team-10/venv/Lib/site-packages/narwhals/expr.py

2377 lines
96 KiB
Python
Raw Permalink Normal View History

2025-08-02 02:00:33 +02:00
from __future__ import annotations
import math
from collections.abc import Iterable, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Callable
from narwhals._expression_parsing import (
ExprMetadata,
apply_n_ary_operation,
combine_metadata,
extract_compliant,
)
from narwhals._utils import _validate_rolling_arguments, ensure_type, flatten
from narwhals.dtypes import _validate_dtype
from narwhals.exceptions import InvalidOperationError
from narwhals.expr_cat import ExprCatNamespace
from narwhals.expr_dt import ExprDateTimeNamespace
from narwhals.expr_list import ExprListNamespace
from narwhals.expr_name import ExprNameNamespace
from narwhals.expr_str import ExprStringNamespace
from narwhals.expr_struct import ExprStructNamespace
from narwhals.translate import to_native
if TYPE_CHECKING:
from typing import TypeVar
from typing_extensions import Concatenate, ParamSpec, Self, TypeAlias
from narwhals._compliant import CompliantExpr, CompliantNamespace
from narwhals.dtypes import DType
from narwhals.typing import (
ClosedInterval,
FillNullStrategy,
IntoDType,
IntoExpr,
NonNestedLiteral,
NumericLiteral,
RankMethod,
RollingInterpolationMethod,
TemporalLiteral,
)
PS = ParamSpec("PS")
R = TypeVar("R")
_ToCompliant: TypeAlias = Callable[
[CompliantNamespace[Any, Any]], CompliantExpr[Any, Any]
]
class Expr:
def __init__(self, to_compliant_expr: _ToCompliant, metadata: ExprMetadata) -> None:
# callable from CompliantNamespace to CompliantExpr
def func(plx: CompliantNamespace[Any, Any]) -> CompliantExpr[Any, Any]:
result = to_compliant_expr(plx)
result._metadata = self._metadata
return result
self._to_compliant_expr: _ToCompliant = func
self._metadata = metadata
def _with_elementwise(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_elementwise_op())
def _with_aggregation(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_aggregation())
def _with_orderable_aggregation(
self, to_compliant_expr: Callable[[Any], Any]
) -> Self:
return self.__class__(
to_compliant_expr, self._metadata.with_orderable_aggregation()
)
def _with_orderable_window(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_orderable_window())
def _with_window(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_window())
def _with_filtration(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(to_compliant_expr, self._metadata.with_filtration())
def _with_orderable_filtration(self, to_compliant_expr: Callable[[Any], Any]) -> Self:
return self.__class__(
to_compliant_expr, self._metadata.with_orderable_filtration()
)
def __repr__(self) -> str:
return f"Narwhals Expr\nmetadata: {self._metadata}\n"
def _taxicab_norm(self) -> Self:
# This is just used to test out the stable api feature in a realistic-ish way.
# It's not intended to be used.
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).abs().sum()
)
# --- convert ---
def alias(self, name: str) -> Self:
"""Rename the expression.
Arguments:
name: The new name.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2], "b": [4, 5]})
>>> df = nw.from_native(df_native)
>>> df.select((nw.col("b") + 10).alias("c"))
|Narwhals DataFrame|
|------------------|
| c |
| 0 14 |
| 1 15 |
"""
# Don't use `_with_elementwise` so that `_metadata.last_node` is preserved.
return self.__class__(
lambda plx: self._to_compliant_expr(plx).alias(name), self._metadata
)
def pipe(
self,
function: Callable[Concatenate[Self, PS], R],
*args: PS.args,
**kwargs: PS.kwargs,
) -> R:
"""Pipe function call.
Arguments:
function: Function to apply.
args: Positional arguments to pass to function.
kwargs: Keyword arguments to pass to function.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_piped=nw.col("a").pipe(lambda x: x + 1))
|Narwhals DataFrame|
|------------------|
| a a_piped |
| 0 1 2 |
| 1 2 3 |
| 2 3 4 |
| 3 4 5 |
"""
return function(self, *args, **kwargs)
def cast(self, dtype: IntoDType) -> Self:
"""Redefine an object's data type.
Arguments:
dtype: Data type that the object will be cast into.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"foo": [1, 2, 3], "bar": [6.0, 7.0, 8.0]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("foo").cast(nw.Float32), nw.col("bar").cast(nw.UInt8))
|Narwhals DataFrame|
|------------------|
| foo bar |
| 0 1.0 6 |
| 1 2.0 7 |
| 2 3.0 8 |
"""
_validate_dtype(dtype)
return self._with_elementwise(
lambda plx: self._to_compliant_expr(plx).cast(dtype)
)
# --- binary ---
def __eq__(self, other: Self | Any) -> Self: # type: ignore[override]
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x == y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __ne__(self, other: Self | Any) -> Self: # type: ignore[override]
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x != y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __and__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x & y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rand__(self, other: Any) -> Self:
return (self & other).alias("literal") # type: ignore[no-any-return]
def __or__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x | y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __ror__(self, other: Any) -> Self:
return (self | other).alias("literal") # type: ignore[no-any-return]
def __add__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x + y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __radd__(self, other: Any) -> Self:
return (self + other).alias("literal") # type: ignore[no-any-return]
def __sub__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x - y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rsub__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rsub__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __truediv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x / y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rtruediv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rtruediv__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __mul__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x * y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rmul__(self, other: Any) -> Self:
return (self * other).alias("literal") # type: ignore[no-any-return]
def __le__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x <= y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __lt__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x < y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __gt__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x > y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __ge__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x >= y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __pow__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x**y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rpow__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rpow__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __floordiv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x // y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rfloordiv__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rfloordiv__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __mod__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x % y, self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
def __rmod__(self, other: Any) -> Self:
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, lambda x, y: x.__rmod__(y), self, other, str_as_lit=True
),
ExprMetadata.from_binary_op(self, other),
)
# --- unary ---
def __invert__(self) -> Self:
return self._with_elementwise(
lambda plx: self._to_compliant_expr(plx).__invert__()
)
def any(self) -> Self:
"""Return whether any of the values in the column are `True`.
