877 lines
31 KiB
Python
877 lines
31 KiB
Python
![]() |
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers
|
||
|
|
||
|
import math
|
||
|
from functools import partial
|
||
|
from typing import Tuple
|
||
|
|
||
|
import flax
|
||
|
import flax.linen as nn
|
||
|
import jax
|
||
|
import jax.numpy as jnp
|
||
|
from flax.core.frozen_dict import FrozenDict
|
||
|
|
||
|
from ..configuration_utils import ConfigMixin, flax_register_to_config
|
||
|
from ..utils import BaseOutput
|
||
|
from .modeling_flax_utils import FlaxModelMixin
|
||
|
|
||
|
|
||
|
@flax.struct.dataclass
|
||
|
class FlaxDecoderOutput(BaseOutput):
|
||
|
"""
|
||
|
Output of decoding method.
|
||
|
|
||
|
Args:
|
||
|
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
|
||
|
The decoded output sample from the last layer of the model.
|
||
|
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
|
||
|
The `dtype` of the parameters.
|
||
|
"""
|
||
|
|
||
|
sample: jnp.ndarray
|
||
|
|
||
|
|
||
|
@flax.struct.dataclass
|
||
|
class FlaxAutoencoderKLOutput(BaseOutput):
|
||
|
"""
|
||
|
Output of AutoencoderKL encoding method.
|
||
|
|
||
|
Args:
|
||
|
latent_dist (`FlaxDiagonalGaussianDistribution`):
|
||
|
Encoded outputs of `Encoder` represented as the mean and logvar of `FlaxDiagonalGaussianDistribution`.
|
||
|
`FlaxDiagonalGaussianDistribution` allows for sampling latents from the distribution.
|
||
|
"""
|
||
|
|
||
|
latent_dist: "FlaxDiagonalGaussianDistribution"
|
||
|
|
||
|
|
||
|
class FlaxUpsample2D(nn.Module):
|
||
|
"""
|
||
|
Flax implementation of 2D Upsample layer
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`):
|
||
|
Input channels
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
self.conv = nn.Conv(
|
||
|
self.in_channels,
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(1, 1),
|
||
|
padding=((1, 1), (1, 1)),
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
def __call__(self, hidden_states):
|
||
|
batch, height, width, channels = hidden_states.shape
|
||
|
hidden_states = jax.image.resize(
|
||
|
hidden_states,
|
||
|
shape=(batch, height * 2, width * 2, channels),
|
||
|
method="nearest",
|
||
|
)
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlaxDownsample2D(nn.Module):
|
||
|
"""
|
||
|
Flax implementation of 2D Downsample layer
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`):
|
||
|
Input channels
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
self.conv = nn.Conv(
|
||
|
self.in_channels,
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(2, 2),
|
||
|
padding="VALID",
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
def __call__(self, hidden_states):
|
||
|
pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
|
||
|
hidden_states = jnp.pad(hidden_states, pad_width=pad)
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlaxResnetBlock2D(nn.Module):
|
||
|
"""
|
||
|
Flax implementation of 2D Resnet Block.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`):
|
||
|
Input channels
|
||
|
out_channels (`int`):
|
||
|
Output channels
|
||
|
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
||
|
Dropout rate
|
||
|
groups (:obj:`int`, *optional*, defaults to `32`):
|
||
|
The number of groups to use for group norm.
|
||
|
use_nin_shortcut (:obj:`bool`, *optional*, defaults to `None`):
|
||
|
Whether to use `nin_shortcut`. This activates a new layer inside ResNet block
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int
|
||
|
out_channels: int = None
|
||
|
dropout: float = 0.0
|
||
|
groups: int = 32
|
||
|
use_nin_shortcut: bool = None
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
out_channels = self.in_channels if self.out_channels is None else self.out_channels
|
||
|
|
||
|
self.norm1 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
|
||
|
self.conv1 = nn.Conv(
|
||
|
out_channels,
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(1, 1),
|
||
|
padding=((1, 1), (1, 1)),
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
self.norm2 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
|
||
|
self.dropout_layer = nn.Dropout(self.dropout)
|
||
|
self.conv2 = nn.Conv(
|
||
|
out_channels,
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(1, 1),
|
||
|
padding=((1, 1), (1, 1)),
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
|
||
|
|
||
|
self.conv_shortcut = None
|
||
|
if use_nin_shortcut:
|
||
|
self.conv_shortcut = nn.Conv(
|
||
|
out_channels,
|
||
|
kernel_size=(1, 1),
|
||
|
strides=(1, 1),
|
||
|
padding="VALID",
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
def __call__(self, hidden_states, deterministic=True):
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.norm1(hidden_states)
|
||
|
hidden_states = nn.swish(hidden_states)
|
||
|
hidden_states = self.conv1(hidden_states)
|
||
|
|
||
|
hidden_states = self.norm2(hidden_states)
|
||
|
hidden_states = nn.swish(hidden_states)
|
||
|
hidden_states = self.dropout_layer(hidden_states, deterministic)
|
||
|
hidden_states = self.conv2(hidden_states)
|
||
|
|
||
|
if self.conv_shortcut is not None:
|
||
|
residual = self.conv_shortcut(residual)
|
||
|
|
||
|
return hidden_states + residual
|
||
|
|
||
|
|
||
|
class FlaxAttentionBlock(nn.Module):
|
||
|
r"""
|
||
|
Flax Convolutional based multi-head attention block for diffusion-based VAE.
