1237 lines
49 KiB
Python
1237 lines
49 KiB
Python
![]() |
# coding=utf-8
|
||
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Callable, Optional, Union
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_layers import GradientCheckpointingLayer
|
||
|
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
|
||
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||
|
from ...utils import ModelOutput, auto_docstring, can_return_tuple, logging
|
||
|
from .configuration_vjepa2 import VJEPA2Config
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
VJEPA Predictor outputs that also contains the masked encoder outputs
|
||
|
"""
|
||
|
)
|
||
|
class VJEPA2WithMaskedInputPredictorOutput(ModelOutput):
|
||
|
r"""
|
||
|
masked_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when `context_mask` is provided which is applied on VJEPA2Encoder outputs):
|
||
|
The masked hidden state of the model.
|
||
|
target_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when `target_mask` is provided which is applied on VJEPA2Encoder outputs):
|
||
|
The target hidden state of the model.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor
|
||
|
masked_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
||
|
target_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
VJEPA outputs that also contains the masked encoder outputs
|
||
|
Optionally contains the predictor outputs
|
||
|
"""
|
||
|
)
|
||
|
class VJEPA2WithMaskedInputModelOutput(ModelOutput):
|
||
|
r"""
|
||
|
masked_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when `context_mask` is provided which is applied on VJEPA2Encoder outputs):
|
||
|
The masked hidden state of the model.
|
||
|
predictor_output (`VJEPA2WithMaskedInputPredictorOutput`, *optional*):
|
||
|
The output from the Predictor module.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor
|
||
|
masked_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
||
|
predictor_output: Optional[VJEPA2WithMaskedInputPredictorOutput] = None
|
||
|
|
||
|
def to_tuple(self):
|
||
|
output = list(super().to_tuple())
|
||
|
if isinstance(output[-1], VJEPA2WithMaskedInputPredictorOutput):
|
||
|
output[-1] = output[-1].to_tuple()
|
||
|
return tuple(output)
|
||
|
|
||
|
|
||
|
class VJEPA2PatchEmbeddings3D(nn.Module):
|
||
|
"""
|
||
|
Image to Patch Embedding
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: VJEPA2Config,
|
||
|
hidden_size: int = 1024,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.patch_size = config.patch_size
|
||
|
self.tubelet_size = config.tubelet_size
|
||
|
self.hidden_size = hidden_size
|
||
|
|
||
|
self.proj = nn.Conv3d(
|
||
|
in_channels=config.in_chans,
|
||
|
out_channels=hidden_size,
|
||
|
kernel_size=(config.tubelet_size, config.patch_size, config.patch_size),
|
||
|
stride=(config.tubelet_size, config.patch_size, config.patch_size),
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def num_patches(config):
|
||
|
return (
|
||
|
(config.frames_per_clip // config.tubelet_size)
|
||
|
* (config.crop_size // config.patch_size)
|
||
|
* (config.crop_size // config.patch_size)
|
||
|
)
|
||
|
|
||
|
def forward(self, pixel_values_videos: torch.Tensor) -> torch.Tensor:
|
||
|
x = self.proj(pixel_values_videos).flatten(2).transpose(1, 2)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class VJEPA2Embeddings(nn.Module):
|
||
|
"""
|
||
|
Construct mask token, position and patch embeddings.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: VJEPA2Config, hidden_size: int = 1024):
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
self.hidden_size = hidden_size
|
||
|
self.patch_embeddings = VJEPA2PatchEmbeddings3D(config, hidden_size=hidden_size)
|
||
|
|
||
|
self.num_patches = self.patch_embeddings.num_patches
|
||
|
self.patch_size = config.patch_size
|
||
|
|
||
|
def forward(self, pixel_values_videos: torch.Tensor) -> torch.Tensor:
|
||
|
num_frames = pixel_values_videos.shape[1]
|
||
|
|
||
|
# Swap `frames` and `channels` dims, the result is:
|
||
|
# (batch_size, channels, num_frames, height, width)
|
||
|
pixel_values_videos = pixel_values_videos.permute(0, 2, 1, 3, 4)