If there are no non-null elements, the result is `False`.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [True, False], "b": [True, True]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").any())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 True True |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).any())
def all(self) -> Self:
"""Return whether all values in the column are `True`.
If there are no non-null elements, the result is `True`.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [True, False], "b": [True, True]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").all())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 False True |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).all())
def ewm_mean(
self,
*,
com: float | None = None,
span: float | None = None,
half_life: float | None = None,
alpha: float | None = None,
adjust: bool = True,
min_samples: int = 1,
ignore_nulls: bool = False,
) -> Self:
r"""Compute exponentially-weighted moving average.
Arguments:
com: Specify decay in terms of center of mass, $\gamma$, with <br> $\alpha = \frac{1}{1+\gamma}\forall\gamma\geq0$
span: Specify decay in terms of span, $\theta$, with <br> $\alpha = \frac{2}{\theta + 1} \forall \theta \geq 1$
half_life: Specify decay in terms of half-life, $\tau$, with <br> $\alpha = 1 - \exp \left\{ \frac{ -\ln(2) }{ \tau } \right\} \forall \tau > 0$
alpha: Specify smoothing factor alpha directly, $0 < \alpha \leq 1$.
adjust: Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings
- When `adjust=True` (the default) the EW function is calculated
using weights $w_i = (1 - \alpha)^i$
- When `adjust=False` the EW function is calculated recursively by
$$
y_0=x_0
$$
$$
y_t = (1 - \alpha)y_{t - 1} + \alpha x_t
$$
min_samples: Minimum number of observations in window required to have a value, (otherwise result is null).
ignore_nulls: Ignore missing values when calculating weights.
- When `ignore_nulls=False` (default), weights are based on absolute
positions.
For example, the weights of $x_0$ and $x_2$ used in
calculating the final weighted average of $[x_0, None, x_2]$ are
$(1-\alpha)^2$ and $1$ if `adjust=True`, and
$(1-\alpha)^2$ and $\alpha$ if `adjust=False`.
- When `ignore_nulls=True`, weights are based
on relative positions. For example, the weights of
$x_0$ and $x_2$ used in calculating the final weighted
average of $[x_0, None, x_2]$ are
$1-\alpha$ and $1$ if `adjust=True`,
and $1-\alpha$ and $\alpha$ if `adjust=False`.
Returns:
Expr
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [1, 2, 3]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a library agnostic function:
>>> def agnostic_ewm_mean(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").ewm_mean(com=1, ignore_nulls=False)
... ).to_native()
We can then pass either pandas or Polars to `agnostic_ewm_mean`:
>>> agnostic_ewm_mean(df_pd)
a
0 1.000000
1 1.666667
2 2.428571
>>> agnostic_ewm_mean(df_pl) # doctest: +NORMALIZE_WHITESPACE
shape: (3, 1)
a
---
f64
1.0
1.666667
2.428571
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).ewm_mean(
com=com,
span=span,
half_life=half_life,
alpha=alpha,
adjust=adjust,
min_samples=min_samples,
ignore_nulls=ignore_nulls,
)
)
def mean(self) -> Self:
"""Get mean value.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [-1, 0, 1], "b": [2, 4, 6]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").mean())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 0.0 4.0 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).mean())
def median(self) -> Self:
"""Get median value.
Returns:
A new expression.
Notes:
Results might slightly differ across backends due to differences in the underlying algorithms used to compute the median.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 8, 3], "b": [4, 5, 2]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").median())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 3.0 4.0 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).median())
def std(self, *, ddof: int = 1) -> Self:
"""Get standard deviation.
Arguments:
ddof: "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
where N represents the number of elements. By default ddof is 1.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [20, 25, 60], "b": [1.5, 1, -1.4]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").std(ddof=0))
| Narwhals DataFrame |
|---------------------|
| a b|
|0 17.79513 1.265789|
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).std(ddof=ddof)
)
def var(self, *, ddof: int = 1) -> Self:
"""Get variance.
Arguments:
ddof: "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
where N represents the number of elements. By default ddof is 1.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [20, 25, 60], "b": [1.5, 1, -1.4]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").var(ddof=0))
| Narwhals DataFrame |
|-----------------------|
| a b|
|0 316.666667 1.602222|
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).var(ddof=ddof)
)
def map_batches(
self,
function: Callable[[Any], CompliantExpr[Any, Any]],
return_dtype: DType | None = None,
) -> Self:
"""Apply a custom python function to a whole Series or sequence of Series.
The output of this custom function is presumed to be either a Series,
or a NumPy array (in which case it will be automatically converted into
a Series).
Arguments:
function: Function to apply to Series.
return_dtype: Dtype of the output Series.