|
||
|
|
||
|
Parameters:
|
||
|
channels (:obj:`int`):
|
||
|
Input channels
|
||
|
num_head_channels (:obj:`int`, *optional*, defaults to `None`):
|
||
|
Number of attention heads
|
||
|
num_groups (:obj:`int`, *optional*, defaults to `32`):
|
||
|
The number of groups to use for group norm
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
|
||
|
"""
|
||
|
|
||
|
channels: int
|
||
|
num_head_channels: int = None
|
||
|
num_groups: int = 32
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1
|
||
|
|
||
|
dense = partial(nn.Dense, self.channels, dtype=self.dtype)
|
||
|
|
||
|
self.group_norm = nn.GroupNorm(num_groups=self.num_groups, epsilon=1e-6)
|
||
|
self.query, self.key, self.value = dense(), dense(), dense()
|
||
|
self.proj_attn = dense()
|
||
|
|
||
|
def transpose_for_scores(self, projection):
|
||
|
new_projection_shape = projection.shape[:-1] + (self.num_heads, -1)
|
||
|
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D)
|
||
|
new_projection = projection.reshape(new_projection_shape)
|
||
|
# (B, T, H, D) -> (B, H, T, D)
|
||
|
new_projection = jnp.transpose(new_projection, (0, 2, 1, 3))
|
||
|
return new_projection
|
||
|
|
||
|
def __call__(self, hidden_states):
|
||
|
residual = hidden_states
|
||
|
batch, height, width, channels = hidden_states.shape
|
||
|
|
||
|
hidden_states = self.group_norm(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.reshape((batch, height * width, channels))
|
||
|
|
||
|
query = self.query(hidden_states)
|
||
|
key = self.key(hidden_states)
|
||
|
value = self.value(hidden_states)
|
||
|
|
||
|
# transpose
|
||
|
query = self.transpose_for_scores(query)
|
||
|
key = self.transpose_for_scores(key)
|
||
|
value = self.transpose_for_scores(value)
|
||
|
|
||
|
# compute attentions
|
||
|
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
|
||
|
attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale)
|
||
|
attn_weights = nn.softmax(attn_weights, axis=-1)
|
||
|
|
||
|
# attend to values
|
||
|
hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)
|
||
|
|
||
|
hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3))
|
||
|
new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,)
|
||
|
hidden_states = hidden_states.reshape(new_hidden_states_shape)
|
||
|
|
||
|
hidden_states = self.proj_attn(hidden_states)
|
||
|
hidden_states = hidden_states.reshape((batch, height, width, channels))
|
||
|
hidden_states = hidden_states + residual
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlaxDownEncoderBlock2D(nn.Module):
|
||
|
r"""
|
||
|
Flax Resnet blocks-based Encoder block for diffusion-based VAE.
