1445 lines
59 KiB
Python
1445 lines
59 KiB
Python
![]() |
# Copyright 2025 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from typing import Dict, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from ...configuration_utils import ConfigMixin, register_to_config
|
||
|
from ...loaders.single_file_model import FromOriginalModelMixin
|
||
|
from ...utils import logging
|
||
|
from ...utils.accelerate_utils import apply_forward_hook
|
||
|
from ..activations import get_activation
|
||
|
from ..downsampling import CogVideoXDownsample3D
|
||
|
from ..modeling_outputs import AutoencoderKLOutput
|
||
|
from ..modeling_utils import ModelMixin
|
||
|
from ..upsampling import CogVideoXUpsample3D
|
||
|
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
|
||
|
|
||
|
class CogVideoXSafeConv3d(nn.Conv3d):
|
||
|
r"""
|
||
|
A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model.
|
||
|
"""
|
||
|
|
||
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||
|
memory_count = (
|
||
|
(input.shape[0] * input.shape[1] * input.shape[2] * input.shape[3] * input.shape[4]) * 2 / 1024**3
|
||
|
)
|
||
|
|
||
|
# Set to 2GB, suitable for CuDNN
|
||
|
if memory_count > 2:
|
||
|
kernel_size = self.kernel_size[0]
|
||
|
part_num = int(memory_count / 2) + 1
|
||
|
input_chunks = torch.chunk(input, part_num, dim=2)
|
||
|
|
||
|
if kernel_size > 1:
|
||
|
input_chunks = [input_chunks[0]] + [
|
||
|
torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
|
||
|
for i in range(1, len(input_chunks))
|
||
|
]
|
||
|
|
||
|
output_chunks = []
|
||
|
for input_chunk in input_chunks:
|
||
|
output_chunks.append(super().forward(input_chunk))
|
||
|
output = torch.cat(output_chunks, dim=2)
|
||
|
return output
|
||
|
else:
|
||
|
return super().forward(input)
|
||
|
|
||
|
|
||
|
class CogVideoXCausalConv3d(nn.Module):
|
||
|
r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`): Number of channels in the input tensor.
|
||
|
out_channels (`int`): Number of output channels produced by the convolution.
|
||
|
kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel.
|
||
|
stride (`int`, defaults to `1`): Stride of the convolution.
|
||
|
dilation (`int`, defaults to `1`): Dilation rate of the convolution.
|
||
|
pad_mode (`str`, defaults to `"constant"`): Padding mode.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: Union[int, Tuple[int, int, int]],
|
||
|
stride: int = 1,
|
||
|
dilation: int = 1,
|
||
|
pad_mode: str = "constant",
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
if isinstance(kernel_size, int):
|
||
|
kernel_size = (kernel_size,) * 3
|
||
|
|
||
|
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
|
||
|
|
||
|
# TODO(aryan): configure calculation based on stride and dilation in the future.
|
||
|
# Since CogVideoX does not use it, it is currently tailored to "just work" with Mochi
|
||
|
time_pad = time_kernel_size - 1
|
||
|
height_pad = (height_kernel_size - 1) // 2
|
||
|
width_pad = (width_kernel_size - 1) // 2
|
||
|
|
||
|
self.pad_mode = pad_mode
|
||
|
self.height_pad = height_pad
|
||
|
self.width_pad = width_pad
|
||
|
self.time_pad = time_pad
|
||
|
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
|
||
|
self.const_padding_conv3d = (0, self.width_pad, self.height_pad)
|
||
|
|
||
|
self.temporal_dim = 2
|
||
|
self.time_kernel_size = time_kernel_size
|
||
|
|
||
|
stride = stride if isinstance(stride, tuple) else (stride, 1, 1)
|
||
|
dilation = (dilation, 1, 1)
|
||
|
self.conv = CogVideoXSafeConv3d(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
dilation=dilation,
|
||
|
padding=0 if self.pad_mode == "replicate" else self.const_padding_conv3d,
|
||
|
padding_mode="zeros",
|
||
|
)
|
||
|
|
||
|
def fake_context_parallel_forward(
|
||
|
self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None
|
||
|
) -> torch.Tensor:
|
||
|
if self.pad_mode == "replicate":
|
||
|
inputs = F.pad(inputs, self.time_causal_padding, mode="replicate")
|
||
|
else:
|
||
|
kernel_size = self.time_kernel_size
|
||
|
if kernel_size > 1:
|
||
|
cached_inputs = [conv_cache] if conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1)
|
||
|
inputs = torch.cat(cached_inputs + [inputs], dim=2)
|
||
|
return inputs
|
||
|
|
||
|
def forward(self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||
|
inputs = self.fake_context_parallel_forward(inputs, conv_cache)
|
||
|
|
||
|
if self.pad_mode == "replicate":
|
||
|
conv_cache = None
|
||
|
else:
|
||
|
conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone()
|
||
|
|
||
|
output = self.conv(inputs)
|
||
|
return output, conv_cache
|
||
|
|
||
|
|
||
|
class CogVideoXSpatialNorm3D(nn.Module):
|
||
|
r"""
|
||
|
Spatially conditioned normalization as defined in https://huggingface.co/papers/2209.09002. This implementation is
|
||
|
specific to 3D-video like data.
|
||
|
|
||
|
CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model.
|
||
|
|
||
|
Args:
|
||
|
f_channels (`int`):
|
||
|
The number of channels for input to group normalization layer, and output of the spatial norm layer.
|
||
|
zq_channels (`int`):
|
||
|
The number of channels for the quantized vector as described in the paper.