|
||
|
|
||
|
# For some cases, if the input vision (image/video) consists of num_frames < tubelet_size,
|
||
|
# then embedding lookup fails. In these cases, we duplicate the frames.
|
||
|
if num_frames < self.config.tubelet_size:
|
||
|
pixel_values_videos = pixel_values_videos.repeat(1, 1, self.config.tubelet_size, 1, 1)
|
||
|
|
||
|
target_dtype = self.patch_embeddings.proj.weight.dtype
|
||
|
pixel_values_videos = pixel_values_videos.to(dtype=target_dtype)
|
||
|
embeddings = self.patch_embeddings(pixel_values_videos)
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
# Adapted from transformers.models.vit.modeling_vit.eager_attention_forward
|
||
|
def eager_attention_forward(
|
||
|
module: nn.Module,
|
||
|
query: torch.Tensor,
|
||
|
key: torch.Tensor,
|
||
|
value: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor],
|
||
|
scaling: float,
|
||
|
dropout: float = 0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if attention_mask is not None:
|
||
|
attn_weights = attn_weights * attention_mask
|
||
|
|
||
|
attn_output = torch.matmul(attn_weights, value)
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
|
||
|
return attn_output, attn_weights
|
||
|
|
||
|
|
||
|
def rotate_queries_or_keys(x, pos):
|
||
|
B, num_heads, N, D = x.size()
|
||
|
|
||
|
# similar to inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
||
|
# they are computing this every time. instead HF style is to compute the inv_freq once and store it
|
||
|
# -- compute angle for each position
|
||
|
omega = torch.arange(D // 2, dtype=x.dtype, device=x.device)
|
||
|
omega /= D / 2.0
|
||
|
omega = 1.0 / 10000**omega # (D/2,)
|
||
|
freq = pos.unsqueeze(-1) * omega # (..., N, D/2), outer product
|
||
|
|
||
|
# -- build rotation matrix and apply
|
||
|
emb_sin = freq.sin() # (..., N, D/2)
|
||
|
emb_cos = freq.cos() # (..., N, D/2)
|
||
|
|
||
|
emb_sin = emb_sin.squeeze(-1).repeat(1, 1, 1, 2)
|
||
|
emb_cos = emb_cos.squeeze(-1).repeat(1, 1, 1, 2)
|
||
|
|
||
|
# --
|
||
|
y = x.unflatten(-1, (-1, 2))
|
||
|
y1, y2 = y.unbind(dim=-1)
|
||
|
|
||
|
y = torch.stack((-y2, y1), dim=-1)
|
||
|
y = y.flatten(-2)
|
||
|
return (x * emb_cos) + (y * emb_sin)
|
||
|
|
||
|
|
||
|
class VJEPA2RopeAttention(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: VJEPA2Config,
|
||
|
hidden_size: int = 1024,
|
||
|
num_attention_heads: int = 16,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
if hidden_size % num_attention_heads != 0:
|
||
|
raise ValueError(
|
||
|
f"The hidden size {(hidden_size,)} is not a multiple of the number of attention "
|
||
|
f"heads {num_attention_heads}."
|
||
|
)
|
||
|
|
||
|
self.attention_head_size = int(hidden_size / num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
|
||
|
self.proj = nn.Linear(hidden_size, hidden_size)
|
||
|
self.dropout_prob = config.attention_probs_dropout_prob
|
||
|
self.dropout = nn.Dropout(self.dropout_prob)
|
||
|
|
||
|
self.grid_size = self.config.crop_size // self.config.patch_size
|
||
|
self.grid_depth = self.config.frames_per_clip // self.config.tubelet_size
|
||
|
|
||
|
self.d_dim = int(2 * ((self.attention_head_size // 3) // 2))
|
||
|
self.h_dim = int(2 * ((self.attention_head_size // 3) // 2))
|
||
|
self.w_dim = int(2 * ((self.attention_head_size // 3) // 2))
|
||
|
|
||
|
self.scaling = self.attention_head_size**-0.5
|
||
|
self.is_causal = False
|
||
|
|
||
|
def _get_frame_pos(self, ids):
|
||
|
tokens_per_frame = int(self.grid_size * self.grid_size)
|
||
|
return ids // tokens_per_frame
|
||
|
|
||
|
def _get_height_pos(self, ids):
|
||
|
# Remove frame component from ids
|
||
|
tokens_per_frame = int(self.grid_size * self.grid_size)
|
||
|
frame_ids = self._get_frame_pos(ids)
|
||
|
ids = ids - tokens_per_frame * frame_ids
|
||
|
# --
|
||
|
tokens_per_row = self.grid_size
|
||
|
return ids // tokens_per_row
|
||
|
|
||
|
def get_position_ids(self, x, masks=None):
|
||
|
device = x.device
|
||
|
token_size = x.size(1)
