dd+1 00:00:00. This can break the
|
||
|
order of an already ordered array.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, multiple=1, unit="day", *, week_starts_monday=True,
|
||
|
ceil_is_strictly_greater=False,
|
||
|
calendar_based_origin=False):
|
||
|
self._set_options(multiple, unit, week_starts_monday,
|
||
|
ceil_is_strictly_greater,
|
||
|
calendar_based_origin)
|
||
|
|
||
|
|
||
|
cdef class _RoundToMultipleOptions(FunctionOptions):
|
||
|
def _set_options(self, multiple, round_mode):
|
||
|
if not isinstance(multiple, Scalar):
|
||
|
try:
|
||
|
multiple = lib.scalar(multiple)
|
||
|
except Exception:
|
||
|
_raise_invalid_function_option(
|
||
|
multiple, "multiple type for RoundToMultipleOptions",
|
||
|
exception_class=TypeError)
|
||
|
|
||
|
self.wrapped.reset(
|
||
|
new CRoundToMultipleOptions(
|
||
|
pyarrow_unwrap_scalar(multiple), unwrap_round_mode(round_mode))
|
||
|
)
|
||
|
|
||
|
|
||
|
class RoundToMultipleOptions(_RoundToMultipleOptions):
|
||
|
"""
|
||
|
Options for rounding numbers to a multiple.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
multiple : numeric scalar, default 1.0
|
||
|
Multiple to round to. Should be a scalar of a type compatible
|
||
|
with the argument to be rounded.
|
||
|
round_mode : str, default "half_to_even"
|
||
|
Rounding and tie-breaking mode.
|
||
|
Accepted values are "down", "up", "towards_zero", "towards_infinity",
|
||
|
"half_down", "half_up", "half_towards_zero", "half_towards_infinity",
|
||
|
"half_to_even", "half_to_odd".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, multiple=1.0, round_mode="half_to_even"):
|
||
|
self._set_options(multiple, round_mode)
|
||
|
|
||
|
|
||
|
cdef class _JoinOptions(FunctionOptions):
|
||
|
_null_handling_map = {
|
||
|
"emit_null": CJoinNullHandlingBehavior_EMIT_NULL,
|
||
|
"skip": CJoinNullHandlingBehavior_SKIP,
|
||
|
"replace": CJoinNullHandlingBehavior_REPLACE,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, null_handling, null_replacement):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CJoinOptions(self._null_handling_map[null_handling],
|
||
|
tobytes(null_replacement))
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(null_handling, "null handling")
|
||
|
|
||
|
|
||
|
class JoinOptions(_JoinOptions):
|
||
|
"""
|
||
|
Options for the `binary_join_element_wise` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
null_handling : str, default "emit_null"
|
||
|
How to handle null values in the inputs.
|
||
|
Accepted values are "emit_null", "skip", "replace".
|
||
|
null_replacement : str, default ""
|
||
|
Replacement string to emit for null inputs if `null_handling`
|
||
|
is "replace".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, null_handling="emit_null", null_replacement=""):
|
||
|
self._set_options(null_handling, null_replacement)
|
||
|
|
||
|
|
||
|
cdef class _MatchSubstringOptions(FunctionOptions):
|
||
|
def _set_options(self, pattern, ignore_case):
|
||
|
self.wrapped.reset(
|
||
|
new CMatchSubstringOptions(tobytes(pattern), ignore_case)
|
||
|
)
|
||
|
|
||
|
|
||
|
class MatchSubstringOptions(_MatchSubstringOptions):
|
||
|
"""
|
||
|
Options for looking for a substring.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pattern : str
|
||
|
Substring pattern to look for inside input values.
|
||
|
ignore_case : bool, default False
|
||
|
Whether to perform a case-insensitive match.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pattern, *, ignore_case=False):
|
||
|
self._set_options(pattern, ignore_case)
|
||
|
|
||
|
|
||
|
cdef class _PadOptions(FunctionOptions):
|
||
|
def _set_options(self, width, padding, lean_left_on_odd_padding):
|
||
|
self.wrapped.reset(new CPadOptions(width, tobytes(padding), lean_left_on_odd_padding))
|
||
|
|
||
|
|
||
|
class PadOptions(_PadOptions):
|
||
|
"""
|
||
|
Options for padding strings.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
width : int
|
||
|
Desired string length.
|
||
|
padding : str, default " "
|
||
|
What to pad the string with. Should be one byte or codepoint.
|
||
|
lean_left_on_odd_padding : bool, default True
|
||
|
What to do if there is an odd number of padding characters (in case
|
||
|
of centered padding). Defaults to aligning on the left (i.e. adding
|
||
|
the extra padding character on the right).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, width, padding=' ', lean_left_on_odd_padding=True):
|
||
|
self._set_options(width, padding, lean_left_on_odd_padding)
|
||
|
|
||
|
|
||
|
cdef class _ZeroFillOptions(FunctionOptions):
|
||
|
def _set_options(self, width, padding):
|
||
|
self.wrapped.reset(new CZeroFillOptions(width, tobytes(padding)))
|
||
|
|
||
|
|
||
|
class ZeroFillOptions(_ZeroFillOptions):
|
||
|
"""
|
||
|
Options for utf8_zero_fill.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
width : int
|
||
|
Desired string length.
|
||
|
padding : str, default "0"
|
||
|
Padding character. Should be one Unicode codepoint.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pyarrow as pa
|
||
|
>>> import pyarrow.compute as pc
|
||
|
>>> arr = pa.array(["1", "-2", "+3"])
|
||
|
>>> opts = pc.ZeroFillOptions(width=4)
|
||
|
>>> pc.utf8_zero_fill(arr, options=opts).to_pylist()
|
||
|
['0001', '-002', '+003']
|
||
|
"""
|
||
|
|
||
|
def __init__(self, width, padding='0'):
|
||
|
self._set_options(width, padding)
|
||
|
|
||
|
|
||
|
cdef class _TrimOptions(FunctionOptions):
|
||
|
def _set_options(self, characters):
|
||
|
self.wrapped.reset(new CTrimOptions(tobytes(characters)))
|
||
|
|
||
|
|
||
|
class TrimOptions(_TrimOptions):
|
||
|
"""
|
||
|
Options for trimming characters from strings.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
characters : str
|
||
|
Individual characters to be trimmed from the string.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, characters):
|
||
|
self._set_options(tobytes(characters))
|
||
|
|
||
|
|
||
|
cdef class _ReplaceSubstringOptions(FunctionOptions):
|
||
|
def _set_options(self, pattern, replacement, max_replacements):
|
||
|
self.wrapped.reset(
|
||
|
new CReplaceSubstringOptions(tobytes(pattern),
|
||
|
tobytes(replacement),
|
||
|
max_replacements)
|
||
|
)
|
||
|
|
||
|
|
||
|
class ReplaceSubstringOptions(_ReplaceSubstringOptions):
|
||
|
"""
|
||
|
Options for replacing matched substrings.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pattern : str
|
||
|
Substring pattern to look for inside input values.
|
||
|
replacement : str
|
||
|
What to replace the pattern with.
|
||
|
max_replacements : int or None, default None
|
||
|
The maximum number of strings to replace in each
|
||
|
input value (unlimited if None).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pattern, replacement, *, max_replacements=None):
|
||
|
if max_replacements is None:
|
||
|
max_replacements = -1
|
||
|
self._set_options(pattern, replacement, max_replacements)
|
||
|
|
||
|
|
||
|
cdef class _ExtractRegexOptions(FunctionOptions):
|
||
|
def _set_options(self, pattern):
|
||
|
self.wrapped.reset(new CExtractRegexOptions(tobytes(pattern)))
|
||
|
|
||
|
|
||
|
class ExtractRegexOptions(_ExtractRegexOptions):
|
||
|
"""
|
||
|
Options for the `extract_regex` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pattern : str
|
||
|
Regular expression with named capture fields.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pattern):
|
||
|
self._set_options(pattern)
|
||
|
|
||
|
|
||
|
cdef class _ExtractRegexSpanOptions(FunctionOptions):
|
||
|
def _set_options(self, pattern):
|
||
|
self.wrapped.reset(new CExtractRegexSpanOptions(tobytes(pattern)))
|
||
|
|
||
|
|
||
|
class ExtractRegexSpanOptions(_ExtractRegexSpanOptions):
|
||
|
"""
|
||
|
Options for the `extract_regex_span` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pattern : str
|
||
|
Regular expression with named capture fields.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pattern):
|
||
|
self._set_options(pattern)
|
||
|
|
||
|
|
||
|
cdef class _SliceOptions(FunctionOptions):
|
||
|
def _set_options(self, start, stop, step):
|
||
|
self.wrapped.reset(new CSliceOptions(start, stop, step))
|
||
|
|
||
|
|
||
|
class SliceOptions(_SliceOptions):
|
||
|
"""
|
||
|
Options for slicing.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : int
|
||
|
Index to start slicing at (inclusive).
|
||
|
stop : int or None, default None
|
||
|
If given, index to stop slicing at (exclusive).
|
||
|
If not given, slicing will stop at the end.
|
||
|
step : int, default 1
|
||
|
Slice step.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, start, stop=None, step=1):
|
||
|
if stop is None:
|
||
|
stop = sys.maxsize
|
||
|
if step < 0:
|
||
|
stop = -stop
|
||
|
self._set_options(start, stop, step)
|
||
|
|
||
|
|
||
|
cdef class _ListSliceOptions(FunctionOptions):
|
||
|
cpdef _set_options(self, start, stop=None, step=1, return_fixed_size_list=None):
|
||
|
cdef:
|
||
|
CListSliceOptions* opts
|
||
|
opts = new CListSliceOptions(
|
||
|
start,
|
||
|
<optional[int64_t]>nullopt if stop is None
|
||
|
else <optional[int64_t]>(<int64_t>stop),
|
||
|
step,
|
||
|
<optional[c_bool]>nullopt if return_fixed_size_list is None
|
||
|
else <optional[c_bool]>(<c_bool>return_fixed_size_list)
|
||
|
)
|
||
|
self.wrapped.reset(opts)
|
||
|
|
||
|
|
||
|
class ListSliceOptions(_ListSliceOptions):
|
||
|
"""
|
||
|
Options for list array slicing.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : int
|
||
|
Index to start slicing inner list elements (inclusive).
|
||
|
stop : Optional[int], default None
|
||
|
If given, index to stop slicing at (exclusive).
|
||
|
If not given, slicing will stop at the end. (NotImplemented)
|
||
|
step : int, default 1
|
||
|
Slice step.
|
||
|
return_fixed_size_list : Optional[bool], default None
|
||
|
Whether to return a FixedSizeListArray. If true _and_ stop is after
|
||
|
a list element's length, nulls will be appended to create the
|
||
|
requested slice size. The default of `None` will return the same
|
||
|
type which was passed in.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, start, stop=None, step=1, return_fixed_size_list=None):
|
||
|
self._set_options(start, stop, step, return_fixed_size_list)
|
||
|
|
||
|
|
||
|
cdef class _ReplaceSliceOptions(FunctionOptions):
|
||
|
def _set_options(self, start, stop, replacement):
|
||
|
self.wrapped.reset(
|
||
|
new CReplaceSliceOptions(start, stop, tobytes(replacement))
|
||
|
)
|
||
|
|
||
|
|
||
|
class ReplaceSliceOptions(_ReplaceSliceOptions):
|
||
|
"""
|
||
|
Options for replacing slices.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : int
|
||
|
Index to start slicing at (inclusive).