|
||
|
groups (`int`):
|
||
|
Number of groups to separate the channels into for group normalization.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
f_channels: int,
|
||
|
zq_channels: int,
|
||
|
groups: int = 32,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True)
|
||
|
self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
|
||
|
self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
|
||
|
|
||
|
def forward(
|
||
|
self, f: torch.Tensor, zq: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
|
||
|
) -> torch.Tensor:
|
||
|
new_conv_cache = {}
|
||
|
conv_cache = conv_cache or {}
|
||
|
|
||
|
if f.shape[2] > 1 and f.shape[2] % 2 == 1:
|
||
|
f_first, f_rest = f[:, :, :1], f[:, :, 1:]
|
||
|
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:]
|
||
|
z_first, z_rest = zq[:, :, :1], zq[:, :, 1:]
|
||
|
z_first = F.interpolate(z_first, size=f_first_size)
|
||
|
z_rest = F.interpolate(z_rest, size=f_rest_size)
|
||
|
zq = torch.cat([z_first, z_rest], dim=2)
|
||
|
else:
|
||
|
zq = F.interpolate(zq, size=f.shape[-3:])
|
||
|
|
||
|
conv_y, new_conv_cache["conv_y"] = self.conv_y(zq, conv_cache=conv_cache.get("conv_y"))
|
||
|
conv_b, new_conv_cache["conv_b"] = self.conv_b(zq, conv_cache=conv_cache.get("conv_b"))
|
||
|
|
||
|
norm_f = self.norm_layer(f)
|
||
|
new_f = norm_f * conv_y + conv_b
|
||
|
return new_f, new_conv_cache
|
||
|
|
||
|
|
||
|
class CogVideoXResnetBlock3D(nn.Module):
|
||
|
r"""
|
||
|
A 3D ResNet block used in the CogVideoX model.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`):
|
||
|
Number of input channels.
|
||
|
out_channels (`int`, *optional*):
|
||
|
Number of output channels. If None, defaults to `in_channels`.
|
||
|
dropout (`float`, defaults to `0.0`):
|
||
|
Dropout rate.
|
||
|
temb_channels (`int`, defaults to `512`):
|
||
|
Number of time embedding channels.
|
||
|
groups (`int`, defaults to `32`):
|
||
|
Number of groups to separate the channels into for group normalization.
|
||
|
eps (`float`, defaults to `1e-6`):
|
||
|
Epsilon value for normalization layers.
|
||
|
non_linearity (`str`, defaults to `"swish"`):
|
||
|
Activation function to use.
|
||
|
conv_shortcut (bool, defaults to `False`):
|
||
|
Whether or not to use a convolution shortcut.
|
||
|
spatial_norm_dim (`int`, *optional*):
|
||
|
The dimension to use for spatial norm if it is to be used instead of group norm.
|
||
|
pad_mode (str, defaults to `"first"`):
|
||
|
Padding mode.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: Optional[int] = None,
|
||
|
dropout: float = 0.0,
|
||
|
temb_channels: int = 512,
|
||
|
groups: int = 32,
|
||
|
eps: float = 1e-6,
|
||
|
non_linearity: str = "swish",
|
||
|
conv_shortcut: bool = False,
|
||
|
spatial_norm_dim: Optional[int] = None,
|
||
|
pad_mode: str = "first",
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
out_channels = out_channels or in_channels
|
||
|
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.nonlinearity = get_activation(non_linearity)
|
||
|
self.use_conv_shortcut = conv_shortcut
|
||
|
self.spatial_norm_dim = spatial_norm_dim
|
||
|
|
||
|
if spatial_norm_dim is None:
|
||
|
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps)
|
||
|
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps)
|
||
|
else:
|
||
|
self.norm1 = CogVideoXSpatialNorm3D(
|
||
|
f_channels=in_channels,
|
||
|
zq_channels=spatial_norm_dim,
|
||
|
groups=groups,
|
||
|
)
|
||
|
self.norm2 = CogVideoXSpatialNorm3D(
|
||
|
f_channels=out_channels,
|
||
|
zq_channels=spatial_norm_dim,
|
||
|
groups=groups,
|
||
|
)
|
||
|
|
||
|
self.conv1 = CogVideoXCausalConv3d(
|
||
|
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
|
||
|
)
|
||
|
|
||
|
if temb_channels > 0:
|
||
|
self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels)
|
||
|
|
||
|
self.dropout = nn.Dropout(dropout)
|
||
|
self.conv2 = CogVideoXCausalConv3d(
|
||
|
in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
|
||
|
)
|
||
|
|
||
|
if self.in_channels != self.out_channels:
|
||
|
if self.use_conv_shortcut:
|
||
|
self.conv_shortcut = CogVideoXCausalConv3d(
|
||
|
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
|
||
|
)
|
||
|
else:
|
||
|
self.conv_shortcut = CogVideoXSafeConv3d(
|
||
|
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs: torch.Tensor,
|
||
|
temb: Optional[torch.Tensor] = None,
|
||
|
zq: Optional[torch.Tensor] = None,
|
||
|
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
) -> torch.Tensor:
|
||
|
new_conv_cache = {}
|
||
|
conv_cache = conv_cache or {}
|
||
|
|
||
|
hidden_states = inputs
|
||
|
|
||
|
if zq is not None:
|
||
|
hidden_states, new_conv_cache["norm1"] = self.norm1(hidden_states, zq, conv_cache=conv_cache.get("norm1"))
|
||
|
else:
|
||
|
hidden_states = self.norm1(hidden_states)
|
||
|
|
||
|
hidden_states = self.nonlinearity(hidden_states)
|
||
|
hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1"))
|
||
|
|
||
|
if temb is not None:
|
||
|
hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
||
|
|
||
|
if zq is not None:
|
||
|
hidden_states, new_conv_cache["norm2"] = self.norm2(hidden_states, zq, conv_cache=conv_cache.get("norm2"))
|
||
|
else:
|
||
|
hidden_states = self.norm2(hidden_states)
|
||
|
|
||
|
hidden_states = self.nonlinearity(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2"))
|
||
|
|
||
|
if self.in_channels != self.out_channels:
|
||
|
if self.use_conv_shortcut:
|
||
|
inputs, new_conv_cache["conv_shortcut"] = self.conv_shortcut(
|
||
|
inputs, conv_cache=conv_cache.get("conv_shortcut")
|
||
|
)
|
||
|
else:
|
||
|
inputs = self.conv_shortcut(inputs)
|
||
|
|
||
|
hidden_states = hidden_states + inputs
|
||
|
return hidden_states, new_conv_cache
|
||
|
|
||
|
|
||
|
class CogVideoXDownBlock3D(nn.Module):
|
||
|
r"""
|
||
|
A downsampling block used in the CogVideoX model.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`):
|
||
|
Number of input channels.
|
||
|
out_channels (`int`, *optional*):
|
||
|
Number of output channels. If None, defaults to `in_channels`.
|
||
|
temb_channels (`int`, defaults to `512`):
|
||
|
Number of time embedding channels.
|
||
|
num_layers (`int`, defaults to `1`):
|
||
|
Number of resnet layers.
|
||
|
dropout (`float`, defaults to `0.0`):
|
||
|
Dropout rate.
|
||
|
resnet_eps (`float`, defaults to `1e-6`):
|
||
|
Epsilon value for normalization layers.
