654 lines
34 KiB
Python
654 lines
34 KiB
Python
![]() |
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
|
|||
|
import re
|
|||
|
from dataclasses import dataclass
|
|||
|
from typing import Any, Callable, List, Optional, Tuple
|
|||
|
|
|||
|
import torch
|
|||
|
|
|||
|
from ..models.attention_processor import Attention, MochiAttention
|
|||
|
from ..models.modeling_outputs import Transformer2DModelOutput
|
|||
|
from ..utils import logging
|
|||
|
from .hooks import HookRegistry, ModelHook
|
|||
|
|
|||
|
|
|||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|||
|
|
|||
|
|
|||
|
_FASTER_CACHE_DENOISER_HOOK = "faster_cache_denoiser"
|
|||
|
_FASTER_CACHE_BLOCK_HOOK = "faster_cache_block"
|
|||
|
_ATTENTION_CLASSES = (Attention, MochiAttention)
|
|||
|
_SPATIAL_ATTENTION_BLOCK_IDENTIFIERS = (
|
|||
|
"^blocks.*attn",
|
|||
|
"^transformer_blocks.*attn",
|
|||
|
"^single_transformer_blocks.*attn",
|
|||
|
)
|
|||
|
_TEMPORAL_ATTENTION_BLOCK_IDENTIFIERS = ("^temporal_transformer_blocks.*attn",)
|
|||
|
_TRANSFORMER_BLOCK_IDENTIFIERS = _SPATIAL_ATTENTION_BLOCK_IDENTIFIERS + _TEMPORAL_ATTENTION_BLOCK_IDENTIFIERS
|
|||
|
_UNCOND_COND_INPUT_KWARGS_IDENTIFIERS = (
|
|||
|
"hidden_states",
|
|||
|
"encoder_hidden_states",
|
|||
|
"timestep",
|
|||
|
"attention_mask",
|
|||
|
"encoder_attention_mask",
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
@dataclass
|
|||
|
class FasterCacheConfig:
|
|||
|
r"""
|
|||
|
Configuration for [FasterCache](https://huggingface.co/papers/2410.19355).
|
|||
|
|
|||
|
Attributes:
|
|||
|
spatial_attention_block_skip_range (`int`, defaults to `2`):
|
|||
|
Calculate the attention states every `N` iterations. If this is set to `N`, the attention computation will
|
|||
|
be skipped `N - 1` times (i.e., cached attention states will be re-used) before computing the new attention
|
|||
|
states again.
|
|||
|
temporal_attention_block_skip_range (`int`, *optional*, defaults to `None`):
|
|||
|
Calculate the attention states every `N` iterations. If this is set to `N`, the attention computation will
|
|||
|
be skipped `N - 1` times (i.e., cached attention states will be re-used) before computing the new attention
|
|||
|
states again.
|
|||
|
spatial_attention_timestep_skip_range (`Tuple[float, float]`, defaults to `(-1, 681)`):
|
|||
|
The timestep range within which the spatial attention computation can be skipped without a significant loss
|
|||
|
in quality. This is to be determined by the user based on the underlying model. The first value in the
|
|||
|
tuple is the lower bound and the second value is the upper bound. Typically, diffusion timesteps for
|
|||
|
denoising are in the reversed range of 0 to 1000 (i.e. denoising starts at timestep 1000 and ends at
|
|||
|
timestep 0). For the default values, this would mean that the spatial attention computation skipping will
|
|||
|
be applicable only after denoising timestep 681 is reached, and continue until the end of the denoising
|
|||
|
process.
|
|||
|
temporal_attention_timestep_skip_range (`Tuple[float, float]`, *optional*, defaults to `None`):
|
|||
|
The timestep range within which the temporal attention computation can be skipped without a significant
|
|||
|
loss in quality. This is to be determined by the user based on the underlying model. The first value in the
|
|||
|
tuple is the lower bound and the second value is the upper bound. Typically, diffusion timesteps for
|
|||
|
denoising are in the reversed range of 0 to 1000 (i.e. denoising starts at timestep 1000 and ends at
|
|||
|
timestep 0).
|
|||
|
low_frequency_weight_update_timestep_range (`Tuple[int, int]`, defaults to `(99, 901)`):
|
|||
|
The timestep range within which the low frequency weight scaling update is applied. The first value in the
|
|||
|
tuple is the lower bound and the second value is the upper bound of the timestep range. The callback
|
|||
|
function for the update is called only within this range.
|
|||
|
high_frequency_weight_update_timestep_range (`Tuple[int, int]`, defaults to `(-1, 301)`):
|
|||
|
The timestep range within which the high frequency weight scaling update is applied. The first value in the
|
|||
|
tuple is the lower bound and the second value is the upper bound of the timestep range. The callback
|
|||
|
function for the update is called only within this range.
|
|||
|
alpha_low_frequency (`float`, defaults to `1.1`):
|
|||
|
The weight to scale the low frequency updates by. This is used to approximate the unconditional branch from
|
|||
|
the conditional branch outputs.