|
||
|
stop : int
|
||
|
Index to stop slicing at (exclusive).
|
||
|
replacement : str
|
||
|
What to replace the slice with.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, start, stop, replacement):
|
||
|
self._set_options(start, stop, replacement)
|
||
|
|
||
|
|
||
|
cdef class _FilterOptions(FunctionOptions):
|
||
|
_null_selection_map = {
|
||
|
"drop": CFilterNullSelectionBehavior_DROP,
|
||
|
"emit_null": CFilterNullSelectionBehavior_EMIT_NULL,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, null_selection_behavior):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CFilterOptions(
|
||
|
self._null_selection_map[null_selection_behavior]
|
||
|
)
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(null_selection_behavior,
|
||
|
"null selection behavior")
|
||
|
|
||
|
|
||
|
class FilterOptions(_FilterOptions):
|
||
|
"""
|
||
|
Options for selecting with a boolean filter.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
null_selection_behavior : str, default "drop"
|
||
|
How to handle nulls in the selection filter.
|
||
|
Accepted values are "drop", "emit_null".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, null_selection_behavior="drop"):
|
||
|
self._set_options(null_selection_behavior)
|
||
|
|
||
|
|
||
|
cdef class _DictionaryEncodeOptions(FunctionOptions):
|
||
|
_null_encoding_map = {
|
||
|
"encode": CDictionaryEncodeNullEncodingBehavior_ENCODE,
|
||
|
"mask": CDictionaryEncodeNullEncodingBehavior_MASK,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, null_encoding):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CDictionaryEncodeOptions(
|
||
|
self._null_encoding_map[null_encoding]
|
||
|
)
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(null_encoding, "null encoding")
|
||
|
|
||
|
|
||
|
class DictionaryEncodeOptions(_DictionaryEncodeOptions):
|
||
|
"""
|
||
|
Options for dictionary encoding.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
null_encoding : str, default "mask"
|
||
|
How to encode nulls in the input.
|
||
|
Accepted values are "mask" (null inputs emit a null in the indices
|
||
|
array), "encode" (null inputs emit a non-null index pointing to
|
||
|
a null value in the dictionary array).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, null_encoding="mask"):
|
||
|
self._set_options(null_encoding)
|
||
|
|
||
|
|
||
|
cdef class _RunEndEncodeOptions(FunctionOptions):
|
||
|
def _set_options(self, run_end_type):
|
||
|
run_end_ty = ensure_type(run_end_type)
|
||
|
self.wrapped.reset(new CRunEndEncodeOptions(pyarrow_unwrap_data_type(run_end_ty)))
|
||
|
|
||
|
|
||
|
class RunEndEncodeOptions(_RunEndEncodeOptions):
|
||
|
"""
|
||
|
Options for run-end encoding.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
run_end_type : DataType, default pyarrow.int32()
|
||
|
The data type of the run_ends array.
|
||
|
|
||
|
Accepted values are pyarrow.{int16(), int32(), int64()}.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, run_end_type=lib.int32()):
|
||
|
self._set_options(run_end_type)
|
||
|
|
||
|
|
||
|
cdef class _TakeOptions(FunctionOptions):
|
||
|
def _set_options(self, boundscheck):
|
||
|
self.wrapped.reset(new CTakeOptions(boundscheck))
|
||
|
|
||
|
|
||
|
class TakeOptions(_TakeOptions):
|
||
|
"""
|
||
|
Options for the `take` and `array_take` functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
boundscheck : boolean, default True
|
||
|
Whether to check indices are within bounds. If False and an
|
||
|
index is out of bounds, behavior is undefined (the process
|
||
|
may crash).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, boundscheck=True):
|
||
|
self._set_options(boundscheck)
|
||
|
|
||
|
|
||
|
cdef class _MakeStructOptions(FunctionOptions):
|
||
|
def _set_options(self, field_names, field_nullability, field_metadata):
|
||
|
cdef:
|
||
|
vector[c_string] c_field_names
|
||
|
vector[shared_ptr[const CKeyValueMetadata]] c_field_metadata
|
||
|
for name in field_names:
|
||
|
c_field_names.push_back(tobytes(name))
|
||
|
for metadata in field_metadata:
|
||
|
c_field_metadata.push_back(pyarrow_unwrap_metadata(metadata))
|
||
|
self.wrapped.reset(
|
||
|
new CMakeStructOptions(c_field_names, field_nullability,
|
||
|
c_field_metadata)
|
||
|
)
|
||
|
|
||
|
|
||
|
class MakeStructOptions(_MakeStructOptions):
|
||
|
"""
|
||
|
Options for the `make_struct` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
field_names : sequence of str
|
||
|
Names of the struct fields to create.
|
||
|
field_nullability : sequence of bool, optional
|
||
|
Nullability information for each struct field.
|
||
|
If omitted, all fields are nullable.
|
||
|
field_metadata : sequence of KeyValueMetadata, optional
|
||
|
Metadata for each struct field.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, field_names=(), *, field_nullability=None,
|
||
|
field_metadata=None):
|
||
|
if field_nullability is None:
|
||
|
field_nullability = [True] * len(field_names)
|
||
|
if field_metadata is None:
|
||
|
field_metadata = [None] * len(field_names)
|
||
|
self._set_options(field_names, field_nullability, field_metadata)
|
||
|
|
||
|
|
||
|
cdef CFieldRef _ensure_field_ref(value) except *:
|
||
|
cdef:
|
||
|
CFieldRef field_ref
|
||
|
const CFieldRef* field_ref_ptr
|
||
|
|
||
|
if isinstance(value, (list, tuple)):
|
||
|
value = Expression._nested_field(tuple(value))
|
||
|
|
||
|
if isinstance(value, Expression):
|
||
|
field_ref_ptr = (<Expression>value).unwrap().field_ref()
|
||
|
if field_ref_ptr is NULL:
|
||
|
raise ValueError("Unable to get FieldRef from Expression")
|
||
|
field_ref = <CFieldRef>deref(field_ref_ptr)
|
||
|
elif isinstance(value, (bytes, str)):
|
||
|
if value.startswith(b'.' if isinstance(value, bytes) else '.'):
|
||
|
field_ref = GetResultValue(
|
||
|
CFieldRef.FromDotPath(<c_string>tobytes(value)))
|
||
|
else:
|
||
|
field_ref = CFieldRef(<c_string>tobytes(value))
|
||
|
elif isinstance(value, int):
|
||
|
field_ref = CFieldRef(<int> value)
|
||
|
else:
|
||
|
raise TypeError("Expected a field reference as a str or int, list of "
|
||
|
f"str or int, or Expression. Got {type(value)} instead.")
|
||
|
return field_ref
|
||
|
|
||
|
|
||
|
cdef class _StructFieldOptions(FunctionOptions):
|
||
|
def _set_options(self, indices):
|
||
|
|
||
|
if isinstance(indices, (list, tuple)) and not len(indices):
|
||
|
# Allow empty indices; effectively return same array
|
||
|
self.wrapped.reset(
|
||
|
new CStructFieldOptions(<vector[int]>indices))
|
||
|
return
|
||
|
|
||
|
cdef CFieldRef field_ref = _ensure_field_ref(indices)
|
||
|
self.wrapped.reset(new CStructFieldOptions(field_ref))
|
||
|
|
||
|
|
||
|
class StructFieldOptions(_StructFieldOptions):
|
||
|
"""
|
||
|
Options for the `struct_field` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indices : List[str], List[bytes], List[int], Expression, bytes, str, or int
|
||
|
List of indices for chained field lookup, for example `[4, 1]`
|
||
|
will look up the second nested field in the fifth outer field.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, indices):
|
||
|
self._set_options(indices)
|
||
|
|
||
|
|
||
|
cdef class _ScalarAggregateOptions(FunctionOptions):
|
||
|
def _set_options(self, skip_nulls, min_count):
|
||
|
self.wrapped.reset(new CScalarAggregateOptions(skip_nulls, min_count))
|
||
|
|
||
|
|
||
|
class ScalarAggregateOptions(_ScalarAggregateOptions):
|
||
|
__doc__ = f"""
|
||
|
Options for scalar aggregations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{_skip_nulls_doc()}
|
||
|
{_min_count_doc(default=1)}
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, skip_nulls=True, min_count=1):
|
||
|
self._set_options(skip_nulls, min_count)
|
||
|
|
||
|
|
||
|
cdef class _CountOptions(FunctionOptions):
|
||
|
_mode_map = {
|
||
|
"only_valid": CCountMode_ONLY_VALID,
|
||
|
"only_null": CCountMode_ONLY_NULL,
|
||
|
"all": CCountMode_ALL,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, mode):
|
||
|
try:
|
||
|
self.wrapped.reset(new CCountOptions(self._mode_map[mode]))
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(mode, "count mode")
|
||
|
|
||
|
|
||
|
class CountOptions(_CountOptions):
|
||
|
"""
|
||
|
Options for the `count` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mode : str, default "only_valid"
|
||
|
Which values to count in the input.
|
||
|
Accepted values are "only_valid", "only_null", "all".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, mode="only_valid"):
|
||
|
self._set_options(mode)
|
||
|
|
||
|
|
||
|
cdef class _IndexOptions(FunctionOptions):
|
||
|
def _set_options(self, scalar):
|
||
|
self.wrapped.reset(new CIndexOptions(pyarrow_unwrap_scalar(scalar)))
|
||
|
|
||
|
|
||
|
class IndexOptions(_IndexOptions):
|
||
|
"""
|
||
|
Options for the `index` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value : Scalar
|
||
|
The value to search for.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, value):
|
||
|
self._set_options(value)
|
||
|
|
||
|
|
||
|
cdef class _MapLookupOptions(FunctionOptions):
|
||
|
_occurrence_map = {
|
||
|
"all": CMapLookupOccurrence_ALL,
|
||
|
"first": CMapLookupOccurrence_FIRST,
|
||
|
"last": CMapLookupOccurrence_LAST,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, query_key, occurrence):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CMapLookupOptions(
|
||
|
pyarrow_unwrap_scalar(query_key),
|
||
|
self._occurrence_map[occurrence]
|
||
|
)
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(occurrence,
|
||
|
"Should either be first, last, or all")
|
||
|
|
||
|
|
||
|
class MapLookupOptions(_MapLookupOptions):
|
||
|
"""
|
||
|
Options for the `map_lookup` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
query_key : Scalar or Object can be converted to Scalar
|
||
|
The key to search for.
|
||
|
occurrence : str
|
||
|
The occurrence(s) to return from the Map
|
||
|
Accepted values are "first", "last", or "all".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, query_key, occurrence):
|
||
|
if not isinstance(query_key, lib.Scalar):
|
||
|
query_key = lib.scalar(query_key)
|
||
|
|
||
|
self._set_options(query_key, occurrence)
|
||
|
|
||
|
|
||
|
cdef class _ModeOptions(FunctionOptions):
|
||
|
def _set_options(self, n, skip_nulls, min_count):
|
||
|
self.wrapped.reset(new CModeOptions(n, skip_nulls, min_count))
|
||
|
|
||
|
|
||
|
class ModeOptions(_ModeOptions):
|
||
|
__doc__ = f"""
|
||
|
Options for the `mode` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int, default 1
|
||
|
Number of distinct most-common values to return.