|
||
|
resnet_act_fn (`str`, defaults to `"swish"`):
|
||
|
Activation function to use.
|
||
|
resnet_groups (`int`, defaults to `32`):
|
||
|
Number of groups to separate the channels into for group normalization.
|
||
|
add_downsample (`bool`, defaults to `True`):
|
||
|
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
|
||
|
compress_time (`bool`, defaults to `False`):
|
||
|
Whether or not to downsample across temporal dimension.
|
||
|
pad_mode (str, defaults to `"first"`):
|
||
|
Padding mode.
|
||
|
"""
|
||
|
|
||
|
_supports_gradient_checkpointing = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
temb_channels: int,
|
||
|
dropout: float = 0.0,
|
||
|
num_layers: int = 1,
|
||
|
resnet_eps: float = 1e-6,
|
||
|
resnet_act_fn: str = "swish",
|
||
|
resnet_groups: int = 32,
|
||
|
add_downsample: bool = True,
|
||
|
downsample_padding: int = 0,
|
||
|
compress_time: bool = False,
|
||
|
pad_mode: str = "first",
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
resnets = []
|
||
|
for i in range(num_layers):
|
||
|
in_channel = in_channels if i == 0 else out_channels
|
||
|
resnets.append(
|
||
|
CogVideoXResnetBlock3D(
|
||
|
in_channels=in_channel,
|
||
|
out_channels=out_channels,
|
||
|
dropout=dropout,
|
||
|
temb_channels=temb_channels,
|
||
|
groups=resnet_groups,
|
||
|
eps=resnet_eps,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
pad_mode=pad_mode,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.resnets = nn.ModuleList(resnets)
|
||
|
self.downsamplers = None
|
||
|
|
||
|
if add_downsample:
|
||
|
self.downsamplers = nn.ModuleList(
|
||
|
[
|
||
|
CogVideoXDownsample3D(
|
||
|
out_channels, out_channels, padding=downsample_padding, compress_time=compress_time
|
||
|
)
|
||
|
]
|
||
|
)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
temb: Optional[torch.Tensor] = None,
|
||
|
zq: Optional[torch.Tensor] = None,
|
||
|
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
) -> torch.Tensor:
|
||
|
r"""Forward method of the `CogVideoXDownBlock3D` class."""
|
||
|
|
||
|
new_conv_cache = {}
|
||
|
conv_cache = conv_cache or {}
|
||
|
|
||
|
for i, resnet in enumerate(self.resnets):
|
||
|
conv_cache_key = f"resnet_{i}"
|
||
|
|
||
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
||
|
resnet,
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
zq,
|
||
|
conv_cache.get(conv_cache_key),
|
||
|
)
|
||
|
else:
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
||
|
hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
|
||
|
)
|
||
|
|
||
|
if self.downsamplers is not None:
|
||
|
for downsampler in self.downsamplers:
|
||
|
hidden_states = downsampler(hidden_states)
|
||
|
|
||
|
return hidden_states, new_conv_cache
|
||
|
|
||
|
|
||
|
class CogVideoXMidBlock3D(nn.Module):
|
||
|
r"""
|
||
|
A middle block used in the CogVideoX model.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`):
|
||
|
Number of input channels.
|
||
|
temb_channels (`int`, defaults to `512`):
|
||
|
Number of time embedding channels.
|
||
|
dropout (`float`, defaults to `0.0`):
|
||
|
Dropout rate.
|
||
|
num_layers (`int`, defaults to `1`):
|
||
|
Number of resnet layers.
|
||
|
resnet_eps (`float`, defaults to `1e-6`):
|
||
|
Epsilon value for normalization layers.
|
||
|
resnet_act_fn (`str`, defaults to `"swish"`):
|
||
|
Activation function to use.
|
||
|
resnet_groups (`int`, defaults to `32`):
|
||
|
Number of groups to separate the channels into for group normalization.
|
||
|
spatial_norm_dim (`int`, *optional*):
|
||
|
The dimension to use for spatial norm if it is to be used instead of group norm.
|
||
|
pad_mode (str, defaults to `"first"`):
|
||
|
Padding mode.
|
||
|
"""
|
||
|
|
||
|
_supports_gradient_checkpointing = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
temb_channels: int,
|
||
|
dropout: float = 0.0,
|
||
|
num_layers: int = 1,
|
||
|
resnet_eps: float = 1e-6,
|
||
|
resnet_act_fn: str = "swish",
|
||
|
resnet_groups: int = 32,
|
||
|
spatial_norm_dim: Optional[int] = None,
|
||
|
pad_mode: str = "first",
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
resnets = []
|
||
|
for _ in range(num_layers):
|
||
|
resnets.append(
|
||
|
CogVideoXResnetBlock3D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=in_channels,
|
||
|
dropout=dropout,
|
||
|
temb_channels=temb_channels,
|
||
|
groups=resnet_groups,
|
||
|
eps=resnet_eps,
|
||
|
spatial_norm_dim=spatial_norm_dim,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
pad_mode=pad_mode,
|
||
|
)
|
||
|
)
|
||
|
self.resnets = nn.ModuleList(resnets)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
temb: Optional[torch.Tensor] = None,
|
||
|
zq: Optional[torch.Tensor] = None,
|
||
|
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
) -> torch.Tensor:
|
||
|
r"""Forward method of the `CogVideoXMidBlock3D` class."""
|
||
|
|
||
|
new_conv_cache = {}
|
||
|
conv_cache = conv_cache or {}
|
||
|
|
||
|
for i, resnet in enumerate(self.resnets):
|
||
|
conv_cache_key = f"resnet_{i}"
|
||
|
|
||
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
||
|
resnet, hidden_states, temb, zq, conv_cache.get(conv_cache_key)
|
||
|
)
|
||
|
else:
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
||
|
hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
|
||
|
)
|
||
|
|
||
|
return hidden_states, new_conv_cache
|
||
|
|
||
|
|
||
|
class CogVideoXUpBlock3D(nn.Module):
|
||
|
r"""
|
||
|
An upsampling block used in the CogVideoX model.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`):
|
||
|
Number of input channels.
|
||
|
out_channels (`int`, *optional*):
|
||
|
Number of output channels. If None, defaults to `in_channels`.
|
||
|
temb_channels (`int`, defaults to `512`):
|
||
|
Number of time embedding channels.