If not set, the dtype will be inferred based on the first non-null value
that is returned by the function.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a", "b")
... .map_batches(lambda s: s.to_numpy() + 1, return_dtype=nw.Float64)
... .name.suffix("_mapped")
... )
| Narwhals DataFrame |
|---------------------------|
| a b a_mapped b_mapped|
|0 1 4 2.0 5.0|
|1 2 5 3.0 6.0|
|2 3 6 4.0 7.0|
"""
# safest assumptions
return self._with_orderable_filtration(
lambda plx: self._to_compliant_expr(plx).map_batches(
function=function, return_dtype=return_dtype
)
)
def skew(self) -> Self:
"""Calculate the sample skewness of a column.
Returns:
An expression representing the sample skewness of the column.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 1, 2, 10, 100]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").skew())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 0.0 1.472427 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).skew())
def kurtosis(self) -> Self:
"""Compute the kurtosis (Fisher's definition) without bias correction.
Kurtosis is the fourth central moment divided by the square of the variance.
The Fisher's definition is used where 3.0 is subtracted from the result to give 0.0 for a normal distribution.
Returns:
An expression representing the kurtosis (Fisher's definition) without bias correction of the column.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 1, 2, 10, 100]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").kurtosis())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 -1.3 0.210657 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).kurtosis())
def sum(self) -> Expr:
"""Return the sum value.
If there are no non-null elements, the result is zero.
Returns:
A new expression.
Examples:
>>> import duckdb
>>> import narwhals as nw
>>> df_native = duckdb.sql("SELECT * FROM VALUES (5, 50), (10, 100) df(a, b)")
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").sum())
|Narwhals LazyFrame |
|-------------------|
||
| a b |
| int128 int128 |
||
| 15 150 |
||
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).sum())
def min(self) -> Self:
"""Returns the minimum value(s) from a column(s).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2], "b": [4, 3]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.min("a", "b"))
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 3 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).min())
def max(self) -> Self:
"""Returns the maximum value(s) from a column(s).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [10, 20], "b": [50, 100]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.max("a", "b"))
|Narwhals DataFrame|
|------------------|
| a b |
| 0 20 100 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).max())
def count(self) -> Self:
"""Returns the number of non-null elements in the column.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3], "b": [None, 4, 4]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.all().count())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 3 2 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).count())
def n_unique(self) -> Self:
"""Returns count of unique values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 1, 3, 3, 5]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").n_unique())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 5 3 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).n_unique())
def unique(self) -> Self:
"""Return unique values of this expression.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 1, 3, 5, 5], "b": [2, 4, 4, 6, 6]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").unique().sum())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 9 12 |
"""
return self._with_filtration(lambda plx: self._to_compliant_expr(plx).unique())
def abs(self) -> Self:
"""Return absolute value of each element.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, -2], "b": [-3, 4]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a", "b").abs().name.suffix("_abs"))
| Narwhals DataFrame |
|---------------------|
| a b a_abs b_abs|
|0 1 -3 1 3|
|1 -2 4 2 4|
"""
return self._with_elementwise(lambda plx: self._to_compliant_expr(plx).abs())
def cum_sum(self, *, reverse: bool = False) -> Self:
"""Return cumulative sum.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 1, 3, 5, 5], "b": [2, 4, 4, 6, 6]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_cum_sum=nw.col("a").cum_sum())
|Narwhals DataFrame|
|------------------|
| a b a_cum_sum|
|0 1 2 1|
|1 1 4 2|
|2 3 4 5|
|3 5 6 10|
|4 5 6 15|
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_sum(reverse=reverse)
)
def diff(self) -> Self:
"""Returns the difference between each element and the previous one.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Notes:
pandas may change the dtype here, for example when introducing missing
values in an integer column. To ensure, that the dtype doesn't change,
you may want to use `fill_null` and `cast`. For example, to calculate
the diff and fill missing values with `0` in a Int64 column, you could
do:
nw.col("a").diff().fill_null(0).cast(nw.Int64)
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [1, 1, 3, 5, 5]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_diff=nw.col("a").diff())
|Narwhals DataFrame|
|------------------|
| shape: (5, 2) |
| |
| a a_diff |
| --- --- |
| i64 i64 |
| |
| 1 null |
| 1 0 |
| 3 2 |
| 5 2 |
| 5 0 |
| |
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).diff()
)
def shift(self, n: int) -> Self:
"""Shift values by `n` positions.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
n: Number of positions to shift values by.
Returns:
A new expression.
Notes:
pandas may change the dtype here, for example when introducing missing
values in an integer column. To ensure, that the dtype doesn't change,
you may want to use `fill_null` and `cast`. For example, to shift
and fill missing values with `0` in a Int64 column, you could
do:
nw.col("a").shift(1).fill_null(0).cast(nw.Int64)
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [1, 1, 3, 5, 5]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_shift=nw.col("a").shift(n=1))
|Narwhals DataFrame|
|------------------|
|shape: (5, 2) |
| |
| a a_shift |
| --- --- |
| i64 i64 |
| |
| 1 null |
| 1 1 |
| 3 1 |
| 5 3 |
| 5 5 |
| |
"""
ensure_type(n, int, param_name="n")
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).shift(n)
)
def replace_strict(
self,
old: Sequence[Any] | Mapping[Any, Any],
new: Sequence[Any] | None = None,
*,
return_dtype: IntoDType | None = None,
) -> Self:
"""Replace all values by different values.
This function must replace all non-null input values (else it raises an error).