|
|||
|
alpha_high_frequency (`float`, defaults to `1.1`):
|
|||
|
The weight to scale the high frequency updates by. This is used to approximate the unconditional branch
|
|||
|
from the conditional branch outputs.
|
|||
|
unconditional_batch_skip_range (`int`, defaults to `5`):
|
|||
|
Process the unconditional branch every `N` iterations. If this is set to `N`, the unconditional branch
|
|||
|
computation will be skipped `N - 1` times (i.e., cached unconditional branch states will be re-used) before
|
|||
|
computing the new unconditional branch states again.
|
|||
|
unconditional_batch_timestep_skip_range (`Tuple[float, float]`, defaults to `(-1, 641)`):
|
|||
|
The timestep range within which the unconditional branch computation can be skipped without a significant
|
|||
|
loss in quality. This is to be determined by the user based on the underlying model. The first value in the
|
|||
|
tuple is the lower bound and the second value is the upper bound.
|
|||
|
spatial_attention_block_identifiers (`Tuple[str, ...]`, defaults to `("blocks.*attn1", "transformer_blocks.*attn1", "single_transformer_blocks.*attn1")`):
|
|||
|
The identifiers to match the spatial attention blocks in the model. If the name of the block contains any
|
|||
|
of these identifiers, FasterCache will be applied to that block. This can either be the full layer names,
|
|||
|
partial layer names, or regex patterns. Matching will always be done using a regex match.
|
|||
|
temporal_attention_block_identifiers (`Tuple[str, ...]`, defaults to `("temporal_transformer_blocks.*attn1",)`):
|
|||
|
The identifiers to match the temporal attention blocks in the model. If the name of the block contains any
|
|||
|
of these identifiers, FasterCache will be applied to that block. This can either be the full layer names,
|
|||
|
partial layer names, or regex patterns. Matching will always be done using a regex match.
|
|||
|
attention_weight_callback (`Callable[[torch.nn.Module], float]`, defaults to `None`):
|
|||
|
The callback function to determine the weight to scale the attention outputs by. This function should take
|
|||
|
the attention module as input and return a float value. This is used to approximate the unconditional
|
|||
|
branch from the conditional branch outputs. If not provided, the default weight is 0.5 for all timesteps.
|
|||
|
Typically, as described in the paper, this weight should gradually increase from 0 to 1 as the inference
|
|||
|
progresses. Users are encouraged to experiment and provide custom weight schedules that take into account
|
|||
|
the number of inference steps and underlying model behaviour as denoising progresses.
|
|||
|
low_frequency_weight_callback (`Callable[[torch.nn.Module], float]`, defaults to `None`):
|
|||
|
The callback function to determine the weight to scale the low frequency updates by. If not provided, the
|
|||
|
default weight is 1.1 for timesteps within the range specified (as described in the paper).
|
|||
|
high_frequency_weight_callback (`Callable[[torch.nn.Module], float]`, defaults to `None`):
|
|||
|
The callback function to determine the weight to scale the high frequency updates by. If not provided, the
|
|||
|
default weight is 1.1 for timesteps within the range specified (as described in the paper).
|
|||
|
tensor_format (`str`, defaults to `"BCFHW"`):
|
|||
|
The format of the input tensors. This should be one of `"BCFHW"`, `"BFCHW"`, or `"BCHW"`. The format is
|
|||
|
used to split individual latent frames in order for low and high frequency components to be computed.
|
|||
|
is_guidance_distilled (`bool`, defaults to `False`):
|
|||
|
Whether the model is guidance distilled or not. If the model is guidance distilled, FasterCache will not be
|
|||
|
applied at the denoiser-level to skip the unconditional branch computation (as there is none).
|
|||
|
_unconditional_conditional_input_kwargs_identifiers (`List[str]`, defaults to `("hidden_states", "encoder_hidden_states", "timestep", "attention_mask", "encoder_attention_mask")`):
|
|||
|
The identifiers to match the input kwargs that contain the batchwise-concatenated unconditional and
|
|||
|
conditional inputs. If the name of the input kwargs contains any of these identifiers, FasterCache will
|
|||
|
split the inputs into unconditional and conditional branches. This must be a list of exact input kwargs
|
|||
|
names that contain the batchwise-concatenated unconditional and conditional inputs.
|
|||
|
"""
