team-10/venv/Lib/site-packages/transformers/integrations/mistral.py

106 lines
3.9 KiB
Python
Raw Permalink Normal View History

2025-08-02 02:00:33 +02:00
from tokenizers import Regex, Tokenizer, decoders, pre_tokenizers, processors
from tokenizers.models import BPE
from transformers import LlamaTokenizerFast
from transformers.convert_slow_tokenizer import bytes_to_unicode
class MistralConverter:
"""
A general tiktoken converter.
"""
def __init__(
self,
vocab=None,
pattern=r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""",
add_prefix_space=False,
additional_special_tokens=None,
*args,
**kwargs,
):
super().__init__(*args)
self.vocab = vocab
self.pattern = pattern
self.add_prefix_space = add_prefix_space
self.additional_special_tokens = additional_special_tokens
def extract_vocab_merges_from_model(self, vocab: str):
bpe_ranks = vocab
byte_encoder = bytes_to_unicode()
def token_bytes_to_string(b):
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
merges = []
vocab = {}
for idx, (token, rank) in enumerate(bpe_ranks.items()):
if token not in self.additional_special_tokens:
vocab[token_bytes_to_string(token)] = idx
if len(token) == 1:
continue
local = []
for index in range(1, len(token)):
piece_l, piece_r = token[:index], token[index:]
if piece_l in bpe_ranks and piece_r in bpe_ranks and (piece_l + piece_r) in bpe_ranks:
local.append((piece_l, piece_r, rank))
local = sorted(local, key=lambda x: (bpe_ranks[x[0]], bpe_ranks[x[1]]), reverse=False)
merges.extend(local)
else:
vocab[token] = idx
merges = sorted(merges, key=lambda val: val[2], reverse=False)
merges = [(token_bytes_to_string(val[0]), token_bytes_to_string(val[1])) for val in merges]
return vocab, merges
def tokenizer(self):
vocab_scores, merges = self.extract_vocab_merges_from_model(self.vocab)
tokenizer = Tokenizer(BPE(vocab_scores, merges, fuse_unk=False))
if hasattr(tokenizer.model, "ignore_merges"):
tokenizer.model.ignore_merges = True
return tokenizer
def converted(self) -> Tokenizer:
tokenizer = self.tokenizer()
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
[
pre_tokenizers.Split(Regex(self.pattern), behavior="isolated", invert=False),
pre_tokenizers.ByteLevel(add_prefix_space=self.add_prefix_space, use_regex=False),
]
)
tokenizer.decoder = decoders.ByteLevel()
tokenizer.add_special_tokens(self.additional_special_tokens)
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
return tokenizer
def convert_tekken_tokenizer(tokenizer_file: str):
"""Convert a "tekken" tokenizer to a fast Tokenizer."""
# Tekken format -- need to use the Converter
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
# Load directly using their lib
mistral_tokenizer = MistralTokenizer.from_file(tokenizer_file)
# Extract vocab and special tokens
vocab = mistral_tokenizer.instruct_tokenizer.tokenizer._tekken_token2id_nospecial
all_special = [
token.value if hasattr(token, "value") else token
for token in mistral_tokenizer.instruct_tokenizer.tokenizer._all_special_tokens
]
specials_tokens = {token: all_special.index(token) for token in all_special}
specials_tokens.update(vocab)
vocab = specials_tokens
# Convert
tokenizer = LlamaTokenizerFast(
tokenizer_object=MistralConverter(vocab=vocab, additional_special_tokens=all_special).converted(),
)
# Post-process
tokenizer.add_special_tokens({"additional_special_tokens": all_special})
return tokenizer