Arguments:
old: Sequence of values to replace. It also accepts a mapping of values to
their replacement as syntactic sugar for
`replace_strict(old=list(mapping.keys()), new=list(mapping.values()))`.
new: Sequence of values to replace by. Length must match the length of `old`.
return_dtype: The data type of the resulting expression. If set to `None`
(default), the data type is determined automatically based on the other
inputs.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [3, 0, 1, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... b=nw.col("a").replace_strict(
... [0, 1, 2, 3],
... ["zero", "one", "two", "three"],
... return_dtype=nw.String,
... )
... )
|Narwhals DataFrame|
|------------------|
| a b |
| 0 3 three |
| 1 0 zero |
| 2 1 one |
| 3 2 two |
"""
if new is None:
if not isinstance(old, Mapping):
msg = "`new` argument is required if `old` argument is not a Mapping type"
raise TypeError(msg)
new = list(old.values())
old = list(old.keys())
return self._with_elementwise(
lambda plx: self._to_compliant_expr(plx).replace_strict(
old, new, return_dtype=return_dtype
)
)
# --- transform ---
def is_between(
self,
lower_bound: Any | IntoExpr,
upper_bound: Any | IntoExpr,
closed: ClosedInterval = "both",
) -> Self:
"""Check if this expression is between the given lower and upper bounds.
Arguments:
lower_bound: Lower bound value. String literals are interpreted as column names.
upper_bound: Upper bound value. String literals are interpreted as column names.
closed: Define which sides of the interval are closed (inclusive).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 4, 5]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(b=nw.col("a").is_between(2, 4, "right"))
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 False |
| 1 2 False |
| 2 3 True |
| 3 4 True |
| 4 5 False |
"""
def func(
compliant_expr: CompliantExpr[Any, Any],
lb: CompliantExpr[Any, Any],
ub: CompliantExpr[Any, Any],
) -> CompliantExpr[Any, Any]:
if closed == "left":
return (compliant_expr >= lb) & (compliant_expr < ub)
elif closed == "right":
return (compliant_expr > lb) & (compliant_expr <= ub)
elif closed == "none":
return (compliant_expr > lb) & (compliant_expr < ub)
return (compliant_expr >= lb) & (compliant_expr <= ub)
return self.__class__(
lambda plx: apply_n_ary_operation(
plx, func, self, lower_bound, upper_bound, str_as_lit=False
),
combine_metadata(
self,
lower_bound,
upper_bound,
str_as_lit=False,
allow_multi_output=False,
to_single_output=False,
),
)
def is_in(self, other: Any) -> Self:
"""Check if elements of this expression are present in the other iterable.
Arguments:
other: iterable
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 9, 10]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(b=nw.col("a").is_in([1, 2]))
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 True |
| 1 2 True |
| 2 9 False |
| 3 10 False |
"""
if isinstance(other, Iterable) and not isinstance(other, (str, bytes)):
return self._with_elementwise(
lambda plx: self._to_compliant_expr(plx).is_in(
to_native(other, pass_through=True)
)
)
else:
msg = "Narwhals `is_in` doesn't accept expressions as an argument, as opposed to Polars. You should provide an iterable instead."
raise NotImplementedError(msg)
def filter(self, *predicates: Any) -> Self:
"""Filters elements based on a condition, returning a new expression.
Arguments:
predicates: Conditions to filter by (which get AND-ed together).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
... {"a": [2, 3, 4, 5, 6, 7], "b": [10, 11, 12, 13, 14, 15]}
... )
>>> df = nw.from_native(df_native)
>>> df.select(
... nw.col("a").filter(nw.col("a") > 4),
... nw.col("b").filter(nw.col("b") < 13),
... )
|Narwhals DataFrame|
|------------------|
| a b |
| 3 5 10 |
| 4 6 11 |
| 5 7 12 |
"""
flat_predicates = flatten(predicates)
metadata = combine_metadata(
self,
*flat_predicates,
str_as_lit=False,
allow_multi_output=True,
to_single_output=False,
).with_filtration()
return self.__class__(
lambda plx: apply_n_ary_operation(
plx,
lambda *exprs: exprs[0].filter(*exprs[1:]),
self,
*flat_predicates,
str_as_lit=False,
),
metadata,
)
def is_null(self) -> Self:
"""Returns a boolean Series indicating which values are null.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import duckdb
>>> import narwhals as nw
>>> df_native = duckdb.sql(
... "SELECT * FROM VALUES (null, CAST('NaN' AS DOUBLE)), (2, 2.) df(a, b)"
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_is_null=nw.col("a").is_null(), b_is_null=nw.col("b").is_null()
... )
| Narwhals LazyFrame |
|------------------------------------------|
||
| a b a_is_null b_is_null |
| int32 double boolean boolean |
||
| NULL nan true false |
| 2 2.0 false false |
||
"""
return self._with_elementwise(lambda plx: self._to_compliant_expr(plx).is_null())
def is_nan(self) -> Self:
"""Indicate which values are NaN.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import duckdb
>>> import narwhals as nw
>>> df_native = duckdb.sql(
... "SELECT * FROM VALUES (null, CAST('NaN' AS DOUBLE)), (2, 2.) df(a, b)"
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_is_nan=nw.col("a").is_nan(), b_is_nan=nw.col("b").is_nan()
... )
| Narwhals LazyFrame |
|----------------------------------------|
||
| a b a_is_nan b_is_nan |
| int32 double boolean boolean |
||
| NULL nan NULL true |
| 2 2.0 false false |
||
"""
return self._with_elementwise(lambda plx: self._to_compliant_expr(plx).is_nan())
def fill_null(
self,
value: Expr | NonNestedLiteral = None,
strategy: FillNullStrategy | None = None,
limit: int | None = None,
) -> Self:
"""Fill null values with given value.