|
|||
|
|
|||
|
# In the paper and codebase, they hardcode these values to 2. However, it can be made configurable
|
|||
|
# after some testing. We default to 2 if these parameters are not provided.
|
|||
|
spatial_attention_block_skip_range: int = 2
|
|||
|
temporal_attention_block_skip_range: Optional[int] = None
|
|||
|
|
|||
|
spatial_attention_timestep_skip_range: Tuple[int, int] = (-1, 681)
|
|||
|
temporal_attention_timestep_skip_range: Tuple[int, int] = (-1, 681)
|
|||
|
|
|||
|
# Indicator functions for low/high frequency as mentioned in Equation 11 of the paper
|
|||
|
low_frequency_weight_update_timestep_range: Tuple[int, int] = (99, 901)
|
|||
|
high_frequency_weight_update_timestep_range: Tuple[int, int] = (-1, 301)
|
|||
|
|
|||
|
# ⍺1 and ⍺2 as mentioned in Equation 11 of the paper
|
|||
|
alpha_low_frequency: float = 1.1
|
|||
|
alpha_high_frequency: float = 1.1
|
|||
|
|
|||
|
# n as described in CFG-Cache explanation in the paper - dependent on the model
|
|||
|
unconditional_batch_skip_range: int = 5
|
|||
|
unconditional_batch_timestep_skip_range: Tuple[int, int] = (-1, 641)
|
|||
|
|
|||
|
spatial_attention_block_identifiers: Tuple[str, ...] = _SPATIAL_ATTENTION_BLOCK_IDENTIFIERS
|
|||
|
temporal_attention_block_identifiers: Tuple[str, ...] = _TEMPORAL_ATTENTION_BLOCK_IDENTIFIERS
|
|||
|
|
|||
|
attention_weight_callback: Callable[[torch.nn.Module], float] = None
|
|||
|
low_frequency_weight_callback: Callable[[torch.nn.Module], float] = None
|
|||
|
high_frequency_weight_callback: Callable[[torch.nn.Module], float] = None
|
|||
|
|
|||
|
tensor_format: str = "BCFHW"
|
|||
|
is_guidance_distilled: bool = False
|
|||
|
|
|||
|
current_timestep_callback: Callable[[], int] = None
|
|||
|
|
|||
|
_unconditional_conditional_input_kwargs_identifiers: List[str] = _UNCOND_COND_INPUT_KWARGS_IDENTIFIERS
|
|||
|
|
|||
|
def __repr__(self) -> str:
|
|||
|
return (
|
|||
|
f"FasterCacheConfig(\n"
|
|||
|
f" spatial_attention_block_skip_range={self.spatial_attention_block_skip_range},\n"
|
|||
|
f" temporal_attention_block_skip_range={self.temporal_attention_block_skip_range},\n"
|
|||
|
f" spatial_attention_timestep_skip_range={self.spatial_attention_timestep_skip_range},\n"
|
|||
|
f" temporal_attention_timestep_skip_range={self.temporal_attention_timestep_skip_range},\n"
|
|||
|
f" low_frequency_weight_update_timestep_range={self.low_frequency_weight_update_timestep_range},\n"
|
|||
|
f" high_frequency_weight_update_timestep_range={self.high_frequency_weight_update_timestep_range},\n"
|
|||
|
f" alpha_low_frequency={self.alpha_low_frequency},\n"
|
|||
|
f" alpha_high_frequency={self.alpha_high_frequency},\n"
|
|||
|
f" unconditional_batch_skip_range={self.unconditional_batch_skip_range},\n"
|
|||
|
f" unconditional_batch_timestep_skip_range={self.unconditional_batch_timestep_skip_range},\n"
|
|||
|
f" spatial_attention_block_identifiers={self.spatial_attention_block_identifiers},\n"
|
|||
|
f" temporal_attention_block_identifiers={self.temporal_attention_block_identifiers},\n"
|
|||
|
f" tensor_format={self.tensor_format},\n"
|
|||
|
f")"
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
class FasterCacheDenoiserState:
|
|||
|
r"""
|
|||
|
State for [FasterCache](https://huggingface.co/papers/2410.19355) top-level denoiser module.
|
|||
|
"""
|
|||
|
|
|||
|
def __init__(self) -> None:
|
|||
|
self.iteration: int = 0
|
|||
|
self.low_frequency_delta: torch.Tensor = None
|
|||
|
self.high_frequency_delta: torch.Tensor = None
|
|||
|
|
|||
|
def reset(self):
|
|||
|
self.iteration = 0
|
|||
|
self.low_frequency_delta = None
|
|||
|
self.high_frequency_delta = None
|
|||
|
|
|||
|
|
|||
|
class FasterCacheBlockState:
|
|||
|
r"""
|
|||
|
State for [FasterCache](https://huggingface.co/papers/2410.19355). Every underlying block that FasterCache is
|
|||
|
applied to will have an instance of this state.
|
|||
|
"""
|
|||
|
|
|||
|
def __init__(self) -> None:
|
|||
|
self.iteration: int = 0
|
|||
|
self.batch_size: int = None
|
|||
|
self.cache: Tuple[torch.Tensor, torch.Tensor] = None
|
|||
|
|
|||
|
def reset(self):
|
|||
|
self.iteration = 0
|
|||
|
self.batch_size = None
|
|||
|
self.cache = None
|
|||
|
|
|||
|
|
|||
|
class FasterCacheDenoiserHook(ModelHook):
|
|||
|
_is_stateful = True
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
unconditional_batch_skip_range: int,
|
|||
|
unconditional_batch_timestep_skip_range: Tuple[int, int],
|
|||
|
tensor_format: str,
|
|||
|
is_guidance_distilled: bool,
|
|||
|
uncond_cond_input_kwargs_identifiers: List[str],
|
|||
|
current_timestep_callback: Callable[[], int],
|
|||
|
low_frequency_weight_callback: Callable[[torch.nn.Module], torch.Tensor],
|
|||
|
high_frequency_weight_callback: Callable[[torch.nn.Module], torch.Tensor],
|
|||
|
) -> None:
|
|||
|
super().__init__()
|
|||
|
|
|||
|
self.unconditional_batch_skip_range = unconditional_batch_skip_range
|
|||
|
self.unconditional_batch_timestep_skip_range = unconditional_batch_timestep_skip_range