|
||
|
|
||
|
# Note: when masks is none, we use a 1d id instead of Bxnum_attention_heads mask,
|
||
|
# as 1d vector is broadcasted to the correct shapes.
|
||
|
if masks is not None:
|
||
|
ids = masks.unsqueeze(1).repeat(1, self.num_attention_heads, 1)
|
||
|
else:
|
||
|
ids = torch.arange(token_size, device=device)
|
||
|
# change to allow for extrapolation
|
||
|
tokens_per_frame = int(self.grid_size * self.grid_size)
|
||
|
frame_ids = self._get_frame_pos(ids)
|
||
|
# --
|
||
|
tokens_per_row = self.grid_size
|
||
|
height_ids = self._get_height_pos(ids)
|
||
|
# --
|
||
|
# Remove frame component from ids (1st term) and height component (2nd term)
|
||
|
width_ids = (ids - tokens_per_frame * frame_ids) - tokens_per_row * height_ids
|
||
|
return frame_ids, height_ids, width_ids
|
||
|
|
||
|
def apply_rotary_embeddings(self, qk, pos_ids):
|
||
|
d_mask, h_mask, w_mask = pos_ids
|
||
|
s = 0
|
||
|
qkd = rotate_queries_or_keys(qk[..., s : s + self.d_dim], pos=d_mask)
|
||
|
s += self.d_dim
|
||
|
qkh = rotate_queries_or_keys(qk[..., s : s + self.h_dim], pos=h_mask)
|
||
|
s += self.h_dim
|
||
|
qkw = rotate_queries_or_keys(qk[..., s : s + self.w_dim], pos=w_mask)
|
||
|
s += self.w_dim
|
||
|
# Combine rotated dimension
|
||
|
if s < self.attention_head_size:
|
||
|
qkr = qk[..., s:]
|
||
|
qk = torch.cat([qkd, qkh, qkw, qkr], dim=-1)
|
||
|
else:
|
||
|
qk = torch.cat([qkd, qkh, qkw], dim=-1)
|
||
|
return qk
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
position_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
) -> Union[tuple[torch.Tensor, torch.Tensor], tuple[torch.Tensor]]:
|
||
|
batch_size, seq_length, _ = hidden_states.shape
|
||
|
query_layer = (
|
||
|
self.query(hidden_states)
|
||
|
.view(batch_size, -1, self.num_attention_heads, self.attention_head_size)
|
||
|
.transpose(1, 2)
|
||
|
)
|
||
|
key_layer = (
|
||
|
self.key(hidden_states)
|
||
|
.view(batch_size, -1, self.num_attention_heads, self.attention_head_size)
|
||
|
.transpose(1, 2)
|
||
|
)
|
||
|
value_layer = (
|
||
|
self.value(hidden_states)
|
||
|
.view(batch_size, -1, self.num_attention_heads, self.attention_head_size)
|
||
|
.transpose(1, 2)
|
||
|
)
|
||
|
|
||
|
pos_ids = self.get_position_ids(hidden_states, masks=position_mask)
|
||
|
key_layer = self.apply_rotary_embeddings(key_layer, pos_ids)
|
||
|
query_layer = self.apply_rotary_embeddings(query_layer, pos_ids)
|
||
|
|
||
|
attention_interface: Callable = eager_attention_forward
|
||
|
if self.config._attn_implementation != "eager":
|
||
|
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||
|
logger.warning_once(
|
||
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
|
)
|
||
|
else:
|
||
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||
|
|
||
|
context_layer, attention_probs = attention_interface(
|
||
|
self,
|
||
|
query_layer,
|
||
|
key_layer,
|
||
|
value_layer,
|
||
|
head_mask,
|
||
|
is_causal=self.is_causal,
|
||
|
scaling=self.scaling,
|
||
|
dropout=0.0 if not self.training else self.dropout_prob,
|
||
|
)
|
||
|
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = self.proj(context_layer.reshape(new_context_layer_shape))
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Adapted from transformers.models.beit.modeling_dinov2.drop_path
|
||
|
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
||
|
"""
|
||
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||
|
|
||
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
||
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
||
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
||
|
argument.
|
||
|
"""
|
||
|
if drop_prob == 0.0 or not training:
|
||
|
return input
|
||
|
keep_prob = 1 - drop_prob
|
||
|
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||
|
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
||
|
random_tensor.floor_() # binarize
|
||
|
output = input.div(keep_prob) * random_tensor
|
||
|
return output
|
||
|
|
||
|
|
||
|
# Adapted from transformers.models.beit.modeling_beit.BeitDropPath
|
||
|
class VJEPA2DropPath(nn.Module):
|
||
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
||
|
|
||
|
def __init__(self, drop_prob: Optional[float] = None):
|
||
|
super().__init__()
|
||
|
self.drop_prob = drop_prob
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
return drop_path(hidden_states, self.drop_prob, self.training)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f"p={self.drop_prob}"
|
||
|
|
||
|
|
||
|
class VJEPA2MLP(nn.Module):
|
||
|
def __init__(self, config: VJEPA2Config, hidden_size: int = 1024, mlp_ratio: float = 4.0):
|
||
|
super().__init__()
|
||
|
in_features = out_features = hidden_size
|
||
|
hidden_features = int(hidden_size * mlp_ratio)
|
||
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
|
||
|
self.activation = ACT2FN[config.hidden_act]
|
||
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
|
||
|
|
||
|
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_state = self.fc1(hidden_state)
|
||
|
hidden_state = self.activation(hidden_state)
|
||
|
hidden_state = self.fc2(hidden_state)
|
||
|
return hidden_state
|
||
|
|
||
|
|
||
|
class VJEPA2Layer(GradientCheckpointingLayer):
|
||
|
"""This corresponds to the Block class in the original implementation."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: VJEPA2Config,