|
||
|
dropout (`float`, defaults to `0.0`):
|
||
|
Dropout rate.
|
||
|
num_layers (`int`, defaults to `1`):
|
||
|
Number of resnet layers.
|
||
|
resnet_eps (`float`, defaults to `1e-6`):
|
||
|
Epsilon value for normalization layers.
|
||
|
resnet_act_fn (`str`, defaults to `"swish"`):
|
||
|
Activation function to use.
|
||
|
resnet_groups (`int`, defaults to `32`):
|
||
|
Number of groups to separate the channels into for group normalization.
|
||
|
spatial_norm_dim (`int`, defaults to `16`):
|
||
|
The dimension to use for spatial norm if it is to be used instead of group norm.
|
||
|
add_upsample (`bool`, defaults to `True`):
|
||
|
Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension.
|
||
|
compress_time (`bool`, defaults to `False`):
|
||
|
Whether or not to downsample across temporal dimension.
|
||
|
pad_mode (str, defaults to `"first"`):
|
||
|
Padding mode.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
temb_channels: int,
|
||
|
dropout: float = 0.0,
|
||
|
num_layers: int = 1,
|
||
|
resnet_eps: float = 1e-6,
|
||
|
resnet_act_fn: str = "swish",
|
||
|
resnet_groups: int = 32,
|
||
|
spatial_norm_dim: int = 16,
|
||
|
add_upsample: bool = True,
|
||
|
upsample_padding: int = 1,
|
||
|
compress_time: bool = False,
|
||
|
pad_mode: str = "first",
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
resnets = []
|
||
|
for i in range(num_layers):
|
||
|
in_channel = in_channels if i == 0 else out_channels
|
||
|
resnets.append(
|
||
|
CogVideoXResnetBlock3D(
|
||
|
in_channels=in_channel,
|
||
|
out_channels=out_channels,
|
||
|
dropout=dropout,
|
||
|
temb_channels=temb_channels,
|
||
|
groups=resnet_groups,
|
||
|
eps=resnet_eps,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
spatial_norm_dim=spatial_norm_dim,
|
||
|
pad_mode=pad_mode,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.resnets = nn.ModuleList(resnets)
|
||
|
self.upsamplers = None
|
||
|
|
||
|
if add_upsample:
|
||
|
self.upsamplers = nn.ModuleList(
|
||
|
[
|
||
|
CogVideoXUpsample3D(
|
||
|
out_channels, out_channels, padding=upsample_padding, compress_time=compress_time
|
||
|
)
|
||
|
]
|
||
|
)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
temb: Optional[torch.Tensor] = None,
|
||
|
zq: Optional[torch.Tensor] = None,
|
||
|
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
) -> torch.Tensor:
|
||
|
r"""Forward method of the `CogVideoXUpBlock3D` class."""
|
||
|
|
||
|
new_conv_cache = {}
|
||
|
conv_cache = conv_cache or {}
|
||
|
|
||
|
for i, resnet in enumerate(self.resnets):
|
||
|
conv_cache_key = f"resnet_{i}"
|
||
|
|
||
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
||
|
resnet,
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
zq,
|
||
|
conv_cache.get(conv_cache_key),
|
||
|
)
|
||
|
else:
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
||
|
hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
|
||
|
)
|
||
|
|
||
|
if self.upsamplers is not None:
|
||
|
for upsampler in self.upsamplers:
|
||
|
hidden_states = upsampler(hidden_states)
|
||
|
|
||
|
return hidden_states, new_conv_cache
|
||
|
|
||
|
|
||
|
class CogVideoXEncoder3D(nn.Module):
|
||
|
r"""
|
||
|
The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
out_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of output channels.
|
||
|
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
||
|
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
|
||
|
options.
|
||
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
||
|
The number of output channels for each block.
|
||
|
act_fn (`str`, *optional*, defaults to `"silu"`):
|
||
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
||
|
layers_per_block (`int`, *optional*, defaults to 2):
|
||
|
The number of layers per block.
|
||
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
||
|
The number of groups for normalization.
|
||
|
"""
|
||
|
|
||
|
_supports_gradient_checkpointing = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int = 3,
|
||
|
out_channels: int = 16,
|
||
|
down_block_types: Tuple[str, ...] = (
|
||
|
"CogVideoXDownBlock3D",
|
||
|
"CogVideoXDownBlock3D",
|
||
|
"CogVideoXDownBlock3D",
|
||
|
"CogVideoXDownBlock3D",
|
||
|
),
|
||
|
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
|
||
|
layers_per_block: int = 3,
|
||
|
act_fn: str = "silu",
|
||
|
norm_eps: float = 1e-6,
|
||
|
norm_num_groups: int = 32,
|
||
|
dropout: float = 0.0,
|
||
|
pad_mode: str = "first",
|
||
|
temporal_compression_ratio: float = 4,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
# log2 of temporal_compress_times
|
||
|
temporal_compress_level = int(np.log2(temporal_compression_ratio))
|
||
|
|
||
|
self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode)
|
||
|
self.down_blocks = nn.ModuleList([])
|
||
|
|
||
|
# down blocks
|
||
|
output_channel = block_out_channels[0]
|
||
|
for i, down_block_type in enumerate(down_block_types):
|
||
|
input_channel = output_channel
|
||
|
output_channel = block_out_channels[i]
|
||
|
is_final_block = i == len(block_out_channels) - 1
|
||
|
compress_time = i < temporal_compress_level
|
||
|
|
||
|
if down_block_type == "CogVideoXDownBlock3D":
|
||
|
down_block = CogVideoXDownBlock3D(
|
||
|
in_channels=input_channel,
|
||
|
out_channels=output_channel,
|
||
|
temb_channels=0,
|
||
|
dropout=dropout,
|
||
|
num_layers=layers_per_block,
|
||
|
resnet_eps=norm_eps,
|
||
|
resnet_act_fn=act_fn,
|
||
|
resnet_groups=norm_num_groups,
|
||
|
add_downsample=not is_final_block,
|
||
|
compress_time=compress_time,
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`")
|
||
|
|
||
|
self.down_blocks.append(down_block)
|
||
|
|
||
|
# mid block
|
||
|
self.mid_block = CogVideoXMidBlock3D(
|
||
|
in_channels=block_out_channels[-1],
|
||
|
temb_channels=0,
|
||
|
dropout=dropout,
|
||
|
num_layers=2,
|
||
|
resnet_eps=norm_eps,
|
||
|
resnet_act_fn=act_fn,
|
||
|
resnet_groups=norm_num_groups,
|
||
|
pad_mode=pad_mode,
|
||
|
)
|
||
|
|
||
|
self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6)
|
||
|
self.conv_act = nn.SiLU()
|
||
|
self.conv_out = CogVideoXCausalConv3d(
|
||
|
block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode
|
||
|
)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
sample: torch.Tensor,
|
||
|
temb: Optional[torch.Tensor] = None,
|
||
|
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
) -> torch.Tensor:
|
||
|
r"""The forward method of the `CogVideoXEncoder3D` class."""