Arguments:
value: Value or expression used to fill null values.
strategy: Strategy used to fill null values.
limit: Number of consecutive null values to fill when using the 'forward' or 'backward' strategy.
Returns:
A new expression.
Notes:
- pandas handles null values differently from other libraries.
See [null_handling](../concepts/null_handling.md/)
for reference.
- For pandas Series of `object` dtype, `fill_null` will not automatically change the
Series' dtype as pandas used to do. Explicitly call `cast` if you want the dtype to change.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
... {
... "a": [2, None, None, 3],
... "b": [2.0, float("nan"), float("nan"), 3.0],
... "c": [1, 2, 3, 4],
... }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a", "b").fill_null(0).name.suffix("_filled"),
... nw.col("a").fill_null(nw.col("c")).name.suffix("_filled_with_c"),
... )
| Narwhals DataFrame |
|------------------------------------------------------------|
|shape: (4, 6) |
||
| a b c a_filled b_filled a_filled_with_c |
| --- --- --- --- --- --- |
| i64 f64 i64 i64 f64 i64 |
||
| 2 2.0 1 2 2.0 2 |
| null NaN 2 0 NaN 2 |
| null NaN 3 0 NaN 3 |
| 3 3.0 4 3 3.0 3 |
||
Using a strategy:
>>> df.select(
... nw.col("a", "b"),
... nw.col("a", "b")
... .fill_null(strategy="forward", limit=1)
... .name.suffix("_nulls_forward_filled"),
... )
| Narwhals DataFrame |
|----------------------------------------------------------------|
|shape: (4, 4) |
||
| a b a_nulls_forward_filled b_nulls_forward_filled |
| --- --- --- --- |
| i64 f64 i64 f64 |
||
| 2 2.0 2 2.0 |
| null NaN 2 NaN |
| null NaN null NaN |
| 3 3.0 3 3.0 |
||
"""
if value is not None and strategy is not None:
msg = "cannot specify both `value` and `strategy`"
raise ValueError(msg)
if value is None and strategy is None:
msg = "must specify either a fill `value` or `strategy`"
raise ValueError(msg)
if strategy is not None and strategy not in {"forward", "backward"}:
msg = f"strategy not supported: {strategy}"
raise ValueError(msg)
return self.__class__(
lambda plx: self._to_compliant_expr(plx).fill_null(
value=extract_compliant(plx, value, str_as_lit=True),
strategy=strategy,
limit=limit,
),
self._metadata.with_orderable_window()
if strategy is not None
else self._metadata,
)
# --- partial reduction ---
def drop_nulls(self) -> Self:
"""Drop null values.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [2.0, 4.0, float("nan"), 3.0, None, 5.0]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").drop_nulls())
|Narwhals DataFrame|
|------------------|
| shape: (5, 1) |
| |
| a |
| --- |
| f64 |
| |
| 2.0 |
| 4.0 |
| NaN |
| 3.0 |
| 5.0 |
| |
"""
return self._with_filtration(
lambda plx: self._to_compliant_expr(plx).drop_nulls()
)
def over(
self,
*partition_by: str | Sequence[str],
order_by: str | Sequence[str] | None = None,
) -> Self:
"""Compute expressions over the given groups (optionally with given order).
Arguments:
partition_by: Names of columns to compute window expression over.
Must be names of columns, as opposed to expressions -
so, this is a bit less flexible than Polars' `Expr.over`.
order_by: Column(s) to order window functions by.
For lazy backends, this argument is required when `over` is applied
to order-dependent functions, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 4], "b": ["x", "x", "y"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_min_per_group=nw.col("a").min().over("b"))
| Narwhals DataFrame |
|------------------------|
| a b a_min_per_group|
|0 1 x 1|
|1 2 x 1|
|2 4 y 4|
Cumulative operations are also supported, but (currently) only for
pandas and Polars:
>>> df.with_columns(a_cum_sum_per_group=nw.col("a").cum_sum().over("b"))
| Narwhals DataFrame |
|----------------------------|
| a b a_cum_sum_per_group|
|0 1 x 1|
|1 2 x 3|
|2 4 y 4|
"""
flat_partition_by = flatten(partition_by)
flat_order_by = [order_by] if isinstance(order_by, str) else (order_by or [])
if not flat_partition_by and not flat_order_by: # pragma: no cover
msg = "At least one of `partition_by` or `order_by` must be specified."
raise ValueError(msg)
current_meta = self._metadata
if flat_order_by:
next_meta = current_meta.with_ordered_over()
elif not flat_partition_by: # pragma: no cover
msg = "At least one of `partition_by` or `order_by` must be specified."
raise InvalidOperationError(msg)
else:
next_meta = current_meta.with_partitioned_over()
return self.__class__(
lambda plx: self._to_compliant_expr(plx).over(
flat_partition_by, flat_order_by
),
next_meta,
)
def is_duplicated(self) -> Self:
r"""Return a boolean mask indicating duplicated values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.all().is_duplicated().name.suffix("_is_duplicated"))
| Narwhals DataFrame |
|-----------------------------------------|
| a b a_is_duplicated b_is_duplicated|
|0 1 a True True|
|1 2 a False True|
|2 3 b False False|
|3 1 c True False|
"""
return ~self.is_unique()
def is_unique(self) -> Self:
r"""Return a boolean mask indicating unique values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.all().is_unique().name.suffix("_is_unique"))
| Narwhals DataFrame |
|---------------------------------|
| a b a_is_unique b_is_unique|
|0 1 a False False|
|1 2 a True False|
|2 3 b True True|
|3 1 c False True|
"""
return self._with_window(lambda plx: self._to_compliant_expr(plx).is_unique())
def null_count(self) -> Self:
r"""Count null values.