|
||
|
drop_path_rate: float = 0.0,
|
||
|
hidden_size: int = 1024,
|
||
|
num_attention_heads: int = 16,
|
||
|
mlp_ratio: float = 4.0,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.mlp_ratio = mlp_ratio
|
||
|
|
||
|
self.norm1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
|
||
|
self.attention = VJEPA2RopeAttention(config, hidden_size, num_attention_heads)
|
||
|
self.drop_path = VJEPA2DropPath(drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
|
||
|
self.norm2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
|
||
|
self.mlp = VJEPA2MLP(config, hidden_size=hidden_size, mlp_ratio=mlp_ratio)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
position_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> tuple[torch.Tensor, ...]:
|
||
|
# Self-Attention
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.norm1(hidden_states)
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states,
|
||
|
position_mask=position_mask, # position mask for context/target selection
|
||
|
head_mask=head_mask, # head mask is applied at F.scaled_dot_product_attention
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
hidden_states = self.drop_path(attention_output) + residual
|
||
|
|
||
|
# MLP
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.norm2(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = self.drop_path(hidden_states) + residual
|
||
|
|
||
|
# Add self attentions if we output attention weights
|
||
|
outputs = self_attention_outputs[1:]
|
||
|
outputs = (hidden_states,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class VJEPA2Encoder(nn.Module):
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
|
||
|
self.embeddings = VJEPA2Embeddings(config, hidden_size=config.hidden_size)
|
||
|
drop_path_rates = [
|
||
|
(config.drop_path_rate * i / (config.num_hidden_layers - 1) if config.num_hidden_layers > 1 else 0.0)
|
||
|
for i in range(config.num_hidden_layers)
|
||
|
]
|
||
|
self.layer = nn.ModuleList(
|
||
|
[
|
||
|
VJEPA2Layer(
|
||
|
config,
|
||
|
drop_path_rate=drop_path_rates[i],
|
||
|
hidden_size=config.hidden_size,
|
||
|
num_attention_heads=config.num_attention_heads,
|
||
|
mlp_ratio=config.mlp_ratio,
|
||
|
)
|
||
|
for i in range(config.num_hidden_layers)
|
||
|
]
|
||
|
)
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
@can_return_tuple
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values_videos: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
**kwargs,
|
||
|
) -> BaseModelOutput:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
hidden_states = self.embeddings(pixel_values_videos)
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
layer_outputs = layer_module(hidden_states, None, layer_head_mask, output_attentions)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
hidden_states = self.layernorm(hidden_states)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
def apply_masks(tensor: torch.Tensor, masks: list[torch.Tensor]) -> torch.Tensor:
|
||
|
"""
|
||
|
Args:
|
||
|
tensor (`torch.Tensor`):
|
||
|
Tensor of shape [batch_size, num_patches, feature_dim]
|
||
|
masks (`List[torch.Tensor]`):
|
||
|
List of tensors of shape [batch_size, num_patches] containing indices of patches to keep
|
||
|
"""
|
||
|
all_masked_tensors = []
|
||
|
for mask in masks:
|
||
|
mask = mask.to(tensor.device)
|
||
|
mask_keep = mask.unsqueeze(-1).repeat(1, 1, tensor.size(-1))
|
||
|
all_masked_tensors += [torch.gather(tensor, dim=1, index=mask_keep)]
|
||
|
|
||
|
return torch.cat(all_masked_tensors, dim=0)
|
||
|
|
||
|
|
||
|
class VJEPA2PredictorEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Construct mask token, position and patch embeddings.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
self.predictor_embeddings = nn.Linear(config.hidden_size, config.pred_hidden_size)
|
||
|
self.num_mask_tokens = 0
|
||
|
self.zero_init_mask_tokens = config.pred_zero_init_mask_tokens
|
||
|
self.num_mask_tokens = config.pred_num_mask_tokens
|
||
|
self.mask_tokens = nn.Parameter(torch.zeros(self.num_mask_tokens, 1, 1, config.pred_hidden_size))
|
||
|
|
||
|
self.patch_size = config.patch_size
|
||
|
self.config = config
|
||
|
|
||
|
@staticmethod
|
||
|
def num_patches(config):
|
||
|
if config.frames_per_clip > 1:
|
||
|
return (
|
||
|
(config.frames_per_clip // config.tubelet_size)
|
||
|
* (config.crop_size // config.patch_size)
|
||
|
* (config.crop_size // config.patch_size)
|
||
|
)
|
||
|
else:
|
||
|
return (config.crop_size // config.patch_size) * (config.crop_size // config.patch_size)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
context_mask: list[torch.Tensor],
|
||
|
target_mask: list[torch.Tensor],
|
||
|
mask_index: int = 1,
|
||
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
hidden_states : encoder outputs (context)
|
||
|
context_mask: tokens of the context (outputs from the encoder)
|
||
|
target_mask: tokens to predict
|
||
|
mask_index: index of the target mask to choose (useful for multiclip?)
|
||
|
"""
|
||
|
|
||
|
B = hidden_states.size(0)
|
||
|
context = self.predictor_embeddings(hidden_states)
|
||
|
|
||
|
# Make target tokens
|
||
|
mask_index = mask_index % self.num_mask_tokens
|
||
|
target = self.mask_tokens[mask_index]
