89 lines
3.4 KiB
Python
89 lines
3.4 KiB
Python
|
import base64
|
||
|
from abc import ABC
|
||
|
from typing import Any, Dict, Optional, Union
|
||
|
|
||
|
from huggingface_hub.hf_api import InferenceProviderMapping
|
||
|
from huggingface_hub.inference._common import RequestParameters, _as_dict
|
||
|
from huggingface_hub.inference._providers._common import (
|
||
|
BaseConversationalTask,
|
||
|
BaseTextGenerationTask,
|
||
|
TaskProviderHelper,
|
||
|
filter_none,
|
||
|
)
|
||
|
|
||
|
|
||
|
_PROVIDER = "together"
|
||
|
_BASE_URL = "https://api.together.xyz"
|
||
|
|
||
|
|
||
|
class TogetherTask(TaskProviderHelper, ABC):
|
||
|
"""Base class for Together API tasks."""
|
||
|
|
||
|
def __init__(self, task: str):
|
||
|
super().__init__(provider=_PROVIDER, base_url=_BASE_URL, task=task)
|
||
|
|
||
|
def _prepare_route(self, mapped_model: str, api_key: str) -> str:
|
||
|
if self.task == "text-to-image":
|
||
|
return "/v1/images/generations"
|
||
|
elif self.task == "conversational":
|
||
|
return "/v1/chat/completions"
|
||
|
elif self.task == "text-generation":
|
||
|
return "/v1/completions"
|
||
|
raise ValueError(f"Unsupported task '{self.task}' for Together API.")
|
||
|
|
||
|
|
||
|
class TogetherTextGenerationTask(BaseTextGenerationTask):
|
||
|
def __init__(self):
|
||
|
super().__init__(provider=_PROVIDER, base_url=_BASE_URL)
|
||
|
|
||
|
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any:
|
||
|
output = _as_dict(response)["choices"][0]
|
||
|
return {
|
||
|
"generated_text": output["text"],
|
||
|
"details": {
|
||
|
"finish_reason": output.get("finish_reason"),
|
||
|
"seed": output.get("seed"),
|
||
|
},
|
||
|
}
|
||
|
|
||
|
|
||
|
class TogetherConversationalTask(BaseConversationalTask):
|
||
|
def __init__(self):
|
||
|
super().__init__(provider=_PROVIDER, base_url=_BASE_URL)
|
||
|
|
||
|
def _prepare_payload_as_dict(
|
||
|
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
|
||
|
) -> Optional[Dict]:
|
||
|
payload = super()._prepare_payload_as_dict(inputs, parameters, provider_mapping_info)
|
||
|
response_format = parameters.get("response_format")
|
||
|
if isinstance(response_format, dict) and response_format.get("type") == "json_schema":
|
||
|
json_schema_details = response_format.get("json_schema")
|
||
|
if isinstance(json_schema_details, dict) and "schema" in json_schema_details:
|
||
|
payload["response_format"] = { # type: ignore [index]
|
||
|
"type": "json_object",
|
||
|
"schema": json_schema_details["schema"],
|
||
|
}
|
||
|
|
||
|
return payload
|
||
|
|
||
|
|
||
|
class TogetherTextToImageTask(TogetherTask):
|
||
|
def __init__(self):
|
||
|
super().__init__("text-to-image")
|
||
|
|
||
|
def _prepare_payload_as_dict(
|
||
|
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
|
||
|
) -> Optional[Dict]:
|
||
|
mapped_model = provider_mapping_info.provider_id
|
||
|
parameters = filter_none(parameters)
|
||
|
if "num_inference_steps" in parameters:
|
||
|
parameters["steps"] = parameters.pop("num_inference_steps")
|
||
|
if "guidance_scale" in parameters:
|
||
|
parameters["guidance"] = parameters.pop("guidance_scale")
|
||
|
|
||
|
return {"prompt": inputs, "response_format": "base64", **parameters, "model": mapped_model}
|
||
|
|
||
|
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any:
|
||
|
response_dict = _as_dict(response)
|
||
|
return base64.b64decode(response_dict["data"][0]["b64_json"])
|