Returns:
A new expression.
Notes:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
... {"a": [1, 2, None, 1], "b": ["a", None, "b", None]}
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.all().null_count())
|Narwhals DataFrame|
|------------------|
| a b |
| 0 1 2 |
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).null_count()
)
def is_first_distinct(self) -> Self:
r"""Return a boolean mask indicating the first occurrence of each distinct value.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.all().is_first_distinct().name.suffix("_is_first_distinct")
... )
| Narwhals DataFrame |
|-------------------------------------------------|
| a b a_is_first_distinct b_is_first_distinct|
|0 1 a True True|
|1 2 a True False|
|2 3 b True True|
|3 1 c False True|
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).is_first_distinct()
)
def is_last_distinct(self) -> Self:
r"""Return a boolean mask indicating the last occurrence of each distinct value.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3, 1], "b": ["a", "a", "b", "c"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.all().is_last_distinct().name.suffix("_is_last_distinct")
... )
| Narwhals DataFrame |
|-----------------------------------------------|
| a b a_is_last_distinct b_is_last_distinct|
|0 1 a False False|
|1 2 a True True|
|2 3 b True True|
|3 1 c True True|
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).is_last_distinct()
)
def quantile(
self, quantile: float, interpolation: RollingInterpolationMethod
) -> Self:
r"""Get quantile value.
Arguments:
quantile: Quantile between 0.0 and 1.0.
interpolation: Interpolation method.
Returns:
A new expression.
Note:
- pandas and Polars may have implementation differences for a given interpolation method.
- [dask](https://docs.dask.org/en/stable/generated/dask.dataframe.Series.quantile.html) has
its own method to approximate quantile and it doesn't implement 'nearest', 'higher',
'lower', 'midpoint' as interpolation method - use 'linear' which is closest to the
native 'dask' - method.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
... {"a": list(range(50)), "b": list(range(50, 100))}
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a", "b").quantile(0.5, interpolation="linear"))
|Narwhals DataFrame|
|------------------|
| a b |
| 0 24.5 74.5 |
"""
return self._with_aggregation(
lambda plx: self._to_compliant_expr(plx).quantile(quantile, interpolation)
)
def round(self, decimals: int = 0) -> Self:
r"""Round underlying floating point data by `decimals` digits.
Arguments:
decimals: Number of decimals to round by.
Returns:
A new expression.
Notes:
For values exactly halfway between rounded decimal values pandas behaves differently than Polars and Arrow.
pandas rounds to the nearest even value (e.g. -0.5 and 0.5 round to 0.0, 1.5 and 2.5 round to 2.0, 3.5 and
4.5 to 4.0, etc..).
Polars and Arrow round away from 0 (e.g. -0.5 to -1.0, 0.5 to 1.0, 1.5 to 2.0, 2.5 to 3.0, etc..).
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.12345, 2.56789, 3.901234]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_rounded=nw.col("a").round(1))
| Narwhals DataFrame |
|----------------------|
| a a_rounded|
|0 1.123450 1.1|
|1 2.567890 2.6|
|2 3.901234 3.9|
"""
return self._with_elementwise(
lambda plx: self._to_compliant_expr(plx).round(decimals)
)
def len(self) -> Self:
r"""Return the number of elements in the column.
Null values count towards the total.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": ["x", "y", "z"], "b": [1, 2, 1]})
>>> df = nw.from_native(df_native)
>>> df.select(
... nw.col("a").filter(nw.col("b") == 1).len().alias("a1"),
... nw.col("a").filter(nw.col("b") == 2).len().alias("a2"),
... )
|Narwhals DataFrame|
|------------------|
| a1 a2 |
| 0 2 1 |
"""
return self._with_aggregation(lambda plx: self._to_compliant_expr(plx).len())
def clip(
self,
lower_bound: IntoExpr | NumericLiteral | TemporalLiteral | None = None,
upper_bound: IntoExpr | NumericLiteral | TemporalLiteral | None = None,
) -> Self:
r"""Clip values in the Series.
Arguments:
lower_bound: Lower bound value. String literals are treated as column names.
upper_bound: Upper bound value. String literals are treated as column names.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 2, 3]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_clipped=nw.col("a").clip(-1, 3))
|Narwhals DataFrame|
|------------------|
| a a_clipped |
| 0 1 1 |
| 1 2 2 |
| 2 3 3 |
"""
return self.__class__(
lambda plx: apply_n_ary_operation(
plx,
lambda *exprs: exprs[0].clip(
exprs[1] if lower_bound is not None else None,
exprs[2] if upper_bound is not None else None,
),
self,
lower_bound,
upper_bound,
str_as_lit=False,
),
combine_metadata(
self,
lower_bound,
upper_bound,
str_as_lit=False,
allow_multi_output=False,
to_single_output=False,
),
)
def mode(self) -> Self:
r"""Compute the most occurring value(s).