|
||
|
|
||
|
# Note: this is problematic if the config isn't initialized with the right frames_per_clip value,
|
||
|
# e.g. for scenarios if we want to run predictor for more tokens than in the config.
|
||
|
# target = target.repeat(B, self.num_patches(self.config), 1)
|
||
|
# Remedy: use the provided target mask to get the max patch num
|
||
|
max_patch_num = target_mask[0].max() + 1 # one extra to include the last patch
|
||
|
target = target.repeat(B, max_patch_num, 1)
|
||
|
target = apply_masks(target, target_mask)
|
||
|
|
||
|
# Concatenate context & target tokens
|
||
|
context = context.repeat(len(context_mask), 1, 1)
|
||
|
embeddings = torch.cat([context, target], dim=1)
|
||
|
|
||
|
# Positions of context & target tokens
|
||
|
cm = torch.cat(context_mask, dim=0)
|
||
|
tm = torch.cat(target_mask, dim=0)
|
||
|
masks = torch.cat([cm, tm], dim=1)
|
||
|
|
||
|
return embeddings, masks
|
||
|
|
||
|
|
||
|
class VJEPA2Predictor(nn.Module):
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.gradient_checkpointing = False
|
||
|
self.embeddings = VJEPA2PredictorEmbeddings(config)
|
||
|
drop_path_rates = [
|
||
|
(
|
||
|
config.drop_path_rate * i / (config.pred_num_hidden_layers - 1)
|
||
|
if config.pred_num_hidden_layers > 1
|
||
|
else 0.0
|
||
|
)
|
||
|
for i in range(config.pred_num_hidden_layers)
|
||
|
]
|
||
|
self.layer = nn.ModuleList(
|
||
|
[
|
||
|
VJEPA2Layer(
|
||
|
config,
|
||
|
drop_path_rate=drop_path_rates[i],
|
||
|
hidden_size=config.pred_hidden_size,
|
||
|
num_attention_heads=config.pred_num_attention_heads,
|
||
|
mlp_ratio=config.pred_mlp_ratio,
|
||
|
)
|
||
|
for i in range(config.pred_num_hidden_layers)
|
||
|
]
|
||
|
)
|
||
|
self.layernorm = nn.LayerNorm(config.pred_hidden_size, eps=config.layer_norm_eps)
|
||
|
self.proj = nn.Linear(config.pred_hidden_size, config.hidden_size, bias=True)
|
||
|
|
||
|
def sort_tokens(self, hidden_states, position_masks, argsort, head_mask=None):
|
||
|
# gather position masks
|
||
|
argsort = argsort.to(position_masks.device)
|
||
|
position_masks = torch.gather(position_masks, dim=1, index=argsort)
|
||
|
|
||
|
# gather hidden states
|
||
|
argsort = argsort.to(hidden_states.device)
|
||
|
hidden_states_argsort = argsort.unsqueeze(-1).expand(-1, -1, hidden_states.size(-1))
|
||
|
hidden_states = torch.gather(hidden_states, dim=1, index=hidden_states_argsort)
|
||
|
|
||
|
# gather head mask
|
||
|
if head_mask is not None and head_mask[0] is not None:
|
||
|
argsort = argsort.to(head_mask.device)
|
||
|
head_mask = head_mask.permute(1, 0, 2, 3, 4)
|
||
|
argsort_4d = (
|
||
|
argsort.unsqueeze(1)
|
||
|
.unsqueeze(1)
|
||
|
.expand(-1, head_mask.size(1), head_mask.size(2), -1)
|
||
|
.unsqueeze(-1)
|
||
|
.expand(-1, -1, -1, -1, head_mask.size(-1))
|
||
|
)
|
||
|
head_mask = torch.gather(head_mask, dim=3, index=argsort_4d)
|
||
|
argsort_5d = (
|
||
|
argsort.unsqueeze(1)
|
||
|
.unsqueeze(1)
|
||
|
.unsqueeze(1)
|
||
|
.expand(-1, head_mask.size(1), head_mask.size(2), head_mask.size(3), -1)
|
||
|
)
|
||
|
head_mask = torch.gather(head_mask, dim=4, index=argsort_5d)
|
||
|
head_mask = head_mask.permute(1, 0, 2, 3, 4)
|
||
|
|
||
|
return hidden_states, position_masks, head_mask
|
||
|
|
||
|
def unsort_tokens(self, hidden_states, argsort):
|
||
|
argsort = argsort.to(hidden_states.device)
|
||
|
reverse_argsort = torch.argsort(argsort, dim=1)
|
||
|
reverse_argsort = reverse_argsort.unsqueeze(-1).expand(-1, -1, hidden_states.size(-1))
|
||
|
hidden_states = torch.gather(hidden_states, dim=1, index=reverse_argsort)
|
||
|
return hidden_states
|
||
|
|
||
|
@can_return_tuple
|
||
|
def forward(
|
||
|
self,
|
||
|
encoder_hidden_states: torch.Tensor,
|
||
|
context_mask: list[torch.Tensor],
|
||
|
target_mask: list[torch.Tensor],
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
**kwargs,
|
||
|
) -> BaseModelOutput:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
# mask out the encoder hidden states
|
||
|
# this is implemented here as in VJEPA training a separate encoder is used for target
|
||
|
encoder_hidden_states = apply_masks(encoder_hidden_states, context_mask)
|
||
|
_, N_ctxt, D = encoder_hidden_states.shape
|
||
|
hidden_states, position_masks = self.embeddings(encoder_hidden_states, context_mask, target_mask)
|
||
|
|
||
|
# Put tokens in sorted order
|
||
|
argsort = torch.argsort(position_masks, dim=1) # [B, N]
|
||
|
hidden_states, position_masks, head_mask = self.sort_tokens(hidden_states, position_masks, argsort, head_mask)
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
layer_outputs = layer_module(hidden_states, position_masks, layer_head_mask, output_attentions)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
hidden_states = self.layernorm(hidden_states)
|
||
|
# unsort and extract the predicted tokens
|
||
|
hidden_states = self.unsort_tokens(hidden_states, argsort)
|
||
|
hidden_states = hidden_states[:, N_ctxt:]
|
||
|
# projection
|
||
|
hidden_states = self.proj(hidden_states)