|
||
|
|
||
|
new_conv_cache = {}
|
||
|
conv_cache = conv_cache or {}
|
||
|
|
||
|
hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
|
||
|
|
||
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
|
# 1. Down
|
||
|
for i, down_block in enumerate(self.down_blocks):
|
||
|
conv_cache_key = f"down_block_{i}"
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
||
|
down_block,
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
None,
|
||
|
conv_cache.get(conv_cache_key),
|
||
|
)
|
||
|
|
||
|
# 2. Mid
|
||
|
hidden_states, new_conv_cache["mid_block"] = self._gradient_checkpointing_func(
|
||
|
self.mid_block,
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
None,
|
||
|
conv_cache.get("mid_block"),
|
||
|
)
|
||
|
else:
|
||
|
# 1. Down
|
||
|
for i, down_block in enumerate(self.down_blocks):
|
||
|
conv_cache_key = f"down_block_{i}"
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = down_block(
|
||
|
hidden_states, temb, None, conv_cache.get(conv_cache_key)
|
||
|
)
|
||
|
|
||
|
# 2. Mid
|
||
|
hidden_states, new_conv_cache["mid_block"] = self.mid_block(
|
||
|
hidden_states, temb, None, conv_cache=conv_cache.get("mid_block")
|
||
|
)
|
||
|
|
||
|
# 3. Post-process
|
||
|
hidden_states = self.norm_out(hidden_states)
|
||
|
hidden_states = self.conv_act(hidden_states)
|
||
|
|
||
|
hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))
|
||
|
|
||
|
return hidden_states, new_conv_cache
|
||
|
|
||
|
|
||
|
class CogVideoXDecoder3D(nn.Module):
|
||
|
r"""
|
||
|
The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
|
||
|
sample.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
out_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of output channels.
|
||
|
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
||
|
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
||
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
||
|
The number of output channels for each block.
|
||
|
act_fn (`str`, *optional*, defaults to `"silu"`):
|
||
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
||
|
layers_per_block (`int`, *optional*, defaults to 2):
|
||
|
The number of layers per block.
|
||
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
||
|
The number of groups for normalization.
|
||
|
"""
|
||
|
|
||
|
_supports_gradient_checkpointing = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int = 16,
|
||
|
out_channels: int = 3,
|
||
|
up_block_types: Tuple[str, ...] = (
|
||
|
"CogVideoXUpBlock3D",
|
||
|
"CogVideoXUpBlock3D",
|
||
|
"CogVideoXUpBlock3D",
|
||
|
"CogVideoXUpBlock3D",
|
||
|
),
|
||
|
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
|
||
|
layers_per_block: int = 3,
|
||
|
act_fn: str = "silu",
|
||
|
norm_eps: float = 1e-6,
|
||
|
norm_num_groups: int = 32,
|
||
|
dropout: float = 0.0,
|
||
|
pad_mode: str = "first",
|
||
|
temporal_compression_ratio: float = 4,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
reversed_block_out_channels = list(reversed(block_out_channels))
|
||
|
|
||
|
self.conv_in = CogVideoXCausalConv3d(
|
||
|
in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode
|
||
|
)
|
||
|
|
||
|
# mid block
|
||
|
self.mid_block = CogVideoXMidBlock3D(
|
||
|
in_channels=reversed_block_out_channels[0],
|
||
|
temb_channels=0,
|
||
|
num_layers=2,
|
||
|
resnet_eps=norm_eps,
|
||
|
resnet_act_fn=act_fn,
|
||
|
resnet_groups=norm_num_groups,
|
||
|
spatial_norm_dim=in_channels,
|
||
|
pad_mode=pad_mode,
|
||
|
)
|
||
|
|
||
|
# up blocks
|
||
|
self.up_blocks = nn.ModuleList([])
|
||
|
|
||
|
output_channel = reversed_block_out_channels[0]
|
||
|
temporal_compress_level = int(np.log2(temporal_compression_ratio))
|
||
|
|
||
|
for i, up_block_type in enumerate(up_block_types):
|
||
|
prev_output_channel = output_channel
|
||
|
output_channel = reversed_block_out_channels[i]
|
||
|
is_final_block = i == len(block_out_channels) - 1
|
||
|
compress_time = i < temporal_compress_level
|
||
|
|
||
|
if up_block_type == "CogVideoXUpBlock3D":
|
||
|
up_block = CogVideoXUpBlock3D(
|
||
|
in_channels=prev_output_channel,
|
||
|
out_channels=output_channel,
|
||
|
temb_channels=0,
|
||
|
dropout=dropout,
|
||
|
num_layers=layers_per_block + 1,
|
||
|
resnet_eps=norm_eps,
|
||
|
resnet_act_fn=act_fn,
|
||
|
resnet_groups=norm_num_groups,
|
||
|
spatial_norm_dim=in_channels,
|
||
|
add_upsample=not is_final_block,
|
||
|
compress_time=compress_time,
|
||
|
pad_mode=pad_mode,
|
||
|
)
|
||
|
prev_output_channel = output_channel
|
||
|
else:
|
||
|
raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`")
|
||
|
|
||
|
self.up_blocks.append(up_block)
|
||
|
|
||
|
self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups)
|
||
|
self.conv_act = nn.SiLU()
|
||
|
self.conv_out = CogVideoXCausalConv3d(
|
||
|
reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode
|
||
|
)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
sample: torch.Tensor,
|
||
|
temb: Optional[torch.Tensor] = None,
|
||
|
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
) -> torch.Tensor:
|
||
|
r"""The forward method of the `CogVideoXDecoder3D` class."""