Can return multiple values.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 1, 2, 3], "b": [1, 1, 2, 2]})
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").mode()).sort("a")
|Narwhals DataFrame|
|------------------|
| a |
| 0 1 |
"""
return self._with_filtration(lambda plx: self._to_compliant_expr(plx).mode())
def is_finite(self) -> Self:
"""Returns boolean values indicating which original values are finite.
Warning:
pandas handles null values differently from Polars and PyArrow.
See [null_handling](../concepts/null_handling.md/)
for reference.
`is_finite` will return False for NaN and Null's in the Dask and
pandas non-nullable backend, while for Polars, PyArrow and pandas
nullable backends null values are kept as such.
Returns:
Expression of `Boolean` data type.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [float("nan"), float("inf"), 2.0, None]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_is_finite=nw.col("a").is_finite())
| Narwhals DataFrame |
|----------------------|
|shape: (4, 2) |
||
| a a_is_finite |
| --- --- |
| f64 bool |
||
| NaN false |
| inf false |
| 2.0 true |
| null null |
||
"""
return self._with_elementwise(
lambda plx: self._to_compliant_expr(plx).is_finite()
)
def cum_count(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative count of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": ["x", "k", None, "d"]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_count().alias("a_cum_count"),
... nw.col("a").cum_count(reverse=True).alias("a_cum_count_reverse"),
... )
| Narwhals DataFrame |
|-----------------------------------------|
| a a_cum_count a_cum_count_reverse|
|0 x 1 3|
|1 k 2 2|
|2 None 2 1|
|3 d 3 1|
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_count(reverse=reverse)
)
def cum_min(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative min of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [3, 1, None, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_min().alias("a_cum_min"),
... nw.col("a").cum_min(reverse=True).alias("a_cum_min_reverse"),
... )
| Narwhals DataFrame |
|------------------------------------|
| a a_cum_min a_cum_min_reverse|
|0 3.0 3.0 1.0|
|1 1.0 1.0 1.0|
|2 NaN NaN NaN|
|3 2.0 1.0 2.0|
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_min(reverse=reverse)
)
def cum_max(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative max of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 3, None, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_max().alias("a_cum_max"),
... nw.col("a").cum_max(reverse=True).alias("a_cum_max_reverse"),
... )
| Narwhals DataFrame |
|------------------------------------|
| a a_cum_max a_cum_max_reverse|
|0 1.0 1.0 3.0|
|1 3.0 3.0 3.0|
|2 NaN NaN NaN|
|3 2.0 3.0 2.0|
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_max(reverse=reverse)
)
def cum_prod(self, *, reverse: bool = False) -> Self:
r"""Return the cumulative product of the non-null values in the column.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
reverse: reverse the operation
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1, 3, None, 2]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... nw.col("a").cum_prod().alias("a_cum_prod"),
... nw.col("a").cum_prod(reverse=True).alias("a_cum_prod_reverse"),
... )
| Narwhals DataFrame |
|--------------------------------------|
| a a_cum_prod a_cum_prod_reverse|
|0 1.0 1.0 6.0|
|1 3.0 3.0 6.0|
|2 NaN NaN NaN|
|3 2.0 6.0 2.0|
"""
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).cum_prod(reverse=reverse)
)
def rolling_sum(
self, window_size: int, *, min_samples: int | None = None, center: bool = False
) -> Self:
"""Apply a rolling sum (moving sum) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their sum.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`
center: Set the labels at the center of the window.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_sum=nw.col("a").rolling_sum(window_size=3, min_samples=1)
... )
| Narwhals DataFrame |
|---------------------|
| a a_rolling_sum|
|0 1.0 1.0|
|1 2.0 3.0|
|2 NaN 3.0|
|3 4.0 6.0|
"""
window_size, min_samples_int = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_sum(
window_size=window_size, min_samples=min_samples_int, center=center
)
)
def rolling_mean(
self, window_size: int, *, min_samples: int | None = None, center: bool = False
) -> Self:
"""Apply a rolling mean (moving mean) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their mean.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`
center: Set the labels at the center of the window.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_mean=nw.col("a").rolling_mean(window_size=3, min_samples=1)
... )
| Narwhals DataFrame |
|----------------------|
| a a_rolling_mean|
|0 1.0 1.0|
|1 2.0 1.5|
|2 NaN 1.5|
|3 4.0 3.0|
"""
window_size, min_samples = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_mean(
window_size=window_size, min_samples=min_samples, center=center
)
)
def rolling_var(
self,
window_size: int,
*,
min_samples: int | None = None,
center: bool = False,
ddof: int = 1,
) -> Self:
"""Apply a rolling variance (moving variance) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their variance.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`.
center: Set the labels at the center of the window.
ddof: Delta Degrees of Freedom; the divisor for a length N window is N - ddof.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_var=nw.col("a").rolling_var(window_size=3, min_samples=1)
... )
| Narwhals DataFrame |
|---------------------|
| a a_rolling_var|
|0 1.0 NaN|
|1 2.0 0.5|
|2 NaN 0.5|
|3 4.0 2.0|
"""
window_size, min_samples = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_var(
window_size=window_size, min_samples=min_samples, center=center, ddof=ddof
)
)
def rolling_std(
self,
window_size: int,
*,
min_samples: int | None = None,
center: bool = False,
ddof: int = 1,
) -> Self:
"""Apply a rolling standard deviation (moving standard deviation) over the values.
A window of length `window_size` will traverse the values. The resulting values
will be aggregated to their standard deviation.