|
||
|
{_skip_nulls_doc()}
|
||
|
{_min_count_doc(default=0)}
|
||
|
"""
|
||
|
|
||
|
def __init__(self, n=1, *, skip_nulls=True, min_count=0):
|
||
|
self._set_options(n, skip_nulls, min_count)
|
||
|
|
||
|
|
||
|
cdef class _SetLookupOptions(FunctionOptions):
|
||
|
def _set_options(self, value_set, c_bool skip_nulls):
|
||
|
cdef unique_ptr[CDatum] valset
|
||
|
if isinstance(value_set, Array):
|
||
|
valset.reset(new CDatum((<Array> value_set).sp_array))
|
||
|
elif isinstance(value_set, ChunkedArray):
|
||
|
valset.reset(
|
||
|
new CDatum((<ChunkedArray> value_set).sp_chunked_array)
|
||
|
)
|
||
|
elif isinstance(value_set, Scalar):
|
||
|
valset.reset(new CDatum((<Scalar> value_set).unwrap()))
|
||
|
else:
|
||
|
_raise_invalid_function_option(value_set, "value set",
|
||
|
exception_class=TypeError)
|
||
|
|
||
|
self.wrapped.reset(new CSetLookupOptions(deref(valset), skip_nulls))
|
||
|
|
||
|
|
||
|
class SetLookupOptions(_SetLookupOptions):
|
||
|
"""
|
||
|
Options for the `is_in` and `index_in` functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value_set : Array
|
||
|
Set of values to look for in the input.
|
||
|
skip_nulls : bool, default False
|
||
|
If False, nulls in the input are matched in the value_set just
|
||
|
like regular values.
|
||
|
If True, nulls in the input always fail matching.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, value_set, *, skip_nulls=False):
|
||
|
self._set_options(value_set, skip_nulls)
|
||
|
|
||
|
|
||
|
cdef class _StrptimeOptions(FunctionOptions):
|
||
|
_unit_map = {
|
||
|
"s": TimeUnit_SECOND,
|
||
|
"ms": TimeUnit_MILLI,
|
||
|
"us": TimeUnit_MICRO,
|
||
|
"ns": TimeUnit_NANO,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, format, unit, error_is_null):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CStrptimeOptions(tobytes(format), self._unit_map[unit],
|
||
|
error_is_null)
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(unit, "time unit")
|
||
|
|
||
|
|
||
|
class StrptimeOptions(_StrptimeOptions):
|
||
|
"""
|
||
|
Options for the `strptime` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
format : str
|
||
|
Pattern for parsing input strings as timestamps, such as "%Y/%m/%d".
|
||
|
Note that the semantics of the format follow the C/C++ strptime, not the Python one.
|
||
|
There are differences in behavior, for example how the "%y" placeholder
|
||
|
handles years with less than four digits.
|
||
|
unit : str
|
||
|
Timestamp unit of the output.
|
||
|
Accepted values are "s", "ms", "us", "ns".
|
||
|
error_is_null : boolean, default False
|
||
|
Return null on parsing errors if true or raise if false.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, format, unit, error_is_null=False):
|
||
|
self._set_options(format, unit, error_is_null)
|
||
|
|
||
|
|
||
|
cdef class _StrftimeOptions(FunctionOptions):
|
||
|
def _set_options(self, format, locale):
|
||
|
self.wrapped.reset(
|
||
|
new CStrftimeOptions(tobytes(format), tobytes(locale))
|
||
|
)
|
||
|
|
||
|
|
||
|
class StrftimeOptions(_StrftimeOptions):
|
||
|
"""
|
||
|
Options for the `strftime` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
format : str, default "%Y-%m-%dT%H:%M:%S"
|
||
|
Pattern for formatting input values.
|
||
|
locale : str, default "C"
|
||
|
Locale to use for locale-specific format specifiers.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, format="%Y-%m-%dT%H:%M:%S", locale="C"):
|
||
|
self._set_options(format, locale)
|
||
|
|
||
|
|
||
|
cdef class _DayOfWeekOptions(FunctionOptions):
|
||
|
def _set_options(self, count_from_zero, week_start):
|
||
|
self.wrapped.reset(
|
||
|
new CDayOfWeekOptions(count_from_zero, week_start)
|
||
|
)
|
||
|
|
||
|
|
||
|
class DayOfWeekOptions(_DayOfWeekOptions):
|
||
|
"""
|
||
|
Options for the `day_of_week` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
count_from_zero : bool, default True
|
||
|
If True, number days from 0, otherwise from 1.
|
||
|
week_start : int, default 1
|
||
|
Which day does the week start with (Monday=1, Sunday=7).
|
||
|
How this value is numbered is unaffected by `count_from_zero`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, count_from_zero=True, week_start=1):
|
||
|
self._set_options(count_from_zero, week_start)
|
||
|
|
||
|
|
||
|
cdef class _WeekOptions(FunctionOptions):
|
||
|
def _set_options(self, week_starts_monday, count_from_zero,
|
||
|
first_week_is_fully_in_year):
|
||
|
self.wrapped.reset(
|
||
|
new CWeekOptions(week_starts_monday, count_from_zero,
|
||
|
first_week_is_fully_in_year)
|
||
|
)
|
||
|
|
||
|
|
||
|
class WeekOptions(_WeekOptions):
|
||
|
"""
|
||
|
Options for the `week` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
week_starts_monday : bool, default True
|
||
|
If True, weeks start on Monday; if False, on Sunday.
|
||
|
count_from_zero : bool, default False
|
||
|
If True, dates at the start of a year that fall into the last week
|
||
|
of the previous year emit 0.
|
||
|
If False, they emit 52 or 53 (the week number of the last week
|
||
|
of the previous year).
|
||
|
first_week_is_fully_in_year : bool, default False
|
||
|
If True, week number 0 is fully in January.
|
||
|
If False, a week that begins on December 29, 30 or 31 is considered
|
||
|
to be week number 0 of the following year.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, week_starts_monday=True, count_from_zero=False,
|
||
|
first_week_is_fully_in_year=False):
|
||
|
self._set_options(week_starts_monday,
|
||
|
count_from_zero, first_week_is_fully_in_year)
|
||
|
|
||
|
|
||
|
cdef class _AssumeTimezoneOptions(FunctionOptions):
|
||
|
_ambiguous_map = {
|
||
|
"raise": CAssumeTimezoneAmbiguous_AMBIGUOUS_RAISE,
|
||
|
"earliest": CAssumeTimezoneAmbiguous_AMBIGUOUS_EARLIEST,
|
||
|
"latest": CAssumeTimezoneAmbiguous_AMBIGUOUS_LATEST,
|
||
|
}
|
||
|
_nonexistent_map = {
|
||
|
"raise": CAssumeTimezoneNonexistent_NONEXISTENT_RAISE,
|
||
|
"earliest": CAssumeTimezoneNonexistent_NONEXISTENT_EARLIEST,
|
||
|
"latest": CAssumeTimezoneNonexistent_NONEXISTENT_LATEST,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, timezone, ambiguous, nonexistent):
|
||
|
if ambiguous not in self._ambiguous_map:
|
||
|
_raise_invalid_function_option(ambiguous,
|
||
|
"'ambiguous' timestamp handling")
|
||
|
if nonexistent not in self._nonexistent_map:
|
||
|
_raise_invalid_function_option(nonexistent,
|
||
|
"'nonexistent' timestamp handling")
|
||
|
self.wrapped.reset(
|
||
|
new CAssumeTimezoneOptions(tobytes(timezone),
|
||
|
self._ambiguous_map[ambiguous],
|
||
|
self._nonexistent_map[nonexistent])
|
||
|
)
|
||
|
|
||
|
|
||
|
class AssumeTimezoneOptions(_AssumeTimezoneOptions):
|
||
|
"""
|
||
|
Options for the `assume_timezone` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
timezone : str
|
||
|
Timezone to assume for the input.
|
||
|
ambiguous : str, default "raise"
|
||
|
How to handle timestamps that are ambiguous in the assumed timezone.
|
||
|
Accepted values are "raise", "earliest", "latest".
|
||
|
nonexistent : str, default "raise"
|
||
|
How to handle timestamps that don't exist in the assumed timezone.
|
||
|
Accepted values are "raise", "earliest", "latest".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, timezone, *, ambiguous="raise", nonexistent="raise"):
|
||
|
self._set_options(timezone, ambiguous, nonexistent)
|
||
|
|
||
|
|
||
|
cdef class _NullOptions(FunctionOptions):
|
||
|
def _set_options(self, nan_is_null):
|
||
|
self.wrapped.reset(new CNullOptions(nan_is_null))
|
||
|
|
||
|
|
||
|
class NullOptions(_NullOptions):
|
||
|
"""
|
||
|
Options for the `is_null` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nan_is_null : bool, default False
|
||
|
Whether floating-point NaN values are considered null.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, nan_is_null=False):
|
||
|
self._set_options(nan_is_null)
|
||
|
|
||
|
|
||
|
cdef class _VarianceOptions(FunctionOptions):
|
||
|
def _set_options(self, ddof, skip_nulls, min_count):
|
||
|
self.wrapped.reset(new CVarianceOptions(ddof, skip_nulls, min_count))
|
||
|
|
||
|
|
||
|
class VarianceOptions(_VarianceOptions):
|
||
|
__doc__ = f"""
|
||
|
Options for the `variance` and `stddev` functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ddof : int, default 0
|
||
|
Number of degrees of freedom.
|
||
|
{_skip_nulls_doc()}
|
||
|
{_min_count_doc(default=0)}
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, ddof=0, skip_nulls=True, min_count=0):
|
||
|
self._set_options(ddof, skip_nulls, min_count)
|
||
|
|
||
|
|
||
|
cdef class _SkewOptions(FunctionOptions):
|
||
|
def _set_options(self, skip_nulls, biased, min_count):
|
||
|
self.wrapped.reset(new CSkewOptions(skip_nulls, biased, min_count))
|
||
|
|
||
|
|
||
|
class SkewOptions(_SkewOptions):
|
||
|
__doc__ = f"""
|
||
|
Options for the `skew` and `kurtosis` functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{_skip_nulls_doc()}
|
||
|
biased : bool, default True
|
||
|
Whether the calculated value is biased.
|
||
|
If False, the value computed includes a correction factor to reduce bias.
|
||
|
{_min_count_doc(default=0)}
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, skip_nulls=True, biased=True, min_count=0):
|
||
|
self._set_options(skip_nulls, biased, min_count)
|
||
|
|
||
|
|
||
|
cdef class _SplitOptions(FunctionOptions):
|
||
|
def _set_options(self, max_splits, reverse):
|
||
|
self.wrapped.reset(new CSplitOptions(max_splits, reverse))
|
||
|
|
||
|
|
||
|
class SplitOptions(_SplitOptions):
|
||
|
"""
|
||
|
Options for splitting on whitespace.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
max_splits : int or None, default None
|
||
|
Maximum number of splits for each input value (unlimited if None).
