179 lines
6.4 KiB
Python
179 lines
6.4 KiB
Python
![]() |
# coding=utf-8
|
||
|
# Copyright 2025 HuggingFace Inc.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch import nn
|
||
|
|
||
|
from ..utils import deprecate
|
||
|
from ..utils.import_utils import is_torch_npu_available, is_torch_version
|
||
|
|
||
|
|
||
|
if is_torch_npu_available():
|
||
|
import torch_npu
|
||
|
|
||
|
ACT2CLS = {
|
||
|
"swish": nn.SiLU,
|
||
|
"silu": nn.SiLU,
|
||
|
"mish": nn.Mish,
|
||
|
"gelu": nn.GELU,
|
||
|
"relu": nn.ReLU,
|
||
|
}
|
||
|
|
||
|
|
||
|
def get_activation(act_fn: str) -> nn.Module:
|
||
|
"""Helper function to get activation function from string.
|
||
|
|
||
|
Args:
|
||
|
act_fn (str): Name of activation function.
|
||
|
|
||
|
Returns:
|
||
|
nn.Module: Activation function.
|
||
|
"""
|
||
|
|
||
|
act_fn = act_fn.lower()
|
||
|
if act_fn in ACT2CLS:
|
||
|
return ACT2CLS[act_fn]()
|
||
|
else:
|
||
|
raise ValueError(f"activation function {act_fn} not found in ACT2FN mapping {list(ACT2CLS.keys())}")
|
||
|
|
||
|
|
||
|
class FP32SiLU(nn.Module):
|
||
|
r"""
|
||
|
SiLU activation function with input upcasted to torch.float32.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||
|
return F.silu(inputs.float(), inplace=False).to(inputs.dtype)
|
||
|
|
||
|
|
||
|
class GELU(nn.Module):
|
||
|
r"""
|
||
|
GELU activation function with tanh approximation support with `approximate="tanh"`.
|
||
|
|
||
|
Parameters:
|
||
|
dim_in (`int`): The number of channels in the input.
|
||
|
dim_out (`int`): The number of channels in the output.
|
||
|
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
|
||
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
|
||
|
super().__init__()
|
||
|
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
||
|
self.approximate = approximate
|
||
|
|
||
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
||
|
if gate.device.type == "mps" and is_torch_version("<", "2.0.0"):
|
||
|
# fp16 gelu not supported on mps before torch 2.0
|
||
|
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
|
||
|
return F.gelu(gate, approximate=self.approximate)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.proj(hidden_states)
|
||
|
hidden_states = self.gelu(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class GEGLU(nn.Module):
|
||
|
r"""
|
||
|
A [variant](https://huggingface.co/papers/2002.05202) of the gated linear unit activation function.
|
||
|
|
||
|
Parameters:
|
||
|
dim_in (`int`): The number of channels in the input.
|
||
|
dim_out (`int`): The number of channels in the output.
|
||
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
||
|
super().__init__()
|
||
|
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
||
|
|
||
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
||
|
if gate.device.type == "mps" and is_torch_version("<", "2.0.0"):
|
||
|
# fp16 gelu not supported on mps before torch 2.0
|
||
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
||
|
return F.gelu(gate)
|
||
|
|
||
|
def forward(self, hidden_states, *args, **kwargs):
|
||
|
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
||
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
||
|
deprecate("scale", "1.0.0", deprecation_message)
|
||
|
hidden_states = self.proj(hidden_states)
|
||
|
if is_torch_npu_available():
|
||
|
# using torch_npu.npu_geglu can run faster and save memory on NPU.
|
||
|
return torch_npu.npu_geglu(hidden_states, dim=-1, approximate=1)[0]
|
||
|
else:
|
||
|
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
||
|
return hidden_states * self.gelu(gate)
|
||
|
|
||
|
|
||
|
class SwiGLU(nn.Module):
|
||
|
r"""
|
||
|
A [variant](https://huggingface.co/papers/2002.05202) of the gated linear unit activation function. It's similar to
|
||
|
`GEGLU` but uses SiLU / Swish instead of GeLU.
|
||
|
|
||
|
Parameters:
|
||
|
dim_in (`int`): The number of channels in the input.
|
||
|
dim_out (`int`): The number of channels in the output.
|
||
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
||
|
super().__init__()
|
||
|
|
||
|
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
||
|
self.activation = nn.SiLU()
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.proj(hidden_states)
|
||
|
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
||
|
return hidden_states * self.activation(gate)
|
||
|
|
||
|
|
||
|
class ApproximateGELU(nn.Module):
|
||
|
r"""
|
||
|
The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this
|
||
|
[paper](https://huggingface.co/papers/1606.08415).
|
||
|
|
||
|
Parameters:
|
||
|
dim_in (`int`): The number of channels in the input.
|
||
|
dim_out (`int`): The number of channels in the output.
|
||
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
||
|
super().__init__()
|
||
|
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
x = self.proj(x)
|
||
|
return x * torch.sigmoid(1.702 * x)
|
||
|
|
||
|
|
||
|
class LinearActivation(nn.Module):
|
||
|
def __init__(self, dim_in: int, dim_out: int, bias: bool = True, activation: str = "silu"):
|
||
|
super().__init__()
|
||
|
|
||
|
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
||
|
self.activation = get_activation(activation)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.proj(hidden_states)
|
||
|
return self.activation(hidden_states)
|