|
||
|
|
||
|
new_conv_cache = {}
|
||
|
conv_cache = conv_cache or {}
|
||
|
|
||
|
hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
|
||
|
|
||
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
|
# 1. Mid
|
||
|
hidden_states, new_conv_cache["mid_block"] = self._gradient_checkpointing_func(
|
||
|
self.mid_block,
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
sample,
|
||
|
conv_cache.get("mid_block"),
|
||
|
)
|
||
|
|
||
|
# 2. Up
|
||
|
for i, up_block in enumerate(self.up_blocks):
|
||
|
conv_cache_key = f"up_block_{i}"
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
||
|
up_block,
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
sample,
|
||
|
conv_cache.get(conv_cache_key),
|
||
|
)
|
||
|
else:
|
||
|
# 1. Mid
|
||
|
hidden_states, new_conv_cache["mid_block"] = self.mid_block(
|
||
|
hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block")
|
||
|
)
|
||
|
|
||
|
# 2. Up
|
||
|
for i, up_block in enumerate(self.up_blocks):
|
||
|
conv_cache_key = f"up_block_{i}"
|
||
|
hidden_states, new_conv_cache[conv_cache_key] = up_block(
|
||
|
hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key)
|
||
|
)
|
||
|
|
||
|
# 3. Post-process
|
||
|
hidden_states, new_conv_cache["norm_out"] = self.norm_out(
|
||
|
hidden_states, sample, conv_cache=conv_cache.get("norm_out")
|
||
|
)
|
||
|
hidden_states = self.conv_act(hidden_states)
|
||
|
hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))
|
||
|
|
||
|
return hidden_states, new_conv_cache
|
||
|
|
||
|
|
||
|
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||
|
r"""
|
||
|
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
|
||
|
[CogVideoX](https://github.com/THUDM/CogVideo).
|
||
|
|
||
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
||
|
for all models (such as downloading or saving).
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
||
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
||
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
||
|
Tuple of downsample block types.
|
||
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
||
|
Tuple of upsample block types.
|
||
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
||
|
Tuple of block output channels.
|
||
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
||
|
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
||
|
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
|
||
|
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
||
|
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
||
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
||
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
||
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
||
|
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
|
||
|
force_upcast (`bool`, *optional*, default to `True`):
|
||
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
||
|
can be fine-tuned / trained to a lower range without losing too much precision in which case `force_upcast`
|
||
|
can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
||
|
"""
|
||
|
|
||
|
_supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["CogVideoXResnetBlock3D"]
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int = 3,
|
||
|
out_channels: int = 3,
|
||
|
down_block_types: Tuple[str] = (
|
||
|
"CogVideoXDownBlock3D",
|
||
|
"CogVideoXDownBlock3D",
|
||
|
"CogVideoXDownBlock3D",
|
||
|
"CogVideoXDownBlock3D",
|
||
|
),
|
||
|
up_block_types: Tuple[str] = (
|
||
|
"CogVideoXUpBlock3D",
|
||
|
"CogVideoXUpBlock3D",
|
||
|
"CogVideoXUpBlock3D",
|
||
|
"CogVideoXUpBlock3D",
|
||
|
),
|
||
|
block_out_channels: Tuple[int] = (128, 256, 256, 512),
|
||
|
latent_channels: int = 16,
|
||
|
layers_per_block: int = 3,
|
||
|
act_fn: str = "silu",
|
||
|
norm_eps: float = 1e-6,
|
||
|
norm_num_groups: int = 32,
|
||
|
temporal_compression_ratio: float = 4,
|
||
|
sample_height: int = 480,
|
||
|
sample_width: int = 720,
|
||
|
scaling_factor: float = 1.15258426,
|
||
|
shift_factor: Optional[float] = None,
|
||
|
latents_mean: Optional[Tuple[float]] = None,
|
||
|
latents_std: Optional[Tuple[float]] = None,
|
||
|
force_upcast: float = True,
|
||
|
use_quant_conv: bool = False,
|
||
|
use_post_quant_conv: bool = False,
|
||
|
invert_scale_latents: bool = False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.encoder = CogVideoXEncoder3D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=latent_channels,
|
||
|
down_block_types=down_block_types,
|
||
|
block_out_channels=block_out_channels,
|
||
|
layers_per_block=layers_per_block,
|
||
|
act_fn=act_fn,
|
||
|
norm_eps=norm_eps,
|
||
|
norm_num_groups=norm_num_groups,
|
||
|
temporal_compression_ratio=temporal_compression_ratio,
|
||
|
)
|
||
|
self.decoder = CogVideoXDecoder3D(
|
||
|
in_channels=latent_channels,
|
||
|
out_channels=out_channels,
|
||
|
up_block_types=up_block_types,
|
||
|
block_out_channels=block_out_channels,
|
||
|
layers_per_block=layers_per_block,
|
||
|
act_fn=act_fn,
|
||
|
norm_eps=norm_eps,
|
||
|
norm_num_groups=norm_num_groups,
|
||
|
temporal_compression_ratio=temporal_compression_ratio,
|
||
|
)
|
||
|
self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None
|
||
|
self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None
|
||
|
|
||
|
self.use_slicing = False
|
||
|
self.use_tiling = False
|
||
|
|
||
|
# Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not
|
||
|
# recommended because the temporal parts of the VAE, here, are tricky to understand.
|
||
|
# If you decode X latent frames together, the number of output frames is:
|
||
|
# (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames
|
||
|
#
|
||
|
# Example with num_latent_frames_batch_size = 2:
|
||
|
# - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together
|
||
|
# => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
|
||
|
# => 6 * 8 = 48 frames
|
||
|
# - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together
|
||
|
# => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) +
|
||
|
# ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
|
||
|
# => 1 * 9 + 5 * 8 = 49 frames
|
||
|
# It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that
|
||
|
# setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different
|
||
|
# number of temporal frames.
|
||
|
self.num_latent_frames_batch_size = 2
|
||
|
self.num_sample_frames_batch_size = 8
|
||
|
|
||
|
# We make the minimum height and width of sample for tiling half that of the generally supported
|
||
|
self.tile_sample_min_height = sample_height // 2
|
||
|
self.tile_sample_min_width = sample_width // 2
|
||
|
self.tile_latent_min_height = int(
|
||
|
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
|
||
|
)
|
||
|
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
|
||
|
|
||
|
# These are experimental overlap factors that were chosen based on experimentation and seem to work best for
|
||
|
# 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX
|
||
|
# and so the tiling implementation has only been tested on those specific resolutions.
|
||
|
self.tile_overlap_factor_height = 1 / 6
|
||
|
self.tile_overlap_factor_width = 1 / 5
|
||
|
|
||
|
def enable_tiling(
|
||
|
self,
|
||
|
tile_sample_min_height: Optional[int] = None,
|
||
|
tile_sample_min_width: Optional[int] = None,
|
||
|
tile_overlap_factor_height: Optional[float] = None,
|
||
|
tile_overlap_factor_width: Optional[float] = None,
|
||
|
) -> None:
|
||
|
r"""
|
||
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||
|
processing larger images.