|
|||
|
# We can't easily detect what args are to be split in unconditional and conditional branches. We
|
|||
|
# can only do it for kwargs, hence they are the only ones we split. The args are passed as-is.
|
|||
|
# If a model is to be made compatible with FasterCache, the user must ensure that the inputs that
|
|||
|
# contain batchwise-concatenated unconditional and conditional inputs are passed as kwargs.
|
|||
|
self.uncond_cond_input_kwargs_identifiers = uncond_cond_input_kwargs_identifiers
|
|||
|
self.tensor_format = tensor_format
|
|||
|
self.is_guidance_distilled = is_guidance_distilled
|
|||
|
|
|||
|
self.current_timestep_callback = current_timestep_callback
|
|||
|
self.low_frequency_weight_callback = low_frequency_weight_callback
|
|||
|
self.high_frequency_weight_callback = high_frequency_weight_callback
|
|||
|
|
|||
|
def initialize_hook(self, module):
|
|||
|
self.state = FasterCacheDenoiserState()
|
|||
|
return module
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def _get_cond_input(input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|||
|
# Note: this method assumes that the input tensor is batchwise-concatenated with unconditional inputs
|
|||
|
# followed by conditional inputs.
|
|||
|
_, cond = input.chunk(2, dim=0)
|
|||
|
return cond
|
|||
|
|
|||
|
def new_forward(self, module: torch.nn.Module, *args, **kwargs) -> Any:
|
|||
|
# Split the unconditional and conditional inputs. We only want to infer the conditional branch if the
|
|||
|
# requirements for skipping the unconditional branch are met as described in the paper.
|
|||
|
# We skip the unconditional branch only if the following conditions are met:
|
|||
|
# 1. We have completed at least one iteration of the denoiser
|
|||
|
# 2. The current timestep is within the range specified by the user. This is the optimal timestep range
|
|||
|
# where approximating the unconditional branch from the computation of the conditional branch is possible
|
|||
|
# without a significant loss in quality.
|
|||
|
# 3. The current iteration is not a multiple of the unconditional batch skip range. This is done so that
|
|||
|
# we compute the unconditional branch at least once every few iterations to ensure minimal quality loss.
|
|||
|
is_within_timestep_range = (
|
|||
|
self.unconditional_batch_timestep_skip_range[0]
|
|||
|
< self.current_timestep_callback()
|
|||
|
< self.unconditional_batch_timestep_skip_range[1]
|
|||
|
)
|
|||
|
should_skip_uncond = (
|
|||
|
self.state.iteration > 0
|
|||
|
and is_within_timestep_range
|
|||
|
and self.state.iteration % self.unconditional_batch_skip_range != 0
|
|||
|
and not self.is_guidance_distilled
|
|||
|
)
|
|||
|
|
|||
|
if should_skip_uncond:
|
|||
|
is_any_kwarg_uncond = any(k in self.uncond_cond_input_kwargs_identifiers for k in kwargs.keys())
|
|||
|
if is_any_kwarg_uncond:
|
|||
|
logger.debug("FasterCache - Skipping unconditional branch computation")
|
|||
|
args = tuple([self._get_cond_input(arg) if torch.is_tensor(arg) else arg for arg in args])
|
|||
|
kwargs = {
|
|||
|
k: v if k not in self.uncond_cond_input_kwargs_identifiers else self._get_cond_input(v)
|
|||
|
for k, v in kwargs.items()
|
|||
|
}
|
|||
|
|
|||
|
output = self.fn_ref.original_forward(*args, **kwargs)
|
|||
|
|
|||
|
if self.is_guidance_distilled:
|
|||
|
self.state.iteration += 1
|
|||
|
return output
|
|||
|
|
|||
|
if torch.is_tensor(output):
|
|||
|
hidden_states = output
|
|||
|
elif isinstance(output, (tuple, Transformer2DModelOutput)):
|
|||
|
hidden_states = output[0]
|
|||
|
|
|||
|
batch_size = hidden_states.size(0)
|
|||
|
|
|||
|
if should_skip_uncond:
|
|||
|
self.state.low_frequency_delta = self.state.low_frequency_delta * self.low_frequency_weight_callback(
|
|||
|
module
|
|||
|
)
|
|||
|
self.state.high_frequency_delta = self.state.high_frequency_delta * self.high_frequency_weight_callback(
|
|||
|
module
|
|||