|
||
|
reverse : bool, default False
|
||
|
Whether to start splitting from the end of each input value.
|
||
|
This only has an effect if `max_splits` is not None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, max_splits=None, reverse=False):
|
||
|
if max_splits is None:
|
||
|
max_splits = -1
|
||
|
self._set_options(max_splits, reverse)
|
||
|
|
||
|
|
||
|
cdef class _SplitPatternOptions(FunctionOptions):
|
||
|
def _set_options(self, pattern, max_splits, reverse):
|
||
|
self.wrapped.reset(
|
||
|
new CSplitPatternOptions(tobytes(pattern), max_splits, reverse)
|
||
|
)
|
||
|
|
||
|
|
||
|
class SplitPatternOptions(_SplitPatternOptions):
|
||
|
"""
|
||
|
Options for splitting on a string pattern.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pattern : str
|
||
|
String pattern to split on.
|
||
|
max_splits : int or None, default None
|
||
|
Maximum number of splits for each input value (unlimited if None).
|
||
|
reverse : bool, default False
|
||
|
Whether to start splitting from the end of each input value.
|
||
|
This only has an effect if `max_splits` is not None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pattern, *, max_splits=None, reverse=False):
|
||
|
if max_splits is None:
|
||
|
max_splits = -1
|
||
|
self._set_options(pattern, max_splits, reverse)
|
||
|
|
||
|
|
||
|
cdef CSortOrder unwrap_sort_order(order) except *:
|
||
|
if order == "ascending":
|
||
|
return CSortOrder_Ascending
|
||
|
elif order == "descending":
|
||
|
return CSortOrder_Descending
|
||
|
_raise_invalid_function_option(order, "sort order")
|
||
|
|
||
|
|
||
|
cdef CNullPlacement unwrap_null_placement(null_placement) except *:
|
||
|
if null_placement == "at_start":
|
||
|
return CNullPlacement_AtStart
|
||
|
elif null_placement == "at_end":
|
||
|
return CNullPlacement_AtEnd
|
||
|
_raise_invalid_function_option(null_placement, "null placement")
|
||
|
|
||
|
|
||
|
cdef class _PartitionNthOptions(FunctionOptions):
|
||
|
def _set_options(self, pivot, null_placement):
|
||
|
self.wrapped.reset(new CPartitionNthOptions(
|
||
|
pivot, unwrap_null_placement(null_placement)))
|
||
|
|
||
|
|
||
|
class PartitionNthOptions(_PartitionNthOptions):
|
||
|
"""
|
||
|
Options for the `partition_nth_indices` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pivot : int
|
||
|
Index into the equivalent sorted array of the pivot element.
|
||
|
null_placement : str, default "at_end"
|
||
|
Where nulls in the input should be partitioned.
|
||
|
Accepted values are "at_start", "at_end".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pivot, *, null_placement="at_end"):
|
||
|
self._set_options(pivot, null_placement)
|
||
|
|
||
|
|
||
|
cdef class _WinsorizeOptions(FunctionOptions):
|
||
|
def _set_options(self, lower_limit, upper_limit):
|
||
|
self.wrapped.reset(new CWinsorizeOptions(lower_limit, upper_limit))
|
||
|
|
||
|
|
||
|
class WinsorizeOptions(_WinsorizeOptions):
|
||
|
"""
|
||
|
Options for the `winsorize` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
lower_limit : float, between 0 and 1
|
||
|
The quantile below which all values are replaced with the quantile's value.
|
||
|
upper_limit : float, between 0 and 1
|
||
|
The quantile above which all values are replaced with the quantile's value.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, lower_limit, upper_limit):
|
||
|
self._set_options(lower_limit, upper_limit)
|
||
|
|
||
|
|
||
|
cdef class _CumulativeOptions(FunctionOptions):
|
||
|
def _set_options(self, start, skip_nulls):
|
||
|
if start is None:
|
||
|
self.wrapped.reset(new CCumulativeOptions(skip_nulls))
|
||
|
elif isinstance(start, Scalar):
|
||
|
self.wrapped.reset(new CCumulativeOptions(
|
||
|
pyarrow_unwrap_scalar(start), skip_nulls))
|
||
|
else:
|
||
|
try:
|
||
|
start = lib.scalar(start)
|
||
|
self.wrapped.reset(new CCumulativeOptions(
|
||
|
pyarrow_unwrap_scalar(start), skip_nulls))
|
||
|
except Exception:
|
||
|
_raise_invalid_function_option(
|
||
|
start, "`start` type for CumulativeOptions", TypeError)
|
||
|
|
||
|
|
||
|
class CumulativeOptions(_CumulativeOptions):
|
||
|
"""
|
||
|
Options for `cumulative_*` functions.
|
||
|
|
||
|
- cumulative_sum
|
||
|
- cumulative_sum_checked
|
||
|
- cumulative_prod
|
||
|
- cumulative_prod_checked
|
||
|
- cumulative_max
|
||
|
- cumulative_min
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : Scalar, default None
|
||
|
Starting value for the cumulative operation. If none is given,
|
||
|
a default value depending on the operation and input type is used.
|
||
|
skip_nulls : bool, default False
|
||
|
When false, the first encountered null is propagated.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, start=None, *, skip_nulls=False):
|
||
|
self._set_options(start, skip_nulls)
|
||
|
|
||
|
|
||
|
class CumulativeSumOptions(_CumulativeOptions):
|
||
|
"""
|
||
|
Options for `cumulative_sum` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : Scalar, default None
|
||
|
Starting value for sum computation
|
||
|
skip_nulls : bool, default False
|
||
|
When false, the first encountered null is propagated.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, start=None, *, skip_nulls=False):
|
||
|
warnings.warn(
|
||
|
_DEPR_MSG.format("CumulativeSumOptions", "14.0", "CumulativeOptions"),
|
||
|
FutureWarning,
|
||
|
stacklevel=2
|
||
|
)
|
||
|
self._set_options(start, skip_nulls)
|
||
|
|
||
|
|
||
|
cdef class _PairwiseOptions(FunctionOptions):
|
||
|
def _set_options(self, period):
|
||
|
self.wrapped.reset(new CPairwiseOptions(period))
|
||
|
|
||
|
|
||
|
class PairwiseOptions(_PairwiseOptions):
|
||
|
"""
|
||
|
Options for `pairwise` functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
period : int, default 1
|
||
|
Period for applying the period function.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, period=1):
|
||
|
self._set_options(period)
|
||
|
|
||
|
|
||
|
cdef class _ListFlattenOptions(FunctionOptions):
|
||
|
def _set_options(self, recursive):
|
||
|
self.wrapped.reset(new CListFlattenOptions(recursive))
|
||
|
|
||
|
|
||
|
class ListFlattenOptions(_ListFlattenOptions):
|
||
|
"""
|
||
|
Options for `list_flatten` function
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
recursive : bool, default False
|
||
|
When True, the list array is flattened recursively until an array
|
||
|
of non-list values is formed.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, recursive=False):
|
||
|
self._set_options(recursive)
|
||
|
|
||
|
|
||
|
cdef class _ArraySortOptions(FunctionOptions):
|
||
|
def _set_options(self, order, null_placement):
|
||
|
self.wrapped.reset(new CArraySortOptions(
|
||
|
unwrap_sort_order(order), unwrap_null_placement(null_placement)))
|
||
|
|
||
|
|
||
|
class ArraySortOptions(_ArraySortOptions):
|
||
|
"""
|
||
|
Options for the `array_sort_indices` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
order : str, default "ascending"
|
||
|
Which order to sort values in.
|
||
|
Accepted values are "ascending", "descending".
|
||
|
null_placement : str, default "at_end"
|
||
|
Where nulls in the input should be sorted.
|
||
|
Accepted values are "at_start", "at_end".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, order="ascending", *, null_placement="at_end"):
|
||
|
self._set_options(order, null_placement)
|
||
|
|
||
|
|
||
|
cdef class _SortOptions(FunctionOptions):
|
||
|
def _set_options(self, sort_keys, null_placement):
|
||
|
self.wrapped.reset(new CSortOptions(
|
||
|
unwrap_sort_keys(sort_keys, allow_str=False),
|
||
|
unwrap_null_placement(null_placement)))
|
||
|
|
||
|
|
||
|
class SortOptions(_SortOptions):
|
||
|
"""
|
||
|
Options for the `sort_indices` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sort_keys : sequence of (name, order) tuples
|
||
|
Names of field/column keys to sort the input on,
|
||
|
along with the order each field/column is sorted in.
|
||
|
Accepted values for `order` are "ascending", "descending".
|
||
|
The field name can be a string column name or expression.
|
||
|
null_placement : str, default "at_end"
|
||
|
Where nulls in input should be sorted, only applying to
|
||
|
columns/fields mentioned in `sort_keys`.
|
||
|
Accepted values are "at_start", "at_end".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, sort_keys=(), *, null_placement="at_end"):
|
||
|
self._set_options(sort_keys, null_placement)
|
||
|
|
||
|
|
||
|
cdef class _SelectKOptions(FunctionOptions):
|
||
|
def _set_options(self, k, sort_keys):
|
||
|
self.wrapped.reset(new CSelectKOptions(k, unwrap_sort_keys(sort_keys, allow_str=False)))
|
||
|
|
||
|
|
||
|
class SelectKOptions(_SelectKOptions):
|
||
|
"""
|
||
|
Options for top/bottom k-selection.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
k : int
|
||
|
Number of leading values to select in sorted order
|
||
|
(i.e. the largest values if sort order is "descending",
|
||
|
the smallest otherwise).
|
||
|
sort_keys : sequence of (name, order) tuples
|
||
|
Names of field/column keys to sort the input on,
|
||
|
along with the order each field/column is sorted in.
|
||
|
Accepted values for `order` are "ascending", "descending".
|
||
|
The field name can be a string column name or expression.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, k, sort_keys):
|
||
|
self._set_options(k, sort_keys)
|
||
|
|
||
|
|
||
|
cdef class _QuantileOptions(FunctionOptions):
|
||
|
_interp_map = {
|
||
|
"linear": CQuantileInterp_LINEAR,
|
||
|
"lower": CQuantileInterp_LOWER,
|
||
|
"higher": CQuantileInterp_HIGHER,
|
||
|
"nearest": CQuantileInterp_NEAREST,
|
||
|
"midpoint": CQuantileInterp_MIDPOINT,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, quantiles, interp, skip_nulls, min_count):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CQuantileOptions(quantiles, self._interp_map[interp],
|
||
|
skip_nulls, min_count)
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(interp, "quantile interpolation")
|
||
|
|
||
|
|
||
|
class QuantileOptions(_QuantileOptions):
|
||
|
__doc__ = f"""
|
||
|
Options for the `quantile` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
q : double or sequence of double, default 0.5
|
||
|
Probability levels of the quantiles to compute. All values must be in
|
||
|
[0, 1].
|
||
|
interpolation : str, default "linear"
|
||
|
How to break ties between competing data points for a given quantile.