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class VJEPA2PoolerSelfAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.embed_dim // self.num_heads
|
||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.dropout = config.attention_dropout
|
||
|
self.is_causal = False
|
||
|
|
||
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
batch_size, seq_length, embed_dim = hidden_states.shape
|
||
|
|
||
|
queries = self.q_proj(hidden_states)
|
||
|
keys = self.k_proj(hidden_states)
|
||
|
values = self.v_proj(hidden_states)
|
||
|
|
||
|
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
attention_interface: Callable = eager_attention_forward
|
||
|
if self.config._attn_implementation != "eager":
|
||
|
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||
|
logger.warning_once(
|
||
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
|
)
|
||
|
else:
|
||
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||
|
|
||
|
attn_output, attn_weights = attention_interface(
|
||
|
self,
|
||
|
queries,
|
||
|
keys,
|
||
|
values,
|
||
|
attention_mask,
|
||
|
is_causal=self.is_causal,
|
||
|
scaling=self.scale,
|
||
|
dropout=0.0 if not self.training else self.dropout,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights
|
||
|
|
||
|
|
||
|
class VJEPA2PoolerCrossAttention(nn.Module):
|
||
|
"""It's different from other cross-attention layers, doesn't have output projection layer (o_proj)"""
|
||
|
|
||
|
# in case of modular refactoring - o_proj can be replaces with nn.Identity()
|
||
|
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.embed_dim // self.num_heads
|
||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.dropout = config.attention_dropout
|
||
|
self.is_causal = False
|
||
|
|
||
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
queries: torch.Tensor,
|
||
|
keys: torch.Tensor,
|
||
|
values: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
batch_size, q_seq_length, embed_dim = queries.shape
|
||
|
kv_seq_length = keys.shape[1]
|
||
|
|
||
|
queries = self.q_proj(queries)
|
||
|
keys = self.k_proj(keys)
|
||
|
values = self.v_proj(values)
|
||
|
|
||
|
queries = queries.view(batch_size, q_seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
keys = keys.view(batch_size, kv_seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
values = values.view(batch_size, kv_seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
attention_interface: Callable = eager_attention_forward
|
||
|
if self.config._attn_implementation != "eager":
|
||
|
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||
|
logger.warning_once(
|
||
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
|
)
|
||
|
else:
|
||
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||
|
|
||
|
attn_output, attn_weights = attention_interface(
|
||
|
self,
|
||
|
queries,
|
||
|
keys,
|
||
|
values,
|
||
|
attention_mask,
|
||
|
is_causal=self.is_causal,
|
||
|
scaling=self.scale,
|
||
|
dropout=0.0 if not self.training else self.dropout,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.reshape(batch_size, q_seq_length, embed_dim).contiguous()
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights
|
||
|
|
||
|
|
||
|
# Modified from SiglipEncoderLayer, but we have to propagate proper hidden_size to VJEPA2MLP
|
||
|
class VJEPA2PoolerSelfAttentionLayer(GradientCheckpointingLayer):
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.self_attn = VJEPA2PoolerSelfAttention(config)
|
||
|
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.mlp = VJEPA2MLP(config, hidden_size=config.hidden_size)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> tuple[torch.Tensor, ...]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`):
|
||
|
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
||
|
attention_mask (`torch.FloatTensor`):
|
||
|
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
||
|
output_attentions (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm1(hidden_states)
|
||
|
hidden_states, attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm2(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class VJEPA2PoolerCrossAttentionLayer(GradientCheckpointingLayer):
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.cross_attn = VJEPA2PoolerCrossAttention(config)
|
||
|
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.mlp = VJEPA2MLP(config, hidden_size=config.hidden_size)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
queries: torch.Tensor,
|
||
|
hidden_state: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> tuple[torch.Tensor, ...]:
|
||
|
# Apply cross-attention
|
||
|
residual = queries
|
||
|
hidden_state = self.layer_norm1(hidden_state)
|
||
|
hidden_state, *attn_weights = self.cross_attn(
|
||
|
queries,
|
||
|
hidden_state,
|
||
|
hidden_state,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_state = residual + hidden_state
|
||
|
|
||
|
# Apply MLP
|
||
|
residual = hidden_state
|
||
|
hidden_state = self.layer_norm2(hidden_state)
|
||
|
hidden_state = self.mlp(hidden_state)
|
||
|
hidden_state = residual + hidden_state
|
||
|
|
||
|
outputs = (hidden_state,)
|
||
|