|
||
|
|
||
|
Args:
|
||
|
tile_sample_min_height (`int`, *optional*):
|
||
|
The minimum height required for a sample to be separated into tiles across the height dimension.
|
||
|
tile_sample_min_width (`int`, *optional*):
|
||
|
The minimum width required for a sample to be separated into tiles across the width dimension.
|
||
|
tile_overlap_factor_height (`int`, *optional*):
|
||
|
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
||
|
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher
|
||
|
value might cause more tiles to be processed leading to slow down of the decoding process.
|
||
|
tile_overlap_factor_width (`int`, *optional*):
|
||
|
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there
|
||
|
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher
|
||
|
value might cause more tiles to be processed leading to slow down of the decoding process.
|
||
|
"""
|
||
|
self.use_tiling = True
|
||
|
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
||
|
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
||
|
self.tile_latent_min_height = int(
|
||
|
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
|
||
|
)
|
||
|
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
|
||
|
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height
|
||
|
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width
|
||
|
|
||
|
def disable_tiling(self) -> None:
|
||
|
r"""
|
||
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
||
|
decoding in one step.
|
||
|
"""
|
||
|
self.use_tiling = False
|
||
|
|
||
|
def enable_slicing(self) -> None:
|
||
|
r"""
|
||
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||
|
"""
|
||
|
self.use_slicing = True
|
||
|
|
||
|
def disable_slicing(self) -> None:
|
||
|
r"""
|
||
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
||
|
decoding in one step.
|
||
|
"""
|
||
|
self.use_slicing = False
|
||
|
|
||
|
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
batch_size, num_channels, num_frames, height, width = x.shape
|
||
|
|
||
|
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
||
|
return self.tiled_encode(x)
|
||
|
|
||
|
frame_batch_size = self.num_sample_frames_batch_size
|
||
|
# Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
|
||
|
# As the extra single frame is handled inside the loop, it is not required to round up here.
|
||
|
num_batches = max(num_frames // frame_batch_size, 1)
|
||
|
conv_cache = None
|
||
|
enc = []
|
||
|
|
||
|
for i in range(num_batches):
|
||
|
remaining_frames = num_frames % frame_batch_size
|
||
|
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
|
||
|
end_frame = frame_batch_size * (i + 1) + remaining_frames
|
||
|
x_intermediate = x[:, :, start_frame:end_frame]
|
||
|
x_intermediate, conv_cache = self.encoder(x_intermediate, conv_cache=conv_cache)
|
||
|
if self.quant_conv is not None:
|
||
|
x_intermediate = self.quant_conv(x_intermediate)
|
||
|
enc.append(x_intermediate)
|
||
|
|
||
|
enc = torch.cat(enc, dim=2)
|
||
|
return enc
|
||
|
|
||
|
@apply_forward_hook
|
||
|
def encode(
|
||
|
self, x: torch.Tensor, return_dict: bool = True
|
||
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
||
|
"""
|
||
|
Encode a batch of images into latents.
|
||
|
|
||
|
Args:
|
||
|
x (`torch.Tensor`): Input batch of images.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
||
|
|
||
|
Returns:
|
||
|
The latent representations of the encoded videos. If `return_dict` is True, a
|
||
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
||
|
"""
|
||
|
if self.use_slicing and x.shape[0] > 1:
|
||
|
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
||
|
h = torch.cat(encoded_slices)
|
||
|
else:
|
||
|
h = self._encode(x)
|
||
|
|
||
|
posterior = DiagonalGaussianDistribution(h)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (posterior,)
|
||
|
return AutoencoderKLOutput(latent_dist=posterior)
|
||
|
|
||
|
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||
|
batch_size, num_channels, num_frames, height, width = z.shape
|
||
|
|
||
|
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
|
||
|
return self.tiled_decode(z, return_dict=return_dict)
|
||
|
|
||
|
frame_batch_size = self.num_latent_frames_batch_size
|
||
|
num_batches = max(num_frames // frame_batch_size, 1)
|
||
|
conv_cache = None
|
||
|
dec = []
|
||
|
|
||
|
for i in range(num_batches):
|
||
|
remaining_frames = num_frames % frame_batch_size
|
||
|
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
|
||
|
end_frame = frame_batch_size * (i + 1) + remaining_frames
|
||
|
z_intermediate = z[:, :, start_frame:end_frame]
|
||
|
if self.post_quant_conv is not None:
|
||
|
z_intermediate = self.post_quant_conv(z_intermediate)
|
||
|
z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache)
|
||
|
dec.append(z_intermediate)
|
||
|
|
||
|
dec = torch.cat(dec, dim=2)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (dec,)
|
||
|
|
||
|
return DecoderOutput(sample=dec)
|
||
|
|
||
|
@apply_forward_hook
|
||
|
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||
|
"""
|
||
|
Decode a batch of images.
|
||
|
|
||
|
Args:
|
||
|
z (`torch.Tensor`): Input batch of latent vectors.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
||
|
|
||
|
Returns:
|
||
|
[`~models.vae.DecoderOutput`] or `tuple`:
|
||
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
||
|
returned.
|
||
|
"""
|
||
|
if self.use_slicing and z.shape[0] > 1:
|
||
|
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
||
|
decoded = torch.cat(decoded_slices)
|
||
|
else:
|
||
|
decoded = self._decode(z).sample
|
||
|
|
||
|
if not return_dict:
|
||
|
return (decoded,)
|
||
|
return DecoderOutput(sample=decoded)
|
||
|
|
||
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
||
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
||
|
for y in range(blend_extent):
|
||
|
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
||
|
y / blend_extent
|
||
|
)
|
||
|
return b
|
||
|
|
||
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
||
|
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
||
|
for x in range(blend_extent):
|
||
|
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
||
|
x / blend_extent
|
||
|
)
|
||
|
return b
|
||
|
|
||
|
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
r"""Encode a batch of images using a tiled encoder.
|
||
|
|
||
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
||
|
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
||
|
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
||
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
||
|
output, but they should be much less noticeable.