|
||
|
Accepted values are:
|
||
|
|
||
|
- "linear": compute an interpolation
|
||
|
- "lower": always use the smallest of the two data points
|
||
|
- "higher": always use the largest of the two data points
|
||
|
- "nearest": select the data point that is closest to the quantile
|
||
|
- "midpoint": compute the (unweighted) mean of the two data points
|
||
|
{_skip_nulls_doc()}
|
||
|
{_min_count_doc(default=0)}
|
||
|
"""
|
||
|
|
||
|
def __init__(self, q=0.5, *, interpolation="linear", skip_nulls=True,
|
||
|
min_count=0):
|
||
|
if not isinstance(q, SUPPORTED_INPUT_ARR_TYPES):
|
||
|
q = [q]
|
||
|
self._set_options(q, interpolation, skip_nulls, min_count)
|
||
|
|
||
|
|
||
|
cdef class _TDigestOptions(FunctionOptions):
|
||
|
def _set_options(self, quantiles, delta, buffer_size, skip_nulls,
|
||
|
min_count):
|
||
|
self.wrapped.reset(
|
||
|
new CTDigestOptions(quantiles, delta, buffer_size, skip_nulls,
|
||
|
min_count)
|
||
|
)
|
||
|
|
||
|
|
||
|
class TDigestOptions(_TDigestOptions):
|
||
|
__doc__ = f"""
|
||
|
Options for the `tdigest` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
q : double or sequence of double, default 0.5
|
||
|
Probability levels of the quantiles to approximate. All values must be
|
||
|
in [0, 1].
|
||
|
delta : int, default 100
|
||
|
Compression parameter for the T-digest algorithm.
|
||
|
buffer_size : int, default 500
|
||
|
Buffer size for the T-digest algorithm.
|
||
|
{_skip_nulls_doc()}
|
||
|
{_min_count_doc(default=0)}
|
||
|
"""
|
||
|
|
||
|
def __init__(self, q=0.5, *, delta=100, buffer_size=500, skip_nulls=True,
|
||
|
min_count=0):
|
||
|
if not isinstance(q, SUPPORTED_INPUT_ARR_TYPES):
|
||
|
q = [q]
|
||
|
self._set_options(q, delta, buffer_size, skip_nulls, min_count)
|
||
|
|
||
|
|
||
|
cdef class _Utf8NormalizeOptions(FunctionOptions):
|
||
|
_form_map = {
|
||
|
"NFC": CUtf8NormalizeForm_NFC,
|
||
|
"NFKC": CUtf8NormalizeForm_NFKC,
|
||
|
"NFD": CUtf8NormalizeForm_NFD,
|
||
|
"NFKD": CUtf8NormalizeForm_NFKD,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, form):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CUtf8NormalizeOptions(self._form_map[form])
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(form,
|
||
|
"Unicode normalization form")
|
||
|
|
||
|
|
||
|
class Utf8NormalizeOptions(_Utf8NormalizeOptions):
|
||
|
"""
|
||
|
Options for the `utf8_normalize` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
form : str
|
||
|
Unicode normalization form.
|
||
|
Accepted values are "NFC", "NFKC", "NFD", NFKD".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, form):
|
||
|
self._set_options(form)
|
||
|
|
||
|
|
||
|
cdef class _RandomOptions(FunctionOptions):
|
||
|
def _set_options(self, initializer):
|
||
|
if initializer == 'system':
|
||
|
self.wrapped.reset(new CRandomOptions(
|
||
|
CRandomOptions.FromSystemRandom()))
|
||
|
return
|
||
|
|
||
|
if not isinstance(initializer, int):
|
||
|
try:
|
||
|
initializer = hash(initializer)
|
||
|
except TypeError:
|
||
|
raise TypeError(
|
||
|
f"initializer should be 'system', an integer, "
|
||
|
f"or a hashable object; got {initializer!r}")
|
||
|
|
||
|
if initializer < 0:
|
||
|
initializer += 2**64
|
||
|
self.wrapped.reset(new CRandomOptions(
|
||
|
CRandomOptions.FromSeed(initializer)))
|
||
|
|
||
|
|
||
|
class RandomOptions(_RandomOptions):
|
||
|
"""
|
||
|
Options for random generation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
initializer : int or str
|
||
|
How to initialize the underlying random generator.
|
||
|
If an integer is given, it is used as a seed.
|
||
|
If "system" is given, the random generator is initialized with
|
||
|
a system-specific source of (hopefully true) randomness.
|
||
|
Other values are invalid.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *, initializer='system'):
|
||
|
self._set_options(initializer)
|
||
|
|
||
|
|
||
|
cdef class _RankOptions(FunctionOptions):
|
||
|
|
||
|
_tiebreaker_map = {
|
||
|
"min": CRankOptionsTiebreaker_Min,
|
||
|
"max": CRankOptionsTiebreaker_Max,
|
||
|
"first": CRankOptionsTiebreaker_First,
|
||
|
"dense": CRankOptionsTiebreaker_Dense,
|
||
|
}
|
||
|
|
||
|
def _set_options(self, sort_keys, null_placement, tiebreaker):
|
||
|
try:
|
||
|
self.wrapped.reset(
|
||
|
new CRankOptions(unwrap_sort_keys(sort_keys),
|
||
|
unwrap_null_placement(null_placement),
|
||
|
self._tiebreaker_map[tiebreaker])
|
||
|
)
|
||
|
except KeyError:
|
||
|
_raise_invalid_function_option(tiebreaker, "tiebreaker")
|
||
|
|
||
|
|
||
|
class RankOptions(_RankOptions):
|
||
|
"""
|
||
|
Options for the `rank` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sort_keys : sequence of (name, order) tuples or str, default "ascending"
|
||
|
Names of field/column keys to sort the input on,
|
||
|
along with the order each field/column is sorted in.
|
||
|
Accepted values for `order` are "ascending", "descending".
|
||
|
The field name can be a string column name or expression.
|
||
|
Alternatively, one can simply pass "ascending" or "descending" as a string
|
||
|
if the input is array-like.
|
||
|
null_placement : str, default "at_end"
|
||
|
Where nulls in input should be sorted.
|
||
|
Accepted values are "at_start", "at_end".
|
||
|
tiebreaker : str, default "first"
|
||
|
Configure how ties between equal values are handled.
|
||
|
Accepted values are:
|
||
|
|
||
|
- "min": Ties get the smallest possible rank in sorted order.
|
||
|
- "max": Ties get the largest possible rank in sorted order.
|
||
|
- "first": Ranks are assigned in order of when ties appear in the
|
||
|
input. This ensures the ranks are a stable permutation
|
||
|
of the input.
|
||
|
- "dense": The ranks span a dense [1, M] interval where M is the
|
||
|
number of distinct values in the input.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, sort_keys="ascending", *, null_placement="at_end", tiebreaker="first"):
|
||
|
self._set_options(sort_keys, null_placement, tiebreaker)
|
||
|
|
||
|
|
||
|
cdef class _RankQuantileOptions(FunctionOptions):
|
||
|
|
||
|
def _set_options(self, sort_keys, null_placement):
|
||
|
self.wrapped.reset(
|
||
|
new CRankQuantileOptions(unwrap_sort_keys(sort_keys),
|
||
|
unwrap_null_placement(null_placement))
|
||
|
)
|
||
|
|
||
|
|
||
|
class RankQuantileOptions(_RankQuantileOptions):
|
||
|
"""
|
||
|
Options for the `rank_quantile` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sort_keys : sequence of (name, order) tuples or str, default "ascending"
|
||
|
Names of field/column keys to sort the input on,
|
||
|
along with the order each field/column is sorted in.
|
||
|
Accepted values for `order` are "ascending", "descending".
|
||
|
The field name can be a string column name or expression.
|
||
|
Alternatively, one can simply pass "ascending" or "descending" as a string
|
||
|
if the input is array-like.
|
||
|
null_placement : str, default "at_end"
|
||
|
Where nulls in input should be sorted.
|
||
|
Accepted values are "at_start", "at_end".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, sort_keys="ascending", *, null_placement="at_end"):
|
||
|
self._set_options(sort_keys, null_placement)
|
||
|
|
||
|
|
||
|
cdef class _PivotWiderOptions(FunctionOptions):
|
||
|
|
||
|
def _set_options(self, key_names, unexpected_key_behavior):
|
||
|
cdef:
|
||
|
vector[c_string] c_key_names
|
||
|
PivotWiderUnexpectedKeyBehavior c_unexpected_key_behavior
|
||
|
if unexpected_key_behavior == "ignore":
|
||
|
c_unexpected_key_behavior = PivotWiderUnexpectedKeyBehavior_Ignore
|
||
|
elif unexpected_key_behavior == "raise":
|
||
|
c_unexpected_key_behavior = PivotWiderUnexpectedKeyBehavior_Raise
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Unsupported value for unexpected_key_behavior: "
|
||
|
f"expected 'ignore' or 'raise', got {unexpected_key_behavior!r}")
|
||
|
|
||
|
for k in key_names:
|
||
|
c_key_names.push_back(tobytes(k))
|
||
|
|
||
|
self.wrapped.reset(
|
||
|
new CPivotWiderOptions(move(c_key_names), c_unexpected_key_behavior)
|
||
|
)
|
||
|
|
||
|
|
||
|
class PivotWiderOptions(_PivotWiderOptions):
|
||
|
"""
|
||
|
Options for the `pivot_wider` function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key_names : sequence of str
|
||
|
The pivot key names expected in the pivot key column.
|
||
|
For each entry in `key_names`, a column with the same name is emitted
|
||
|
in the struct output.
|
||
|
unexpected_key_behavior : str, default "ignore"
|
||
|
The behavior when pivot keys not in `key_names` are encountered.
|
||
|
Accepted values are "ignore", "raise".
|
||
|
If "ignore", unexpected keys are silently ignored.
|
||
|
If "raise", unexpected keys raise a KeyError.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, key_names, *, unexpected_key_behavior="ignore"):
|
||
|
self._set_options(key_names, unexpected_key_behavior)
|
||
|
|
||
|
|
||
|
cdef class Expression(_Weakrefable):
|
||
|
"""
|
||
|
A logical expression to be evaluated against some input.
|
||
|
|
||
|
To create an expression:
|
||
|
|
||
|
- Use the factory function ``pyarrow.compute.scalar()`` to create a
|
||
|
scalar (not necessary when combined, see example below).
|
||
|
- Use the factory function ``pyarrow.compute.field()`` to reference
|
||
|
a field (column in table).
|
||
|
- Compare fields and scalars with ``<``, ``<=``, ``==``, ``>=``, ``>``.
|
||
|
- Combine expressions using python operators ``&`` (logical and),
|
||
|
``|`` (logical or) and ``~`` (logical not).
|
||
|
Note: python keywords ``and``, ``or`` and ``not`` cannot be used
|
||
|
to combine expressions.
|
||
|
- Create expression predicates using Expression methods such as
|
||
|
``pyarrow.compute.Expression.isin()``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> import pyarrow.compute as pc
|
||
|
>>> (pc.field("a") < pc.scalar(3)) | (pc.field("b") > 7)
|
||
|
<pyarrow.compute.Expression ((a < 3) or (b > 7))>
|
||
|
>>> pc.field('a') != 3
|
||
|
<pyarrow.compute.Expression (a != 3)>
|
||
|
>>> pc.field('a').isin([1, 2, 3])
|
||
|
<pyarrow.compute.Expression is_in(a, {value_set=int64:[
|
||
|
1,
|
||
|
2,
|
||
|
3
|
||
|
], null_matching_behavior=MATCH})>
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
msg = 'Expression is an abstract class thus cannot be initialized.'