|
)
|
|||
|
|
|||
|
if self.tensor_format == "BCFHW":
|
|||
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
|
|||
|
if self.tensor_format == "BCFHW" or self.tensor_format == "BFCHW":
|
|||
|
hidden_states = hidden_states.flatten(0, 1)
|
|||
|
|
|||
|
low_freq_cond, high_freq_cond = _split_low_high_freq(hidden_states.float())
|
|||
|
|
|||
|
# Approximate/compute the unconditional branch outputs as described in Equation 9 and 10 of the paper
|
|||
|
low_freq_uncond = self.state.low_frequency_delta + low_freq_cond
|
|||
|
high_freq_uncond = self.state.high_frequency_delta + high_freq_cond
|
|||
|
uncond_freq = low_freq_uncond + high_freq_uncond
|
|||
|
|
|||
|
uncond_states = torch.fft.ifftshift(uncond_freq)
|
|||
|
uncond_states = torch.fft.ifft2(uncond_states).real
|
|||
|
|
|||
|
if self.tensor_format == "BCFHW" or self.tensor_format == "BFCHW":
|
|||
|
uncond_states = uncond_states.unflatten(0, (batch_size, -1))
|
|||
|
hidden_states = hidden_states.unflatten(0, (batch_size, -1))
|
|||
|
if self.tensor_format == "BCFHW":
|
|||
|
uncond_states = uncond_states.permute(0, 2, 1, 3, 4)
|
|||
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
|
|||
|
|
|||
|
# Concatenate the approximated unconditional and predicted conditional branches
|
|||
|
uncond_states = uncond_states.to(hidden_states.dtype)
|
|||
|
hidden_states = torch.cat([uncond_states, hidden_states], dim=0)
|
|||
|
else:
|
|||
|
uncond_states, cond_states = hidden_states.chunk(2, dim=0)
|
|||
|
if self.tensor_format == "BCFHW":
|
|||
|
uncond_states = uncond_states.permute(0, 2, 1, 3, 4)
|
|||
|
cond_states = cond_states.permute(0, 2, 1, 3, 4)
|
|||
|
if self.tensor_format == "BCFHW" or self.tensor_format == "BFCHW":
|
|||
|
uncond_states = uncond_states.flatten(0, 1)
|
|||
|
cond_states = cond_states.flatten(0, 1)
|
|||
|
|
|||
|
low_freq_uncond, high_freq_uncond = _split_low_high_freq(uncond_states.float())
|
|||
|
low_freq_cond, high_freq_cond = _split_low_high_freq(cond_states.float())
|
|||
|
self.state.low_frequency_delta = low_freq_uncond - low_freq_cond
|
|||
|
self.state.high_frequency_delta = high_freq_uncond - high_freq_cond
|
|||
|
|
|||
|
self.state.iteration += 1
|
|||
|
if torch.is_tensor(output):
|
|||
|
output = hidden_states
|
|||
|
elif isinstance(output, tuple):
|
|||
|
output = (hidden_states, *output[1:])
|
|||
|
else:
|
|||
|
output.sample = hidden_states
|
|||
|
|
|||
|
return output
|
|||
|
|
|||
|
def reset_state(self, module: torch.nn.Module) -> torch.nn.Module:
|
|||
|
self.state.reset()
|
|||
|
return module
|
|||
|
|
|||
|
|
|||
|
class FasterCacheBlockHook(ModelHook):
|
|||
|
_is_stateful = True
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
block_skip_range: int,
|
|||
|
timestep_skip_range: Tuple[int, int],
|
|||
|
is_guidance_distilled: bool,
|
|||
|
weight_callback: Callable[[torch.nn.Module], float],
|
|||
|
current_timestep_callback: Callable[[], int],
|
|||
|
) -> None:
|
|||
|
super().__init__()
|
|||
|
|
|||
|
self.block_skip_range = block_skip_range
|
|||
|
self.timestep_skip_range = timestep_skip_range
|
|||
|
self.is_guidance_distilled = is_guidance_distilled
|
|||
|
|
|||
|
self.weight_callback = weight_callback
|
|||
|
self.current_timestep_callback = current_timestep_callback
|
|||
|
|
|||
|
def initialize_hook(self, module):
|
|||
|
self.state = FasterCacheBlockState()
|
|||
|
return module
|
|||
|
|
|||
|
def _compute_approximated_attention_output(
|
|||
|
self, t_2_output: torch.Tensor, t_output: torch.Tensor, weight: float, batch_size: int
|
|||
|
) -> torch.Tensor:
|
|||
|
if t_2_output.size(0) != batch_size:
|
|||
|
# The cache t_2_output contains both batchwise-concatenated unconditional-conditional branch outputs. Just
|
|||
|
# take the conditional branch outputs.
|
|||
|
assert t_2_output.size(0) == 2 * batch_size
|
|||
|
t_2_output = t_2_output[batch_size:]
|
|||
|
if t_output.size(0) != batch_size:
|
|||
|
# The cache t_output contains both batchwise-concatenated unconditional-conditional branch outputs. Just
|
|||
|
# take the conditional branch outputs.
|
|||
|
assert t_output.size(0) == 2 * batch_size
|
|||
|
t_output = t_output[batch_size:]
|
|||
|
return t_output + (t_output - t_2_output) * weight
|
|||
|
|
|||
|
def new_forward(self, module: torch.nn.Module, *args, **kwargs) -> Any:
|
|||
|
batch_size = [
|
|||
|
*[arg.size(0) for arg in args if torch.is_tensor(arg)],
|
|||
|
*[v.size(0) for v in kwargs.values() if torch.is_tensor(v)],
|
|||
|
][0]
|
|||
|
if self.state.batch_size is None:
|
|||
|
# Will be updated on first forward pass through the denoiser
|
|||
|
self.state.batch_size = batch_size
|
|||
|
|
|||
|
# If we have to skip due to the skip conditions, then let's skip as expected.
|
|||
|
# But, we can't skip if the denoiser wants to infer both unconditional and conditional branches. This
|
|||
|
# is because the expected output shapes of attention layer will not match if we only return values from
|
|||
|
# the cache (which only caches conditional branch outputs). So, if state.batch_size (which is the true
|
|||
|
# unconditional-conditional batch size) is same as the current batch size, we don't perform the layer
|
|||
|
# skip. Otherwise, we conditionally skip the layer based on what state.skip_callback returns.
|
|||
|
is_within_timestep_range = (
|
|||
|
self.timestep_skip_range[0] < self.current_timestep_callback() < self.timestep_skip_range[1]
|
|||
|
)
|
|||
|
if not is_within_timestep_range:
|
|||
|
should_skip_attention = False
|
|||
|
else:
|
|||
|
should_compute_attention = self.state.iteration > 0 and self.state.iteration % self.block_skip_range == 0
|
|||
|
should_skip_attention = not should_compute_attention
|
|||
|
if should_skip_attention:
|
|||
|
should_skip_attention = self.is_guidance_distilled or self.state.batch_size != batch_size
|
|||
|
|
|||
|
if should_skip_attention:
|
|||
|
logger.debug("FasterCache - Skipping attention and using approximation")
|
|||
|
if torch.is_tensor(self.state.cache[-1]):
|
|||
|
t_2_output, t_output = self.state.cache
|
|||
|
weight = self.weight_callback(module)
|
|||
|
output = self._compute_approximated_attention_output(t_2_output, t_output, weight, batch_size)
|
|||
|
else:
|
|||
|
# The cache contains multiple tensors from past N iterations (N=2 for FasterCache). We need to handle all of them.
|
|||
|
# Diffusers blocks can return multiple tensors - let's call them [A, B, C, ...] for simplicity.
|
|||
|
# In our cache, we would have [[A_1, B_1, C_1, ...], [A_2, B_2, C_2, ...], ...] where each list is the output from
|
|||
|
# a forward pass of the block. We need to compute the approximated output for each of these tensors.
|
|||
|
# The zip(*state.cache) operation will give us [(A_1, A_2, ...), (B_1, B_2, ...), (C_1, C_2, ...), ...] which
|
|||
|
# allows us to compute the approximated attention output for each tensor in the cache.
|
|||
|
output = ()
|
|||
|
for t_2_output, t_output in zip(*self.state.cache):
|
|||
|
result = self._compute_approximated_attention_output(
|
|||
|
t_2_output, t_output, self.weight_callback(module), batch_size
|
|||
|
)
|
|||
|
output += (result,)
|
|||
|
else:
|
|||
|
logger.debug("FasterCache - Computing attention")
|
|||
|
output = self.fn_ref.original_forward(*args, **kwargs)
|
|||
|
|
|||
|
# Note that the following condition for getting hidden_states should suffice since Diffusers blocks either return
|
|||
|
# a single hidden_states tensor, or a tuple of (hidden_states, encoder_hidden_states) tensors. We need to handle
|
|||
|
# both cases.
|
|||
|
if torch.is_tensor(output):
|
|||
|
cache_output = output
|
|||
|
if not self.is_guidance_distilled and cache_output.size(0) == self.state.batch_size:
|
|||
|
# The output here can be both unconditional-conditional branch outputs or just conditional branch outputs.
|
|||
|
# This is determined at the higher-level denoiser module. We only want to cache the conditional branch outputs.
|
|||
|
cache_output = cache_output.chunk(2, dim=0)[1]
|
|||
|
else:
|
|||
|
# Cache all return values and perform the same operation as above
|
|||
|
cache_output = ()
|
|||
|
for out in output:
|
|||
|
if not self.is_guidance_distilled and out.size(0) == self.state.batch_size:
|
|||
|
out = out.chunk(2, dim=0)[1]
|
|||
|
cache_output += (out,)
|
|||
|
|
|||
|
if self.state.cache is None:
|
|||
|
self.state.cache = [cache_output, cache_output]
|
|||
|
else:
|
|||
|
self.state.cache = [self.state.cache[-1], cache_output]
|
|||
|
|
|||
|
self.state.iteration += 1
|
|||
|
return output
|
|||
|
|
|||
|
def reset_state(self, module: torch.nn.Module) -> torch.nn.Module:
|
|||
|
self.state.reset()
|
|||
|
return module
|
|||
|
|
|||
|
|
|||
|
def apply_faster_cache(module: torch.nn.Module, config: FasterCacheConfig) -> None:
|
|||
|
r"""
|
|||
|
Applies [FasterCache](https://huggingface.co/papers/2410.19355) to a given pipeline.