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (:obj:`int`):
|
||
|
Input channels
|
||
|
out_channels (:obj:`int`):
|
||
|
Output channels
|
||
|
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
||
|
Dropout rate
|
||
|
num_layers (:obj:`int`, *optional*, defaults to 1):
|
||
|
Number of Resnet layer block
|
||
|
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
|
||
|
The number of groups to use for the Resnet block group norm
|
||
|
add_downsample (:obj:`bool`, *optional*, defaults to `True`):
|
||
|
Whether to add downsample layer
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int
|
||
|
out_channels: int
|
||
|
dropout: float = 0.0
|
||
|
num_layers: int = 1
|
||
|
resnet_groups: int = 32
|
||
|
add_downsample: bool = True
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
resnets = []
|
||
|
for i in range(self.num_layers):
|
||
|
in_channels = self.in_channels if i == 0 else self.out_channels
|
||
|
|
||
|
res_block = FlaxResnetBlock2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=self.out_channels,
|
||
|
dropout=self.dropout,
|
||
|
groups=self.resnet_groups,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
resnets.append(res_block)
|
||
|
self.resnets = resnets
|
||
|
|
||
|
if self.add_downsample:
|
||
|
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
|
||
|
|
||
|
def __call__(self, hidden_states, deterministic=True):
|
||
|
for resnet in self.resnets:
|
||
|
hidden_states = resnet(hidden_states, deterministic=deterministic)
|
||
|
|
||
|
if self.add_downsample:
|
||
|
hidden_states = self.downsamplers_0(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlaxUpDecoderBlock2D(nn.Module):
|
||
|
r"""
|
||
|
Flax Resnet blocks-based Decoder block for diffusion-based VAE.
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (:obj:`int`):
|
||
|
Input channels
|
||
|
out_channels (:obj:`int`):
|
||
|
Output channels
|
||
|
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
||
|
Dropout rate
|
||
|
num_layers (:obj:`int`, *optional*, defaults to 1):
|
||
|
Number of Resnet layer block
|
||
|
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
|
||
|
The number of groups to use for the Resnet block group norm
|
||
|
add_upsample (:obj:`bool`, *optional*, defaults to `True`):
|
||
|
Whether to add upsample layer
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int
|
||
|
out_channels: int
|
||
|
dropout: float = 0.0
|
||
|
num_layers: int = 1
|
||
|
resnet_groups: int = 32
|
||
|
add_upsample: bool = True
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
resnets = []
|
||
|
for i in range(self.num_layers):
|
||
|
in_channels = self.in_channels if i == 0 else self.out_channels
|
||
|
res_block = FlaxResnetBlock2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=self.out_channels,
|
||
|
dropout=self.dropout,
|
||
|
groups=self.resnet_groups,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
resnets.append(res_block)
|
||
|
|
||
|
self.resnets = resnets
|
||
|
|
||
|
if self.add_upsample:
|
||
|
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
|
||
|
|
||
|
def __call__(self, hidden_states, deterministic=True):
|
||
|
for resnet in self.resnets:
|
||
|
hidden_states = resnet(hidden_states, deterministic=deterministic)
|
||
|
|
||
|
if self.add_upsample:
|
||
|
hidden_states = self.upsamplers_0(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlaxUNetMidBlock2D(nn.Module):
|
||
|
r"""
|
||
|
Flax Unet Mid-Block module.
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (:obj:`int`):
|
||
|
Input channels
|
||
|
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
||
|
Dropout rate
|
||
|
num_layers (:obj:`int`, *optional*, defaults to 1):
|
||
|
Number of Resnet layer block
|
||
|
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
|
||
|
The number of groups to use for the Resnet and Attention block group norm
|
||
|
num_attention_heads (:obj:`int`, *optional*, defaults to `1`):
|
||
|
Number of attention heads for each attention block
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int
|
||
|
dropout: float = 0.0
|
||
|
num_layers: int = 1
|
||
|
resnet_groups: int = 32
|
||
|
num_attention_heads: int = 1
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
resnet_groups = self.resnet_groups if self.resnet_groups is not None else min(self.in_channels // 4, 32)
|
||
|
|
||
|
# there is always at least one resnet
|
||
|
resnets = [
|
||
|
FlaxResnetBlock2D(
|
||
|
in_channels=self.in_channels,
|
||
|
out_channels=self.in_channels,
|
||
|
dropout=self.dropout,
|
||
|
groups=resnet_groups,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
]
|
||
|
|
||
|
attentions = []
|
||
|
|
||
|
for _ in range(self.num_layers):
|
||
|
attn_block = FlaxAttentionBlock(
|
||
|
channels=self.in_channels,
|
||
|
num_head_channels=self.num_attention_heads,
|
||
|
num_groups=resnet_groups,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
attentions.append(attn_block)
|
||
|
|
||
|
res_block = FlaxResnetBlock2D(
|
||
|
in_channels=self.in_channels,
|
||
|
out_channels=self.in_channels,
|
||
|
dropout=self.dropout,
|
||
|
groups=resnet_groups,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
resnets.append(res_block)
|
||
|
|
||
|
self.resnets = resnets
|
||
|
self.attentions = attentions
|
||
|
|
||
|
def __call__(self, hidden_states, deterministic=True):
|
||
|
hidden_states = self.resnets[0](hidden_states, deterministic=deterministic)
|
||
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
||
|
hidden_states = attn(hidden_states)
|
||
|
hidden_states = resnet(hidden_states, deterministic=deterministic)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlaxEncoder(nn.Module):
|
||
|
r"""
|
||
|
Flax Implementation of VAE Encoder.