The window at a given row will include the row itself and the `window_size - 1`
elements before it.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
window_size: The length of the window in number of elements. It must be a
strictly positive integer.
min_samples: The number of values in the window that should be non-null before
computing a result. If set to `None` (default), it will be set equal to
`window_size`. If provided, it must be a strictly positive integer, and
less than or equal to `window_size`.
center: Set the labels at the center of the window.
ddof: Delta Degrees of Freedom; the divisor for a length N window is N - ddof.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [1.0, 2.0, None, 4.0]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(
... a_rolling_std=nw.col("a").rolling_std(window_size=3, min_samples=1)
... )
| Narwhals DataFrame |
|---------------------|
| a a_rolling_std|
|0 1.0 NaN|
|1 2.0 0.707107|
|2 NaN 0.707107|
|3 4.0 1.414214|
"""
window_size, min_samples = _validate_rolling_arguments(
window_size=window_size, min_samples=min_samples
)
return self._with_orderable_window(
lambda plx: self._to_compliant_expr(plx).rolling_std(
window_size=window_size, min_samples=min_samples, center=center, ddof=ddof
)
)
def rank(self, method: RankMethod = "average", *, descending: bool = False) -> Self:
"""Assign ranks to data, dealing with ties appropriately.
Notes:
The resulting dtype may differ between backends.
Info:
For lazy backends, this operation must be followed by `Expr.over` with
`order_by` specified, see [order-dependence](../concepts/order_dependence.md).
Arguments:
method: The method used to assign ranks to tied elements.
The following methods are available (default is 'average')
- *"average"*: The average of the ranks that would have been assigned to
all the tied values is assigned to each value.
- *"min"*: The minimum of the ranks that would have been assigned to all
the tied values is assigned to each value. (This is also referred to
as "competition" ranking.)
- *"max"*: The maximum of the ranks that would have been assigned to all
the tied values is assigned to each value.
- *"dense"*: Like "min", but the rank of the next highest element is
assigned the rank immediately after those assigned to the tied elements.
- *"ordinal"*: All values are given a distinct rank, corresponding to the
order that the values occur in the Series.
descending: Rank in descending order.
Returns:
A new expression with rank data.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame({"a": [3, 6, 1, 1, 6]})
>>> df = nw.from_native(df_native)
>>> result = df.with_columns(rank=nw.col("a").rank(method="dense"))
>>> result
|Narwhals DataFrame|
|------------------|
| a rank |
| 0 3 2.0 |
| 1 6 3.0 |
| 2 1 1.0 |
| 3 1 1.0 |
| 4 6 3.0 |
"""
supported_rank_methods = {"average", "min", "max", "dense", "ordinal"}
if method not in supported_rank_methods:
msg = (
"Ranking method must be one of {'average', 'min', 'max', 'dense', 'ordinal'}. "
f"Found '{method}'"
)
raise ValueError(msg)
return self._with_window(
lambda plx: self._to_compliant_expr(plx).rank(
method=method, descending=descending
)
)
def log(self, base: float = math.e) -> Self:
r"""Compute the logarithm to a given base.
Arguments:
base: Given base, defaults to `e`
Returns:
A new expression.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table({"values": [1, 2, 4]})
>>> df = nw.from_native(df_native)
>>> result = df.with_columns(
... log=nw.col("values").log(), log_2=nw.col("values").log(base=2)
... )
>>> result
| Narwhals DataFrame |
|------------------------------------------------|
|pyarrow.Table |
|values: int64 |
|log: double |
|log_2: double |
|---- |
|values: [[1,2,4]] |
|log: [[0,0.6931471805599453,1.3862943611198906]]|
|log_2: [[0,1,2]] |
"""
return self._with_elementwise(
lambda plx: self._to_compliant_expr(plx).log(base=base)
)
def exp(self) -> Self:
r"""Compute the exponent.
Returns:
A new expression.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table({"values": [-1, 0, 1]})
>>> df = nw.from_native(df_native)
>>> result = df.with_columns(exp=nw.col("values").exp())
>>> result
| Narwhals DataFrame |
|------------------------------------------------|
|pyarrow.Table |
|values: int64 |
|exp: double |
|---- |
|values: [[-1,0,1]] |
|exp: [[0.36787944117144233,1,2.718281828459045]]|
"""
return self._with_elementwise(lambda plx: self._to_compliant_expr(plx).exp())
def sqrt(self) -> Self:
r"""Compute the square root.
Returns:
A new expression.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table({"values": [1, 4, 9]})
>>> df = nw.from_native(df_native)
>>> result = df.with_columns(sqrt=nw.col("values").sqrt())
>>> result
|Narwhals DataFrame|
|------------------|
|pyarrow.Table |
|values: int64 |
|sqrt: double |
|---- |
|values: [[1,4,9]] |
|sqrt: [[1,2,3]] |
"""
return self._with_elementwise(lambda plx: self._to_compliant_expr(plx).sqrt())
@property
def str(self) -> ExprStringNamespace[Self]:
return ExprStringNamespace(self)
@property
def dt(self) -> ExprDateTimeNamespace[Self]:
return ExprDateTimeNamespace(self)
@property
def cat(self) -> ExprCatNamespace[Self]:
return ExprCatNamespace(self)
@property
def name(self) -> ExprNameNamespace[Self]:
return ExprNameNamespace(self)
@property
def list(self) -> ExprListNamespace[Self]:
return ExprListNamespace(self)
@property
def struct(self) -> ExprStructNamespace[Self]:
return ExprStructNamespace(self)
__all__ = ["Expr"]