|
|||
|
|
|||
|
Args:
|
|||
|
pipeline (`DiffusionPipeline`):
|
|||
|
The diffusion pipeline to apply FasterCache to.
|
|||
|
config (`Optional[FasterCacheConfig]`, `optional`, defaults to `None`):
|
|||
|
The configuration to use for FasterCache.
|
|||
|
|
|||
|
Example:
|
|||
|
```python
|
|||
|
>>> import torch
|
|||
|
>>> from diffusers import CogVideoXPipeline, FasterCacheConfig, apply_faster_cache
|
|||
|
|
|||
|
>>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
|
|||
|
>>> pipe.to("cuda")
|
|||
|
|
|||
|
>>> config = FasterCacheConfig(
|
|||
|
... spatial_attention_block_skip_range=2,
|
|||
|
... spatial_attention_timestep_skip_range=(-1, 681),
|
|||
|
... low_frequency_weight_update_timestep_range=(99, 641),
|
|||
|
... high_frequency_weight_update_timestep_range=(-1, 301),
|
|||
|
... spatial_attention_block_identifiers=["transformer_blocks"],
|
|||
|
... attention_weight_callback=lambda _: 0.3,
|
|||
|
... tensor_format="BFCHW",
|
|||
|
... )
|
|||
|
>>> apply_faster_cache(pipe.transformer, config)
|
|||
|
```
|
|||
|
"""
|
|||
|
|
|||
|
logger.warning(
|
|||
|
"FasterCache is a purely experimental feature and may not work as expected. Not all models support FasterCache. "
|
|||
|
"The API is subject to change in future releases, with no guarantee of backward compatibility. Please report any issues at "
|
|||
|
"https://github.com/huggingface/diffusers/issues."
|
|||
|
)
|
|||
|
|
|||
|
if config.attention_weight_callback is None:
|
|||
|
# If the user has not provided a weight callback, we default to 0.5 for all timesteps.
|
|||
|
# In the paper, they recommend using a gradually increasing weight from 0 to 1 as the inference progresses, but
|
|||
|
# this depends from model-to-model. It is required by the user to provide a weight callback if they want to
|
|||
|
# use a different weight function. Defaulting to 0.5 works well in practice for most cases.
|
|||
|
logger.warning(
|
|||
|
"No `attention_weight_callback` provided when enabling FasterCache. Defaulting to using a weight of 0.5 for all timesteps."
|
|||
|
)
|
|||
|
config.attention_weight_callback = lambda _: 0.5
|
|||
|
|
|||
|
if config.low_frequency_weight_callback is None:
|
|||
|
logger.debug(
|
|||
|
"Low frequency weight callback not provided when enabling FasterCache. Defaulting to behaviour described in the paper."
|
|||
|
)
|
|||
|
|
|||
|
def low_frequency_weight_callback(module: torch.nn.Module) -> float:
|
|||
|
is_within_range = (
|
|||
|
config.low_frequency_weight_update_timestep_range[0]
|
|||
|
< config.current_timestep_callback()
|
|||
|
< config.low_frequency_weight_update_timestep_range[1]
|
|||
|
)
|
|||
|
return config.alpha_low_frequency if is_within_range else 1.0
|
|||
|
|
|||
|
config.low_frequency_weight_callback = low_frequency_weight_callback
|
|||
|
|
|||
|
if config.high_frequency_weight_callback is None:
|
|||
|
logger.debug(
|
|||
|
"High frequency weight callback not provided when enabling FasterCache. Defaulting to behaviour described in the paper."
|
|||
|
)
|
|||
|
|
|||
|
def high_frequency_weight_callback(module: torch.nn.Module) -> float:
|
|||
|
is_within_range = (
|
|||
|
config.high_frequency_weight_update_timestep_range[0]
|
|||
|
< config.current_timestep_callback()
|
|||
|
< config.high_frequency_weight_update_timestep_range[1]
|
|||
|
)
|
|||
|
return config.alpha_high_frequency if is_within_range else 1.0
|
|||
|
|
|||
|
config.high_frequency_weight_callback = high_frequency_weight_callback
|
|||
|
|
|||
|
supported_tensor_formats = ["BCFHW", "BFCHW", "BCHW"] # TODO(aryan): Support BSC for LTX Video
|
|||
|
if config.tensor_format not in supported_tensor_formats:
|
|||
|
raise ValueError(f"`tensor_format` must be one of {supported_tensor_formats}, but got {config.tensor_format}.")
