team-10/venv/Lib/site-packages/transformers/models/dia/tokenization_dia.py

119 lines
4.4 KiB
Python
Raw Permalink Normal View History

2025-08-02 02:00:33 +02:00
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Dia."""
from typing import Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
class DiaTokenizer(PreTrainedTokenizer):
"""
Construct a Dia tokenizer. Dia simply uses raw bytes utf-8 encoding except for special tokens `[S1]` and `[S2]`.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
unk_token (`str`, *optional*, defaults to `"<pad>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
max_length (`int`, *optional*, defaults to 1024):
The maximum length of the sequences when encoding. Sequences longer than this will be truncated.
offset (`int`, *optional*, defaults to 0):
The offset of the tokenizer.
"""
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
pad_token: Optional[str] = "<pad>",
unk_token: Optional[str] = "<pad>",
max_length: Optional[int] = 1024,
offset: int = 0,
**kwargs,
):
# We have no eos/bos tokens but allow padding -- no l/r strip as we treat them as tokens as well
pad_token = AddedToken(pad_token) if isinstance(pad_token, str) else pad_token
unk_token = AddedToken(unk_token) if isinstance(unk_token, str) else unk_token
self._utf_vocab_size = 2**8 # utf is 8 bits
self._added_tokens_decoder = {0: pad_token, 1: AddedToken("[S1]"), 2: AddedToken("[S2]")}
self.offset = offset
super().__init__(
unk_token=unk_token,
pad_token=pad_token,
max_length=max_length,
**kwargs,
)
@property
def vocab_size(self):
return self._utf_vocab_size
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> list[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
tokens = [chr(i) for i in text.encode("utf-8")]
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if len(token) != 1:
token_id = None
else:
token_id = ord(token) + self.offset
return token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = chr(index - self.offset)
return token
def convert_tokens_to_string(self, tokens: list[str]) -> str:
"""Converts a sequence of tokens (string) in a single string."""
bstring = b""
for token in tokens:
if token in self.added_tokens_decoder:
added_token_obj = self.added_tokens_decoder[token]
tok_string = str(added_token_obj).encode("utf-8")
elif token in self.added_tokens_encoder:
tok_string = token.encode("utf-8")
else:
tok_string = token.encode("utf-8") # Assume general string token
bstring += tok_string
string = bstring.decode("utf-8", errors="ignore")
return string
# No vocab file
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]:
return ()
__all__ = ["DiaTokenizer"]