team-10/env/Lib/site-packages/torchvision/models/detection/generalized_rcnn.py

119 lines
4.6 KiB
Python
Raw Permalink Normal View History

2025-08-02 07:34:44 +02:00
"""
Implements the Generalized R-CNN framework
"""
import warnings
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch import nn, Tensor
from ...utils import _log_api_usage_once
class GeneralizedRCNN(nn.Module):
"""
Main class for Generalized R-CNN.
Args:
backbone (nn.Module):
rpn (nn.Module):
roi_heads (nn.Module): takes the features + the proposals from the RPN and computes
detections / masks from it.
transform (nn.Module): performs the data transformation from the inputs to feed into
the model
"""
def __init__(self, backbone: nn.Module, rpn: nn.Module, roi_heads: nn.Module, transform: nn.Module) -> None:
super().__init__()
_log_api_usage_once(self)
self.transform = transform
self.backbone = backbone
self.rpn = rpn
self.roi_heads = roi_heads
# used only on torchscript mode
self._has_warned = False
@torch.jit.unused
def eager_outputs(self, losses, detections):
# type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Union[Dict[str, Tensor], List[Dict[str, Tensor]]]
if self.training:
return losses
return detections
def forward(self, images, targets=None):
# type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
"""
Args:
images (list[Tensor]): images to be processed
targets (list[Dict[str, Tensor]]): ground-truth boxes present in the image (optional)
Returns:
result (list[BoxList] or dict[Tensor]): the output from the model.
During training, it returns a dict[Tensor] which contains the losses.
During testing, it returns list[BoxList] contains additional fields
like `scores`, `labels` and `mask` (for Mask R-CNN models).
"""
if self.training:
if targets is None:
torch._assert(False, "targets should not be none when in training mode")
else:
for target in targets:
boxes = target["boxes"]
if isinstance(boxes, torch.Tensor):
torch._assert(
len(boxes.shape) == 2 and boxes.shape[-1] == 4,
f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
)
else:
torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.")
original_image_sizes: List[Tuple[int, int]] = []
for img in images:
val = img.shape[-2:]
torch._assert(
len(val) == 2,
f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
)
original_image_sizes.append((val[0], val[1]))
images, targets = self.transform(images, targets)
# Check for degenerate boxes
# TODO: Move this to a function
if targets is not None:
for target_idx, target in enumerate(targets):
boxes = target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
# print the first degenerate box
bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
degen_bb: List[float] = boxes[bb_idx].tolist()
torch._assert(
False,
"All bounding boxes should have positive height and width."
f" Found invalid box {degen_bb} for target at index {target_idx}.",
)
features = self.backbone(images.tensors)
if isinstance(features, torch.Tensor):
features = OrderedDict([("0", features)])
proposals, proposal_losses = self.rpn(images, features, targets)
detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) # type: ignore[operator]
losses = {}
losses.update(detector_losses)
losses.update(proposal_losses)
if torch.jit.is_scripting():
if not self._has_warned:
warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")
self._has_warned = True
return losses, detections
else:
return self.eager_outputs(losses, detections)