|
|||
|
|
|||
|
_apply_faster_cache_on_denoiser(module, config)
|
|||
|
|
|||
|
for name, submodule in module.named_modules():
|
|||
|
if not isinstance(submodule, _ATTENTION_CLASSES):
|
|||
|
continue
|
|||
|
if any(re.search(identifier, name) is not None for identifier in _TRANSFORMER_BLOCK_IDENTIFIERS):
|
|||
|
_apply_faster_cache_on_attention_class(name, submodule, config)
|
|||
|
|
|||
|
|
|||
|
def _apply_faster_cache_on_denoiser(module: torch.nn.Module, config: FasterCacheConfig) -> None:
|
|||
|
hook = FasterCacheDenoiserHook(
|
|||
|
config.unconditional_batch_skip_range,
|
|||
|
config.unconditional_batch_timestep_skip_range,
|
|||
|
config.tensor_format,
|
|||
|
config.is_guidance_distilled,
|
|||
|
config._unconditional_conditional_input_kwargs_identifiers,
|
|||
|
config.current_timestep_callback,
|
|||
|
config.low_frequency_weight_callback,
|
|||
|
config.high_frequency_weight_callback,
|
|||
|
)
|
|||
|
registry = HookRegistry.check_if_exists_or_initialize(module)
|
|||
|
registry.register_hook(hook, _FASTER_CACHE_DENOISER_HOOK)
|
|||
|
|
|||
|
|
|||
|
def _apply_faster_cache_on_attention_class(name: str, module: Attention, config: FasterCacheConfig) -> None:
|
|||
|
is_spatial_self_attention = (
|
|||
|
any(re.search(identifier, name) is not None for identifier in config.spatial_attention_block_identifiers)
|
|||
|
and config.spatial_attention_block_skip_range is not None
|
|||
|
and not getattr(module, "is_cross_attention", False)
|
|||
|
)
|
|||
|
is_temporal_self_attention = (
|
|||
|
any(re.search(identifier, name) is not None for identifier in config.temporal_attention_block_identifiers)
|
|||
|
and config.temporal_attention_block_skip_range is not None
|
|||
|
and not module.is_cross_attention
|
|||
|
)
|
|||
|
|
|||
|
block_skip_range, timestep_skip_range, block_type = None, None, None
|
|||
|
if is_spatial_self_attention:
|
|||
|
block_skip_range = config.spatial_attention_block_skip_range
|
|||
|
timestep_skip_range = config.spatial_attention_timestep_skip_range
|
|||
|
block_type = "spatial"
|
|||
|
elif is_temporal_self_attention:
|
|||
|
block_skip_range = config.temporal_attention_block_skip_range
|
|||
|
timestep_skip_range = config.temporal_attention_timestep_skip_range
|
|||
|
block_type = "temporal"
|
|||
|
|
|||
|
if block_skip_range is None or timestep_skip_range is None:
|
|||
|
logger.debug(
|
|||
|
f'Unable to apply FasterCache to the selected layer: "{name}" because it does '
|
|||
|
f"not match any of the required criteria for spatial or temporal attention layers. Note, "
|
|||
|
f"however, that this layer may still be valid for applying PAB. Please specify the correct "
|
|||
|
f"block identifiers in the configuration or use the specialized `apply_faster_cache_on_module` "
|
|||
|
f"function to apply FasterCache to this layer."
|
|||
|
)
|
|||
|
return
|
|||
|
|
|||
|
logger.debug(f"Enabling FasterCache ({block_type}) for layer: {name}")
|
|||
|
hook = FasterCacheBlockHook(
|
|||
|
block_skip_range,
|
|||
|
timestep_skip_range,
|
|||
|
config.is_guidance_distilled,
|
|||
|
config.attention_weight_callback,
|
|||
|
config.current_timestep_callback,
|
|||
|
)
|
|||
|
registry = HookRegistry.check_if_exists_or_initialize(module)
|
|||
|
registry.register_hook(hook, _FASTER_CACHE_BLOCK_HOOK)
|
|||
|
|
|||
|
|
|||
|
# Reference: https://github.com/Vchitect/FasterCache/blob/fab32c15014636dc854948319c0a9a8d92c7acb4/scripts/latte/faster_cache_sample_latte.py#L127C1-L143C39
|
|||
|
@torch.no_grad()
|
|||
|
def _split_low_high_freq(x):
|
|||
|
fft = torch.fft.fft2(x)
|
|||
|
fft_shifted = torch.fft.fftshift(fft)
|
|||
|
height, width = x.shape[-2:]
|
|||
|
radius = min(height, width) // 5
|
|||
|
|
|||
|
y_grid, x_grid = torch.meshgrid(torch.arange(height), torch.arange(width))
|
|||
|
center_x, center_y = width // 2, height // 2
|
|||
|
mask = (x_grid - center_x) ** 2 + (y_grid - center_y) ** 2 <= radius**2
|
|||
|
|
|||
|
low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(x.device)
|
|||
|
high_freq_mask = ~low_freq_mask
|
|||
|
|
|||
|
low_freq_fft = fft_shifted * low_freq_mask
|
|||
|
high_freq_fft = fft_shifted * high_freq_mask
|
|||
|
|
|||
|
return low_freq_fft, high_freq_fft
|