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
cdef void init(self, const CExpression& sp):
|
||
|
self.expr = sp
|
||
|
|
||
|
@staticmethod
|
||
|
cdef wrap(const CExpression& sp):
|
||
|
cdef Expression self = Expression.__new__(Expression)
|
||
|
self.init(sp)
|
||
|
return self
|
||
|
|
||
|
cdef inline CExpression unwrap(self):
|
||
|
return self.expr
|
||
|
|
||
|
def equals(self, Expression other):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
other : pyarrow.dataset.Expression
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
"""
|
||
|
return self.expr.Equals(other.unwrap())
|
||
|
|
||
|
def __str__(self):
|
||
|
return frombytes(self.expr.ToString())
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"<pyarrow.compute.{self.__class__.__name__} {self}>"
|
||
|
|
||
|
@staticmethod
|
||
|
def from_substrait(object message not None):
|
||
|
"""
|
||
|
Deserialize an expression from Substrait
|
||
|
|
||
|
The serialized message must be an ExtendedExpression message that has
|
||
|
only a single expression. The name of the expression and the schema
|
||
|
the expression was bound to will be ignored. Use
|
||
|
pyarrow.substrait.deserialize_expressions if this information is needed
|
||
|
or if the message might contain multiple expressions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
message : bytes or Buffer or a protobuf Message
|
||
|
The Substrait message to deserialize
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Expression
|
||
|
The deserialized expression
|
||
|
"""
|
||
|
expressions = _pas().BoundExpressions.from_substrait(message).expressions
|
||
|
if len(expressions) == 0:
|
||
|
raise ValueError("Substrait message did not contain any expressions")
|
||
|
if len(expressions) > 1:
|
||
|
raise ValueError(
|
||
|
"Substrait message contained multiple expressions. Use pyarrow.substrait.deserialize_expressions instead")
|
||
|
return next(iter(expressions.values()))
|
||
|
|
||
|
def to_substrait(self, Schema schema not None, c_bool allow_arrow_extensions=False):
|
||
|
"""
|
||
|
Serialize the expression using Substrait
|
||
|
|
||
|
The expression will be serialized as an ExtendedExpression message that has a
|
||
|
single expression named "expression"
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
schema : Schema
|
||
|
The input schema the expression will be bound to
|
||
|
allow_arrow_extensions : bool, default False
|
||
|
If False then only functions that are part of the core Substrait function
|
||
|
definitions will be allowed. Set this to True to allow pyarrow-specific functions
|
||
|
but the result may not be accepted by other compute libraries.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Buffer
|
||
|
A buffer containing the serialized Protobuf plan.
|
||
|
"""
|
||
|
return _pas().serialize_expressions([self], ["expression"], schema, allow_arrow_extensions=allow_arrow_extensions)
|
||
|
|
||
|
@staticmethod
|
||
|
def _deserialize(Buffer buffer not None):
|
||
|
return Expression.wrap(GetResultValue(CDeserializeExpression(
|
||
|
pyarrow_unwrap_buffer(buffer))))
|
||
|
|
||
|
def __reduce__(self):
|
||
|
buffer = pyarrow_wrap_buffer(GetResultValue(
|
||
|
CSerializeExpression(self.expr)))
|
||
|
return Expression._deserialize, (buffer,)
|
||
|
|
||
|
@staticmethod
|
||
|
cdef Expression _expr_or_scalar(object expr):
|
||
|
if isinstance(expr, Expression):
|
||
|
return (<Expression> expr)
|
||
|
return (<Expression> Expression._scalar(expr))
|
||
|
|
||
|
@staticmethod
|
||
|
def _call(str function_name, list arguments, FunctionOptions options=None):
|
||
|
cdef:
|
||
|
vector[CExpression] c_arguments
|
||
|
shared_ptr[CFunctionOptions] c_options
|
||
|
|
||
|
for argument in arguments:
|
||
|
if not isinstance(argument, Expression):
|
||
|
# Attempt to help convert this to an expression
|
||
|
try:
|
||
|
argument = Expression._scalar(argument)
|
||
|
except ArrowInvalid:
|
||
|
raise TypeError(
|
||
|
"only other expressions allowed as arguments")
|
||
|
c_arguments.push_back((<Expression> argument).expr)
|
||
|
|
||
|
if options is not None:
|
||
|
c_options = options.unwrap()
|
||
|
|
||
|
return Expression.wrap(CMakeCallExpression(
|
||
|
tobytes(function_name), move(c_arguments), c_options))
|
||
|
|
||
|
def __richcmp__(self, other, int op):
|
||
|
other = Expression._expr_or_scalar(other)
|
||
|
return Expression._call({
|
||
|
Py_EQ: "equal",
|
||
|
Py_NE: "not_equal",
|
||
|
Py_GT: "greater",
|
||
|
Py_GE: "greater_equal",
|
||
|
Py_LT: "less",
|
||
|
Py_LE: "less_equal",
|
||
|
}[op], [self, other])
|
||
|
|
||
|
def __bool__(self):
|
||
|
raise ValueError(
|
||
|
"An Expression cannot be evaluated to python True or False. "
|
||
|
"If you are using the 'and', 'or' or 'not' operators, use '&', "
|
||
|
"'|' or '~' instead."
|
||
|
)
|
||
|
|
||
|
def __invert__(self):
|
||
|
return Expression._call("invert", [self])
|
||
|
|
||
|
def __and__(Expression self, other):
|
||
|
other = Expression._expr_or_scalar(other)
|
||
|
return Expression._call("and_kleene", [self, other])
|
||
|
|
||
|
def __or__(Expression self, other):
|
||
|
other = Expression._expr_or_scalar(other)
|
||
|
return Expression._call("or_kleene", [self, other])
|
||
|
|
||
|
def __add__(Expression self, other):
|
||
|
other = Expression._expr_or_scalar(other)
|
||
|
return Expression._call("add_checked", [self, other])
|
||
|
|
||
|
def __mul__(Expression self, other):
|
||
|
other = Expression._expr_or_scalar(other)
|
||
|
return Expression._call("multiply_checked", [self, other])
|
||
|
|
||
|
def __sub__(Expression self, other):
|
||
|
other = Expression._expr_or_scalar(other)
|
||
|
return Expression._call("subtract_checked", [self, other])
|
||
|
|
||
|
def __truediv__(Expression self, other):
|
||
|
other = Expression._expr_or_scalar(other)
|
||
|
return Expression._call("divide_checked", [self, other])
|
||
|
|
||
|
def is_valid(self):
|
||
|
"""
|
||
|
Check whether the expression is not-null (valid).
|
||
|
|
||
|
This creates a new expression equivalent to calling the
|
||
|
`is_valid` compute function on this expression.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_valid : Expression
|
||
|
"""
|
||
|
return Expression._call("is_valid", [self])
|
||
|
|
||
|
def is_null(self, bint nan_is_null=False):
|
||
|
"""
|
||
|
Check whether the expression is null.
|
||
|
|
||
|
This creates a new expression equivalent to calling the
|
||
|
`is_null` compute function on this expression.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nan_is_null : boolean, default False
|
||
|
Whether floating-point NaNs are considered null.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_null : Expression
|
||
|
"""
|
||
|
options = NullOptions(nan_is_null=nan_is_null)
|
||
|
return Expression._call("is_null", [self], options)
|
||
|
|
||
|
def is_nan(self):
|
||
|
"""
|
||
|
Check whether the expression is NaN.
|
||
|
|
||
|
This creates a new expression equivalent to calling the
|
||
|
`is_nan` compute function on this expression.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_nan : Expression
|
||
|
"""
|
||
|
return Expression._call("is_nan", [self])
|
||
|
|
||
|
def cast(self, type=None, safe=None, options=None):
|
||
|
"""
|
||
|
Explicitly set or change the expression's data type.
|
||
|
|
||
|
This creates a new expression equivalent to calling the
|
||
|
`cast` compute function on this expression.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
type : DataType, default None
|
||
|
Type to cast array to.
|
||
|
safe : boolean, default True
|
||
|
Whether to check for conversion errors such as overflow.
|
||
|
options : CastOptions, default None
|
||
|
Additional checks pass by CastOptions
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cast : Expression
|
||
|
"""
|
||
|
safe_vars_passed = (safe is not None) or (type is not None)
|
||
|
|
||
|
if safe_vars_passed and (options is not None):
|
||
|
raise ValueError("Must either pass values for 'type' and 'safe' or pass a "
|
||
|
"value for 'options'")
|
||
|
|
||
|
if options is None:
|
||
|
type = ensure_type(type, allow_none=False)
|
||
|
if safe is False:
|
||
|
options = CastOptions.unsafe(type)
|
||
|
else:
|
||
|
options = CastOptions.safe(type)
|
||
|
return Expression._call("cast", [self], options)
|
||
|
|
||
|
def isin(self, values):
|
||
|
"""
|
||
|
Check whether the expression is contained in values.
|
||
|
|
||
|
This creates a new expression equivalent to calling the
|
||
|
`is_in` compute function on this expression.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : Array or iterable
|
||
|
The values to check for.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
isin : Expression
|
||
|
A new expression that, when evaluated, checks whether
|
||
|
this expression's value is contained in `values`.
|
||
|
"""
|
||
|
if not isinstance(values, Array):
|
||
|
values = lib.array(values)
|
||
|
|
||
|
options = SetLookupOptions(values)
|
||
|
return Expression._call("is_in", [self], options)
|
||
|
|
||
|
@staticmethod
|
||
|
def _field(name_or_idx not None):
|
||
|
cdef:
|
||
|
CFieldRef c_field
|
||
|
|
||
|
if isinstance(name_or_idx, int):
|
||
|
return Expression.wrap(CMakeFieldExpressionByIndex(name_or_idx))
|
||
|
else:
|
||
|
c_field = CFieldRef(<c_string> tobytes(name_or_idx))
|
||
|
return Expression.wrap(CMakeFieldExpression(c_field))
|
||
|
|
||
|
@staticmethod
|
||
|
def _nested_field(tuple names not None):
|
||
|
cdef:
|
||
|
vector[CFieldRef] nested
|
||
|
|
||
|
if len(names) == 0:
|
||
|
raise ValueError("nested field reference should be non-empty")
|
||
|
nested.reserve(len(names))
|
||
|
for name in names:
|
||
|
if isinstance(name, int):
|
||
|
nested.push_back(CFieldRef(<int>name))
|
||
|
else:
|
||
|
nested.push_back(CFieldRef(<c_string> tobytes(name)))
|
||
|
return Expression.wrap(CMakeFieldExpression(CFieldRef(move(nested))))
|
||
|
|
||
|
@staticmethod
|
||
|
def _scalar(value):
|
||
|
cdef:
|
||
|
Scalar scalar
|
||
|
|
||
|
if isinstance(value, Scalar):
|
||
|
scalar = value
|
||
|
else:
|
||
|
scalar = lib.scalar(value)
|
||
|
|
||
|
return Expression.wrap(CMakeScalarExpression(scalar.unwrap()))
|
||
|
|
||
|
|
||
|
_deserialize = Expression._deserialize
|
||
|
cdef CExpression _true = CMakeScalarExpression(
|
||
|
<shared_ptr[CScalar]> make_shared[CBooleanScalar](True)
|
||
|
)
|
||
|
|
||
|
|
||
|
cdef CExpression _bind(Expression filter, Schema schema) except *:
|
||
|
assert schema is not None
|
||
|
|
||
|
if filter is None:
|
||
|
return _true
|
||
|
|
||
|
return GetResultValue(filter.unwrap().Bind(
|
||
|
deref(pyarrow_unwrap_schema(schema).get())))
|
||
|
|
||
|
|
||
|
cdef class UdfContext:
|
||
|
"""
|
||
|
Per-invocation function context/state.