if output_attentions:
|
||
|
outputs += tuple(attn_weights)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class VJEPA2AttentivePooler(nn.Module):
|
||
|
"""Attentive Pooler"""
|
||
|
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__()
|
||
|
self.query_tokens = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
||
|
self.cross_attention_layer = VJEPA2PoolerCrossAttentionLayer(config)
|
||
|
self.self_attention_layers = nn.ModuleList(
|
||
|
[VJEPA2PoolerSelfAttentionLayer(config) for _ in range(config.num_pooler_layers)]
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
||
|
for layer in self.self_attention_layers:
|
||
|
hidden_state = layer(hidden_state, attention_mask=None)[0]
|
||
|
queries = self.query_tokens.repeat(hidden_state.shape[0], 1, 1)
|
||
|
hidden_state = self.cross_attention_layer(queries, hidden_state)[0]
|
||
|
return hidden_state.squeeze(1)
|
||
|
|
||
|
|
||
|
@auto_docstring
|
||
|
class VJEPA2PreTrainedModel(PreTrainedModel):
|
||
|
config: VJEPA2Config
|
||
|
base_model_prefix = "vjepa2"
|
||
|
main_input_name = "pixel_values_videos"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = [
|
||
|
"VJEPA2Layer",
|
||
|
"VJEPA2PoolerSelfAttentionLayer",
|
||
|
"VJEPA2PoolerCrossAttentionLayer",
|
||
|
"VJEPA2PredictorEmbeddings",
|
||
|
]
|
||
|
_supports_sdpa = True
|
||
|
_supports_flash_attn = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
|
||
|
init_std = self.config.initializer_range
|
||
|
|
||
|
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
||
|
# `trunc_normal_cpu` not implemented in `half` issues
|
||
|
def trunc_normal_f32_(weight, std):
|
||
|
data_float_32 = weight.data.to(torch.float32)
|
||
|
data_init = nn.init.trunc_normal_(data_float_32, mean=0.0, std=std)
|
||
|
weight.data = data_init.to(weight.dtype)
|
||
|
|
||
|
if isinstance(module, VJEPA2AttentivePooler):
|
||
|
trunc_normal_f32_(module.query_tokens, std=init_std)
|
||
|
for i, layer in enumerate(module.self_attention_layers, 1):
|
||
|
std = init_std / (i**0.5)
|
||
|
trunc_normal_f32_(layer.self_attn.out_proj.weight, std=std)
|
||
|
trunc_normal_f32_(layer.mlp.fc2.weight, std=std)
|
||
|
std = init_std / (len(module.self_attention_layers) + 1) ** 0.5
|
||
|
trunc_normal_f32_(module.cross_attention_layer.mlp.fc2.weight, std=std)
|
||
|
elif isinstance(module, VJEPA2PredictorEmbeddings):
|
||
|
if module.zero_init_mask_tokens:
|
||
|
module.mask_tokens.data.zero_()
|
||
|
else:
|
||
|
trunc_normal_f32_(module.mask_tokens, std=init_std)
|
||
|
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
|
||
|
trunc_normal_f32_(module.weight, std=init_std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
def _convert_head_mask_to_5d(head_mask, num_hidden_layers):
|
||
|
"""
|
||
|
Inputs:
|
||
|
- head_mask: bsz x seq_length x seq_length | None
|
||
|
Returns
|
||
|
- [num_hidden_layers x batch x num_heads x seq_length x seq_length] | [num_hidden_layers]
|
||
|
"""
|
||
|
if head_mask is not None:
|
||
|
head_mask = head_mask.unsqueeze(1).unsqueeze(0)
|
||
|
head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
|
||
|
else:
|
||
|
head_mask = [None] * num_hidden_layers
|
||
|
return head_mask
|
||
|
|
||
|
|
||
|
@auto_docstring
|
||
|
class VJEPA2Model(VJEPA2PreTrainedModel):
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
self.encoder = VJEPA2Encoder(config)
|
||
|
self.predictor = VJEPA2Predictor(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> VJEPA2PatchEmbeddings3D:
|
||
|
return self.encoder.embeddings.patch_embeddings
|
||
|
|
||
|
@can_return_tuple
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values_videos: torch.Tensor,
|
||
|
context_head_mask: Optional[torch.Tensor] = None,
|
||
|
context_mask: Optional[list[torch.Tensor]] = None,
|
||
|
target_head_mask: Optional[torch.Tensor] = None,
|
||
|
target_mask: Optional[list[torch.Tensor]] = None,
|
||
|
skip_predictor: bool = False,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
**kwargs,
|
||
|
) -> VJEPA2WithMaskedInputModelOutput:
|
||
|
r"""
|
||
|
context_head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
|
||
|
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard) for the context.
|
||
|
context_mask (`torch.Tensor` with shape `[batch_size, patch_size, 1]`, *optional*):
|
||
|
The mask position ids indicating which encoder output patches are going to be exposed to the predictor.
|
||
|
By default, this mask is created as torch.arange(N).unsqueeze(0).repeat(B,1), indicating full context
|
||
|
available to the predictor.
|
||
|
target_head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
|
||
|
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard) for the target.
|
||
|
target_mask (`torch.Tensor` with shape `[batch_size, patch_size, 1]`, *optional*):
|
||
|
The mask position ids indicating which encoder output patches are going to be used as a prediction target
|
||
|
for the predictor. By default, this mask is created as torch.arange(N).unsqueeze(0).repeat(B,1), indicating
|
||
|
that the predictor should predict all encoder patches.