|
||
|
|
||
|
Args:
|
||
|
x (`torch.Tensor`): Input batch of videos.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`:
|
||
|
The latent representation of the encoded videos.
|
||
|
"""
|
||
|
# For a rough memory estimate, take a look at the `tiled_decode` method.
|
||
|
batch_size, num_channels, num_frames, height, width = x.shape
|
||
|
|
||
|
overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height))
|
||
|
overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width))
|
||
|
blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height)
|
||
|
blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width)
|
||
|
row_limit_height = self.tile_latent_min_height - blend_extent_height
|
||
|
row_limit_width = self.tile_latent_min_width - blend_extent_width
|
||
|
frame_batch_size = self.num_sample_frames_batch_size
|
||
|
|
||
|
# Split x into overlapping tiles and encode them separately.
|
||
|
# The tiles have an overlap to avoid seams between tiles.
|
||
|
rows = []
|
||
|
for i in range(0, height, overlap_height):
|
||
|
row = []
|
||
|
for j in range(0, width, overlap_width):
|
||
|
# Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
|
||
|
# As the extra single frame is handled inside the loop, it is not required to round up here.
|
||
|
num_batches = max(num_frames // frame_batch_size, 1)
|
||
|
conv_cache = None
|
||
|
time = []
|
||
|
|
||
|
for k in range(num_batches):
|
||
|
remaining_frames = num_frames % frame_batch_size
|
||
|
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
|
||
|
end_frame = frame_batch_size * (k + 1) + remaining_frames
|
||
|
tile = x[
|
||
|
:,
|
||
|
:,
|
||
|
start_frame:end_frame,
|
||
|
i : i + self.tile_sample_min_height,
|
||
|
j : j + self.tile_sample_min_width,
|
||
|
]
|
||
|
tile, conv_cache = self.encoder(tile, conv_cache=conv_cache)
|
||
|
if self.quant_conv is not None:
|
||
|
tile = self.quant_conv(tile)
|
||
|
time.append(tile)
|
||
|
|
||
|
row.append(torch.cat(time, dim=2))
|
||
|
rows.append(row)
|
||
|
|
||
|
result_rows = []
|
||
|
for i, row in enumerate(rows):
|
||
|
result_row = []
|
||
|
for j, tile in enumerate(row):
|
||
|
# blend the above tile and the left tile
|
||
|
# to the current tile and add the current tile to the result row
|
||
|
if i > 0:
|
||
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
|
||
|
if j > 0:
|
||
|
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
|
||
|
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
|
||
|
result_rows.append(torch.cat(result_row, dim=4))
|
||
|
|
||
|
enc = torch.cat(result_rows, dim=3)
|
||
|
return enc
|
||
|
|
||
|
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||
|
r"""
|
||
|
Decode a batch of images using a tiled decoder.
|
||
|
|
||
|
Args:
|
||
|
z (`torch.Tensor`): Input batch of latent vectors.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
||
|
|
||
|
Returns:
|
||
|
[`~models.vae.DecoderOutput`] or `tuple`:
|
||
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
||
|
returned.
|
||
|
"""
|
||
|
# Rough memory assessment:
|
||
|
# - In CogVideoX-2B, there are a total of 24 CausalConv3d layers.
|
||
|
# - The biggest intermediate dimensions are: [1, 128, 9, 480, 720].
|
||
|
# - Assume fp16 (2 bytes per value).
|
||
|
# Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB
|
||
|
#
|
||
|
# Memory assessment when using tiling:
|
||
|
# - Assume everything as above but now HxW is 240x360 by tiling in half
|
||
|
# Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB
|
||
|
|
||
|
batch_size, num_channels, num_frames, height, width = z.shape
|
||
|
|
||
|
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
|
||
|
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
|
||
|
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
|
||
|
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
|
||
|
row_limit_height = self.tile_sample_min_height - blend_extent_height
|
||
|
row_limit_width = self.tile_sample_min_width - blend_extent_width
|
||
|
frame_batch_size = self.num_latent_frames_batch_size
|
||
|
|
||
|
# Split z into overlapping tiles and decode them separately.
|
||
|
# The tiles have an overlap to avoid seams between tiles.
|
||
|
rows = []
|
||
|
for i in range(0, height, overlap_height):
|
||
|
row = []
|
||
|
for j in range(0, width, overlap_width):
|
||
|
num_batches = max(num_frames // frame_batch_size, 1)
|
||
|
conv_cache = None
|
||
|
time = []
|
||
|
|
||
|
for k in range(num_batches):
|
||
|
remaining_frames = num_frames % frame_batch_size
|
||
|
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
|
||
|
end_frame = frame_batch_size * (k + 1) + remaining_frames
|
||
|
tile = z[
|
||
|
:,
|
||
|
:,
|
||
|
start_frame:end_frame,
|
||
|
i : i + self.tile_latent_min_height,
|
||
|
j : j + self.tile_latent_min_width,
|
||
|
]
|
||
|
if self.post_quant_conv is not None:
|
||
|
tile = self.post_quant_conv(tile)
|
||
|
tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
|
||
|
time.append(tile)
|
||
|
|
||
|
row.append(torch.cat(time, dim=2))
|
||
|
rows.append(row)
|
||
|
|
||
|
result_rows = []
|
||
|
for i, row in enumerate(rows):
|
||
|
result_row = []
|
||
|
for j, tile in enumerate(row):
|
||
|
# blend the above tile and the left tile
|
||
|
# to the current tile and add the current tile to the result row
|
||
|
if i > 0:
|
||
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
|
||
|
if j > 0:
|
||
|
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
|
||
|
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
|
||
|
result_rows.append(torch.cat(result_row, dim=4))
|
||
|
|
||
|
dec = torch.cat(result_rows, dim=3)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (dec,)
|
||
|
|
||
|
return DecoderOutput(sample=dec)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
sample: torch.Tensor,
|
||
|
sample_posterior: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
generator: Optional[torch.Generator] = None,
|
||
|
) -> Union[torch.Tensor, torch.Tensor]:
|
||
|
x = sample
|
||
|
posterior = self.encode(x).latent_dist
|
||
|
if sample_posterior:
|
||
|
z = posterior.sample(generator=generator)
|
||
|
else:
|
||
|
z = posterior.mode()
|
||
|
dec = self.decode(z).sample
|
||
|
if not return_dict:
|
||
|
return (dec,)
|
||
|
return DecoderOutput(sample=dec)
|