|
||
|
|
||
|
This object will always be the first argument to a user-defined
|
||
|
function. It should not be used outside of a call to the function.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
raise TypeError(f"Do not call {self.__class__.__name__}'s constructor directly")
|
||
|
|
||
|
cdef void init(self, const CUdfContext &c_context):
|
||
|
self.c_context = c_context
|
||
|
|
||
|
@property
|
||
|
def batch_length(self):
|
||
|
"""
|
||
|
The common length of all input arguments (int).
|
||
|
|
||
|
In the case that all arguments are scalars, this value
|
||
|
is used to pass the "actual length" of the arguments,
|
||
|
e.g. because the scalar values are encoding a column
|
||
|
with a constant value.
|
||
|
"""
|
||
|
return self.c_context.batch_length
|
||
|
|
||
|
@property
|
||
|
def memory_pool(self):
|
||
|
"""
|
||
|
A memory pool for allocations (:class:`MemoryPool`).
|
||
|
|
||
|
This is the memory pool supplied by the user when they invoked
|
||
|
the function and it should be used in any calls to arrow that the
|
||
|
UDF makes if that call accepts a memory_pool.
|
||
|
"""
|
||
|
return box_memory_pool(self.c_context.pool)
|
||
|
|
||
|
|
||
|
cdef inline CFunctionDoc _make_function_doc(dict func_doc) except *:
|
||
|
"""
|
||
|
Helper function to generate the FunctionDoc
|
||
|
This function accepts a dictionary and expects the
|
||
|
summary(str), description(str) and arg_names(List[str]) keys.
|
||
|
"""
|
||
|
cdef:
|
||
|
CFunctionDoc f_doc
|
||
|
vector[c_string] c_arg_names
|
||
|
|
||
|
f_doc.summary = tobytes(func_doc["summary"])
|
||
|
f_doc.description = tobytes(func_doc["description"])
|
||
|
for arg_name in func_doc["arg_names"]:
|
||
|
c_arg_names.push_back(tobytes(arg_name))
|
||
|
f_doc.arg_names = c_arg_names
|
||
|
# UDFOptions integration:
|
||
|
# TODO: https://issues.apache.org/jira/browse/ARROW-16041
|
||
|
f_doc.options_class = b""
|
||
|
f_doc.options_required = False
|
||
|
return f_doc
|
||
|
|
||
|
|
||
|
cdef object box_udf_context(const CUdfContext& c_context):
|
||
|
cdef UdfContext context = UdfContext.__new__(UdfContext)
|
||
|
context.init(c_context)
|
||
|
return context
|
||
|
|
||
|
|
||
|
cdef _udf_callback(user_function, const CUdfContext& c_context, inputs):
|
||
|
"""
|
||
|
Helper callback function used to wrap the UdfContext from Python to C++
|
||
|
execution.
|
||
|
"""
|
||
|
context = box_udf_context(c_context)
|
||
|
return user_function(context, *inputs)
|
||
|
|
||
|
|
||
|
def _get_udf_context(memory_pool, batch_length):
|
||
|
cdef CUdfContext c_context
|
||
|
c_context.pool = maybe_unbox_memory_pool(memory_pool)
|
||
|
c_context.batch_length = batch_length
|
||
|
context = box_udf_context(c_context)
|
||
|
return context
|
||
|
|
||
|
|
||
|
ctypedef CStatus (*CRegisterUdf)(PyObject* function, function[CallbackUdf] wrapper,
|
||
|
const CUdfOptions& options, CFunctionRegistry* registry)
|
||
|
|
||
|
cdef class RegisterUdf(_Weakrefable):
|
||
|
cdef CRegisterUdf register_func
|
||
|
|
||
|
cdef void init(self, const CRegisterUdf register_func):
|
||
|
self.register_func = register_func
|
||
|
|
||
|
|
||
|
cdef get_register_scalar_function():
|
||
|
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
|
||
|
reg.register_func = RegisterScalarFunction
|
||
|
return reg
|
||
|
|
||
|
|
||
|
cdef get_register_tabular_function():
|
||
|
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
|
||
|
reg.register_func = RegisterTabularFunction
|
||
|
return reg
|
||
|
|
||
|
|
||
|
cdef get_register_aggregate_function():
|
||
|
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
|
||
|
reg.register_func = RegisterAggregateFunction
|
||
|
return reg
|
||
|
|
||
|
cdef get_register_vector_function():
|
||
|
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
|
||
|
reg.register_func = RegisterVectorFunction
|
||
|
return reg
|
||
|
|
||
|
|
||
|
def register_scalar_function(func, function_name, function_doc, in_types, out_type,
|
||
|
func_registry=None):
|
||
|
"""
|
||
|
Register a user-defined scalar function.
|
||
|
|
||
|
This API is EXPERIMENTAL.
|
||
|
|
||
|
A scalar function is a function that executes elementwise
|
||
|
operations on arrays or scalars, i.e. a scalar function must
|
||
|
be computed row-by-row with no state where each output row
|
||
|
is computed only from its corresponding input row.
|
||
|
In other words, all argument arrays have the same length,
|
||
|
and the output array is of the same length as the arguments.
|
||
|
Scalar functions are the only functions allowed in query engine
|
||
|
expressions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
A callable implementing the user-defined function.
|
||
|
The first argument is the context argument of type
|
||
|
UdfContext.
|
||
|
Then, it must take arguments equal to the number of
|
||
|
in_types defined. It must return an Array or Scalar
|
||
|
matching the out_type. It must return a Scalar if
|
||
|
all arguments are scalar, else it must return an Array.
|
||
|
|
||
|
To define a varargs function, pass a callable that takes
|
||
|
``*args``. The last in_type will be the type of all varargs
|
||
|
arguments.
|
||
|
function_name : str
|
||
|
Name of the function. There should only be one function
|
||
|
registered with this name in the function registry.
|
||
|
function_doc : dict
|
||
|
A dictionary object with keys "summary" (str),
|
||
|
and "description" (str).
|
||
|
in_types : Dict[str, DataType]
|
||
|
A dictionary mapping function argument names to
|
||
|
their respective DataType.
|
||
|
The argument names will be used to generate
|
||
|
documentation for the function. The number of
|
||
|
arguments specified here determines the function
|
||
|
arity.
|
||
|
out_type : DataType
|
||
|
Output type of the function.
|
||
|
func_registry : FunctionRegistry
|
||
|
Optional function registry to use instead of the default global one.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pyarrow as pa
|
||
|
>>> import pyarrow.compute as pc
|
||
|
>>>
|
||
|
>>> func_doc = {}
|
||
|
>>> func_doc["summary"] = "simple udf"
|
||
|
>>> func_doc["description"] = "add a constant to a scalar"
|
||
|
>>>
|
||
|
>>> def add_constant(ctx, array):
|
||
|
... return pc.add(array, 1, memory_pool=ctx.memory_pool)
|
||
|
>>>
|
||
|
>>> func_name = "py_add_func"
|
||
|
>>> in_types = {"array": pa.int64()}
|
||
|
>>> out_type = pa.int64()
|
||
|
>>> pc.register_scalar_function(add_constant, func_name, func_doc,
|
||
|
... in_types, out_type)
|
||
|
>>>
|
||
|
>>> func = pc.get_function(func_name)
|
||
|
>>> func.name
|
||
|
'py_add_func'
|
||
|
>>> answer = pc.call_function(func_name, [pa.array([20])])
|
||
|
>>> answer
|
||
|
<pyarrow.lib.Int64Array object at ...>
|
||
|
[
|
||
|
21
|
||
|
]
|
||
|
"""
|
||
|
return _register_user_defined_function(get_register_scalar_function(),
|
||
|
func, function_name, function_doc, in_types,
|
||
|
out_type, func_registry)
|
||
|
|
||
|
|
||
|
def register_vector_function(func, function_name, function_doc, in_types, out_type,
|
||
|
func_registry=None):
|
||
|
"""
|
||
|
Register a user-defined vector function.
|
||
|
|
||
|
This API is EXPERIMENTAL.
|
||
|
|
||
|
A vector function is a function that executes vector
|
||
|
operations on arrays. Vector function is often used
|
||
|
when compute doesn't fit other more specific types of
|
||
|
functions (e.g., scalar and aggregate).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
A callable implementing the user-defined function.
|
||
|
The first argument is the context argument of type
|
||
|
UdfContext.
|
||
|
Then, it must take arguments equal to the number of
|
||
|
in_types defined. It must return an Array or Scalar
|
||
|
matching the out_type. It must return a Scalar if
|
||
|
all arguments are scalar, else it must return an Array.
|
||
|
|
||
|
To define a varargs function, pass a callable that takes
|
||
|
*args. The last in_type will be the type of all varargs
|
||
|
arguments.
|
||
|
function_name : str
|
||
|
Name of the function. There should only be one function
|
||
|
registered with this name in the function registry.
|
||
|
function_doc : dict
|
||
|
A dictionary object with keys "summary" (str),
|
||
|
and "description" (str).
|
||
|
in_types : Dict[str, DataType]
|
||
|
A dictionary mapping function argument names to
|
||
|
their respective DataType.
|
||
|
The argument names will be used to generate
|
||
|
documentation for the function. The number of
|
||
|
arguments specified here determines the function
|
||
|
arity.
|
||
|
out_type : DataType
|
||
|
Output type of the function.
|
||
|
func_registry : FunctionRegistry
|
||
|
Optional function registry to use instead of the default global one.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pyarrow as pa
|
||
|
>>> import pyarrow.compute as pc
|
||
|
>>>
|
||
|
>>> func_doc = {}
|
||
|
>>> func_doc["summary"] = "percent rank"
|
||
|
>>> func_doc["description"] = "compute percent rank"
|
||
|
>>>
|
||
|
>>> def list_flatten_udf(ctx, x):
|
||
|
... return pc.list_flatten(x)
|
||
|
>>>
|
||
|
>>> func_name = "list_flatten_udf"
|
||
|
>>> in_types = {"array": pa.list_(pa.int64())}
|
||
|
>>> out_type = pa.int64()
|
||
|
>>> pc.register_vector_function(list_flatten_udf, func_name, func_doc,
|
||
|
... in_types, out_type)
|
||
|
>>>
|
||
|
>>> answer = pc.call_function(func_name, [pa.array([[1, 2], [3, 4]])])
|
||
|
>>> answer
|
||
|
<pyarrow.lib.Int64Array object at ...>
|
||
|
[
|
||
|
1,
|
||
|
2,
|
||
|
3,
|
||
|
4
|
||
|
]
|
||
|
"""
|
||
|
return _register_user_defined_function(get_register_vector_function(),
|
||
|
func, function_name, function_doc, in_types,
|
||
|
out_type, func_registry)
|
||
|
|
||
|
|
||
|
def register_aggregate_function(func, function_name, function_doc, in_types, out_type,
|
||
|
func_registry=None):
|
||
|
"""
|
||
|
Register a user-defined non-decomposable aggregate function.