|
||
|
skip_predictor (bool):
|
||
|
flag to skip the predictor forward, useful if you just need the encoder outputs
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
|
||
|
if pixel_values_videos is None:
|
||
|
raise ValueError("You have to specify pixel_values_videos")
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
context_head_mask = _convert_head_mask_to_5d(context_head_mask, self.config.num_hidden_layers)
|
||
|
target_head_mask = _convert_head_mask_to_5d(target_head_mask, self.config.pred_num_hidden_layers)
|
||
|
|
||
|
encoder_outputs: BaseModelOutput = self.encoder(
|
||
|
pixel_values_videos=pixel_values_videos,
|
||
|
head_mask=context_head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
)
|
||
|
sequence_output = encoder_outputs.last_hidden_state
|
||
|
|
||
|
if context_mask is None and target_mask is None:
|
||
|
B = pixel_values_videos.size(0)
|
||
|
N = sequence_output.size(1) # ensure we are using dynamic patch size
|
||
|
context_mask = [torch.arange(N, device=pixel_values_videos.device).unsqueeze(0).repeat((B, 1))]
|
||
|
target_mask = [torch.arange(N, device=pixel_values_videos.device).unsqueeze(0).repeat((B, 1))]
|
||
|
|
||
|
if not skip_predictor:
|
||
|
predictor_outputs: BaseModelOutput = self.predictor(
|
||
|
encoder_hidden_states=sequence_output,
|
||
|
context_mask=context_mask,
|
||
|
target_mask=target_mask,
|
||
|
head_mask=target_head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
)
|
||
|
predictor_output = VJEPA2WithMaskedInputPredictorOutput(
|
||
|
last_hidden_state=predictor_outputs.last_hidden_state,
|
||
|
target_hidden_state=apply_masks(sequence_output, target_mask),
|
||
|
hidden_states=predictor_outputs.hidden_states,
|
||
|
attentions=predictor_outputs.attentions,
|
||
|
)
|
||
|
else:
|
||
|
predictor_output = None
|
||
|
|
||
|
encoder_output = VJEPA2WithMaskedInputModelOutput(
|
||
|
last_hidden_state=sequence_output,
|
||
|
masked_hidden_state=apply_masks(sequence_output, context_mask),
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
predictor_output=predictor_output,
|
||
|
)
|
||
|
|
||
|
return encoder_output
|
||
|
|
||
|
def get_vision_features(self, pixel_values_videos) -> torch.Tensor:
|
||
|
encoder_output = self.forward(pixel_values_videos)
|
||
|
return encoder_output.last_hidden_state
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
V-JEPA 2 Model transformer with a video classification head on top (a linear layer on top of the attentive pooler).
|
||
|
"""
|
||
|
)
|
||
|
class VJEPA2ForVideoClassification(VJEPA2PreTrainedModel):
|
||
|
def __init__(self, config: VJEPA2Config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.num_labels = config.num_labels
|
||
|
self.vjepa2 = VJEPA2Model(config)
|
||
|
|
||
|
# Classifier head
|
||
|
self.pooler = VJEPA2AttentivePooler(config)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels, bias=True)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@can_return_tuple
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values_videos: torch.Tensor,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
) -> Union[tuple, ImageClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> import torch
|
||
|
>>> import numpy as np
|
||
|
>>> from transformers import AutoVideoProcessor, VJEPA2ForVideoClassification
|
||
|
|
||
|
>>> device = "cuda"
|
||
|
|
||
|
>>> video_processor = AutoVideoProcessor.from_pretrained("facebook/vjepa2-vitl-fpc16-256-ssv2")
|
||
|
>>> model = VJEPA2ForVideoClassification.from_pretrained("facebook/vjepa2-vitl-fpc16-256-ssv2").to(device)
|
||
|
|
||
|
>>> video = np.ones((64, 256, 256, 3)) # 64 frames, 256x256 RGB
|
||
|
>>> inputs = video_processor(video, return_tensors="pt").to(device)
|
||
|
|
||
|
>>> # For inference
|
||
|
>>> with torch.no_grad():
|
||
|
... outputs = model(**inputs)
|
||
|
>>> logits = outputs.logits
|
||
|
|
||
|
>>> predicted_label = logits.argmax(-1).item()
|
||
|
>>> print(model.config.id2label[predicted_label])
|
||
|
|
||
|
>>> # For training
|
||
|
>>> labels = torch.ones(1, dtype=torch.long, device=device)
|
||
|
>>> loss = model(**inputs, labels=labels).loss
|
||
|
|
||
|
```"""
|
||
|
|
||
|
outputs = self.vjepa2(
|
||
|
pixel_values_videos=pixel_values_videos,
|
||
|
skip_predictor=True,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = outputs.last_hidden_state
|
||
|
pooler_output = self.pooler(last_hidden_state)
|
||
|
logits = self.classifier(pooler_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss = self.loss_function(pooled_logits=logits, labels=labels, config=self.config)
|
||
|
|
||
|
return ImageClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
__all__ = ["VJEPA2Model", "VJEPA2PreTrainedModel", "VJEPA2ForVideoClassification"]
|