|
||
|
|
||
|
This API is EXPERIMENTAL.
|
||
|
|
||
|
A non-decomposable aggregation function is a function that executes
|
||
|
aggregate operations on the whole data that it is aggregating.
|
||
|
In other words, non-decomposable aggregate function cannot be
|
||
|
split into consume/merge/finalize steps.
|
||
|
|
||
|
This is often used with ordered or segmented aggregation where groups
|
||
|
can be emit before accumulating all of the input data.
|
||
|
|
||
|
Note that currently the size of any input column cannot exceed 2 GB
|
||
|
for a single segment (all groups combined).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
A callable implementing the user-defined function.
|
||
|
The first argument is the context argument of type
|
||
|
UdfContext.
|
||
|
Then, it must take arguments equal to the number of
|
||
|
in_types defined. It must return a Scalar matching the
|
||
|
out_type.
|
||
|
To define a varargs function, pass a callable that takes
|
||
|
*args. The in_type needs to match in type of inputs when
|
||
|
the function gets called.
|
||
|
function_name : str
|
||
|
Name of the function. This name must be unique, i.e.,
|
||
|
there should only be one function registered with
|
||
|
this name in the function registry.
|
||
|
function_doc : dict
|
||
|
A dictionary object with keys "summary" (str),
|
||
|
and "description" (str).
|
||
|
in_types : Dict[str, DataType]
|
||
|
A dictionary mapping function argument names to
|
||
|
their respective DataType.
|
||
|
The argument names will be used to generate
|
||
|
documentation for the function. The number of
|
||
|
arguments specified here determines the function
|
||
|
arity.
|
||
|
out_type : DataType
|
||
|
Output type of the function.
|
||
|
func_registry : FunctionRegistry
|
||
|
Optional function registry to use instead of the default global one.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import pyarrow as pa
|
||
|
>>> import pyarrow.compute as pc
|
||
|
>>>
|
||
|
>>> func_doc = {}
|
||
|
>>> func_doc["summary"] = "simple median udf"
|
||
|
>>> func_doc["description"] = "compute median"
|
||
|
>>>
|
||
|
>>> def compute_median(ctx, array):
|
||
|
... return pa.scalar(np.median(array))
|
||
|
>>>
|
||
|
>>> func_name = "py_compute_median"
|
||
|
>>> in_types = {"array": pa.int64()}
|
||
|
>>> out_type = pa.float64()
|
||
|
>>> pc.register_aggregate_function(compute_median, func_name, func_doc,
|
||
|
... in_types, out_type)
|
||
|
>>>
|
||
|
>>> func = pc.get_function(func_name)
|
||
|
>>> func.name
|
||
|
'py_compute_median'
|
||
|
>>> answer = pc.call_function(func_name, [pa.array([20, 40])])
|
||
|
>>> answer
|
||
|
<pyarrow.DoubleScalar: 30.0>
|
||
|
>>> table = pa.table([pa.array([1, 1, 2, 2]), pa.array([10, 20, 30, 40])], names=['k', 'v'])
|
||
|
>>> result = table.group_by('k').aggregate([('v', 'py_compute_median')])
|
||
|
>>> result
|
||
|
pyarrow.Table
|
||
|
k: int64
|
||
|
v_py_compute_median: double
|
||
|
----
|
||
|
k: [[1,2]]
|
||
|
v_py_compute_median: [[15,35]]
|
||
|
"""
|
||
|
return _register_user_defined_function(get_register_aggregate_function(),
|
||
|
func, function_name, function_doc, in_types,
|
||
|
out_type, func_registry)
|
||
|
|
||
|
|
||
|
def register_tabular_function(func, function_name, function_doc, in_types, out_type,
|
||
|
func_registry=None):
|
||
|
"""
|
||
|
Register a user-defined tabular function.
|
||
|
|
||
|
This API is EXPERIMENTAL.
|
||
|
|
||
|
A tabular function is one accepting a context argument of type
|
||
|
UdfContext and returning a generator of struct arrays.
|
||
|
The in_types argument must be empty and the out_type argument
|
||
|
specifies a schema. Each struct array must have field types
|
||
|
corresponding to the schema.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
A callable implementing the user-defined function.
|
||
|
The only argument is the context argument of type
|
||
|
UdfContext. It must return a callable that
|
||
|
returns on each invocation a StructArray matching
|
||
|
the out_type, where an empty array indicates end.
|
||
|
function_name : str
|
||
|
Name of the function. There should only be one function
|
||
|
registered with this name in the function registry.
|
||
|
function_doc : dict
|
||
|
A dictionary object with keys "summary" (str),
|
||
|
and "description" (str).
|
||
|
in_types : Dict[str, DataType]
|
||
|
Must be an empty dictionary (reserved for future use).
|
||
|
out_type : Union[Schema, DataType]
|
||
|
Schema of the function's output, or a corresponding flat struct type.
|
||
|
func_registry : FunctionRegistry
|
||
|
Optional function registry to use instead of the default global one.
|
||
|
"""
|
||
|
cdef:
|
||
|
shared_ptr[CSchema] c_schema
|
||
|
shared_ptr[CDataType] c_type
|
||
|
|
||
|
if isinstance(out_type, Schema):
|
||
|
c_schema = pyarrow_unwrap_schema(out_type)
|
||
|
with nogil:
|
||
|
c_type = <shared_ptr[CDataType]>make_shared[CStructType](deref(c_schema).fields())
|
||
|
out_type = pyarrow_wrap_data_type(c_type)
|
||
|
return _register_user_defined_function(get_register_tabular_function(),
|
||
|
func, function_name, function_doc, in_types,
|
||
|
out_type, func_registry)
|
||
|
|
||
|
|
||
|
def _register_user_defined_function(register_func, func, function_name, function_doc, in_types,
|
||
|
out_type, func_registry=None):
|
||
|
"""
|
||
|
Register a user-defined function.
|
||
|
|
||
|
This method itself doesn't care about the type of the UDF
|
||
|
(i.e., scalar vs tabular vs aggregate)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
register_func: object
|
||
|
An object holding a CRegisterUdf in a "register_func" attribute.
|
||
|
func : callable
|
||
|
A callable implementing the user-defined function.
|
||
|
function_name : str
|
||
|
Name of the function. There should only be one function
|
||
|
registered with this name in the function registry.
|
||
|
function_doc : dict
|
||
|
A dictionary object with keys "summary" (str),
|
||
|
and "description" (str).
|
||
|
in_types : Dict[str, DataType]
|
||
|
A dictionary mapping function argument names to
|
||
|
their respective DataType.
|
||
|
out_type : DataType
|
||
|
Output type of the function.
|
||
|
func_registry : FunctionRegistry
|
||
|
Optional function registry to use instead of the default global one.
|
||
|
"""
|
||
|
cdef:
|
||
|
CRegisterUdf c_register_func
|
||
|
c_string c_func_name
|
||
|
CArity c_arity
|
||
|
CFunctionDoc c_func_doc
|
||
|
vector[shared_ptr[CDataType]] c_in_types
|
||
|
PyObject* c_function
|
||
|
shared_ptr[CDataType] c_out_type
|
||
|
CUdfOptions c_options
|
||
|
CFunctionRegistry* c_func_registry
|
||
|
|
||
|
if callable(func):
|
||
|
c_function = <PyObject*>func
|
||
|
else:
|
||
|
raise TypeError("func must be a callable")
|
||
|
|
||
|
c_func_name = tobytes(function_name)
|
||
|
|
||
|
func_spec = inspect.getfullargspec(func)
|
||
|
num_args = -1
|
||
|
if isinstance(in_types, dict):
|
||
|
for in_type in in_types.values():
|
||
|
c_in_types.push_back(
|
||
|
pyarrow_unwrap_data_type(ensure_type(in_type)))
|
||
|
function_doc["arg_names"] = in_types.keys()
|
||
|
num_args = len(in_types)
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
"in_types must be a dictionary of DataType")
|
||
|
|
||
|
c_arity = CArity(<int> num_args, func_spec.varargs)
|
||
|
|
||
|
if "summary" not in function_doc:
|
||
|
raise ValueError("Function doc must contain a summary")
|
||
|
|
||
|
if "description" not in function_doc:
|
||
|
raise ValueError("Function doc must contain a description")
|
||
|
|
||
|
if "arg_names" not in function_doc:
|
||
|
raise ValueError("Function doc must contain arg_names")
|
||
|
|
||
|
c_func_doc = _make_function_doc(function_doc)
|
||
|
|
||
|
c_out_type = pyarrow_unwrap_data_type(ensure_type(out_type))
|
||
|
|
||
|
c_options.func_name = c_func_name
|
||
|
c_options.arity = c_arity
|
||
|
c_options.func_doc = c_func_doc
|
||
|
c_options.input_types = c_in_types
|
||
|
c_options.output_type = c_out_type
|
||
|
|
||
|
if func_registry is None:
|
||
|
c_func_registry = NULL
|
||
|
else:
|
||
|
c_func_registry = (<FunctionRegistry>func_registry).registry
|
||
|
|
||
|
c_register_func = (<RegisterUdf>register_func).register_func
|
||
|
|
||
|
check_status(c_register_func(c_function,
|
||
|
<function[CallbackUdf]> &_udf_callback,
|
||
|
c_options, c_func_registry))
|
||
|
|
||
|
|
||
|
def call_tabular_function(function_name, args=None, func_registry=None):
|
||
|
"""
|
||
|
Get a record batch iterator from a tabular function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
function_name : str
|
||
|
Name of the function.
|
||
|
args : iterable
|
||
|
The arguments to pass to the function. Accepted types depend
|
||
|
on the specific function. Currently, only an empty args is supported.
|
||
|
func_registry : FunctionRegistry
|
||
|
Optional function registry to use instead of the default global one.
|
||
|
"""
|
||
|
cdef:
|
||
|
c_string c_func_name
|
||
|
vector[CDatum] c_args
|
||
|
CFunctionRegistry* c_func_registry
|
||
|
shared_ptr[CRecordBatchReader] c_reader
|
||
|
RecordBatchReader reader
|
||
|
|
||
|
c_func_name = tobytes(function_name)
|
||
|
if func_registry is None:
|
||
|
c_func_registry = NULL
|
||
|
else:
|
||
|
c_func_registry = (<FunctionRegistry>func_registry).registry
|
||
|
if args is None:
|
||
|
args = []
|
||
|
_pack_compute_args(args, &c_args)
|
||
|
|
||
|
with nogil:
|
||
|
c_reader = GetResultValue(CallTabularFunction(
|
||
|
c_func_name, c_args, c_func_registry))
|
||
|
reader = RecordBatchReader.__new__(RecordBatchReader)
|
||
|
reader.reader = c_reader
|
||
|
return RecordBatchReader.from_batches(pyarrow_wrap_schema(deref(c_reader).schema()), reader)
|