|
||
|
|
||
|
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
|
||
|
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
|
||
|
general usage and behavior.
|
||
|
|
||
|
Finally, this model supports inherent JAX features such as:
|
||
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
||
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
||
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
||
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (:obj:`int`, *optional*, defaults to 3):
|
||
|
Input channels
|
||
|
out_channels (:obj:`int`, *optional*, defaults to 3):
|
||
|
Output channels
|
||
|
down_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
|
||
|
DownEncoder block type
|
||
|
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
|
||
|
Tuple containing the number of output channels for each block
|
||
|
layers_per_block (:obj:`int`, *optional*, defaults to `2`):
|
||
|
Number of Resnet layer for each block
|
||
|
norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
|
||
|
norm num group
|
||
|
act_fn (:obj:`str`, *optional*, defaults to `silu`):
|
||
|
Activation function
|
||
|
double_z (:obj:`bool`, *optional*, defaults to `False`):
|
||
|
Whether to double the last output channels
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
Parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int = 3
|
||
|
out_channels: int = 3
|
||
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
|
||
|
block_out_channels: Tuple[int] = (64,)
|
||
|
layers_per_block: int = 2
|
||
|
norm_num_groups: int = 32
|
||
|
act_fn: str = "silu"
|
||
|
double_z: bool = False
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
block_out_channels = self.block_out_channels
|
||
|
# in
|
||
|
self.conv_in = nn.Conv(
|
||
|
block_out_channels[0],
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(1, 1),
|
||
|
padding=((1, 1), (1, 1)),
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
# downsampling
|
||
|
down_blocks = []
|
||
|
output_channel = block_out_channels[0]
|
||
|
for i, _ in enumerate(self.down_block_types):
|
||
|
input_channel = output_channel
|
||
|
output_channel = block_out_channels[i]
|
||
|
is_final_block = i == len(block_out_channels) - 1
|
||
|
|
||
|
down_block = FlaxDownEncoderBlock2D(
|
||
|
in_channels=input_channel,
|
||
|
out_channels=output_channel,
|
||
|
num_layers=self.layers_per_block,
|
||
|
resnet_groups=self.norm_num_groups,
|
||
|
add_downsample=not is_final_block,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
down_blocks.append(down_block)
|
||
|
self.down_blocks = down_blocks
|
||
|
|
||
|
# middle
|
||
|
self.mid_block = FlaxUNetMidBlock2D(
|
||
|
in_channels=block_out_channels[-1],
|
||
|
resnet_groups=self.norm_num_groups,
|
||
|
num_attention_heads=None,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
# end
|
||
|
conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels
|
||
|
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
|
||
|
self.conv_out = nn.Conv(
|
||
|
conv_out_channels,
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(1, 1),
|
||
|
padding=((1, 1), (1, 1)),
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
def __call__(self, sample, deterministic: bool = True):
|
||
|
# in
|
||
|
sample = self.conv_in(sample)
|
||
|
|
||
|
# downsampling
|
||
|
for block in self.down_blocks:
|
||
|
sample = block(sample, deterministic=deterministic)
|
||
|
|
||
|
# middle
|
||
|
sample = self.mid_block(sample, deterministic=deterministic)
|
||
|
|
||
|
# end
|
||
|
sample = self.conv_norm_out(sample)
|
||
|
sample = nn.swish(sample)
|
||
|
sample = self.conv_out(sample)
|
||
|
|
||
|
return sample
|
||
|
|
||
|
|
||
|
class FlaxDecoder(nn.Module):
|
||
|
r"""
|
||
|
Flax Implementation of VAE Decoder.
|
||
|
|
||
|
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
|
||
|
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
|
||
|
general usage and behavior.
|
||
|
|
||
|
Finally, this model supports inherent JAX features such as:
|
||
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
||
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
||
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
||
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (:obj:`int`, *optional*, defaults to 3):
|
||
|
Input channels
|
||
|
out_channels (:obj:`int`, *optional*, defaults to 3):
|
||
|
Output channels
|
||
|
up_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
|
||
|
UpDecoder block type
|
||
|
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
|
||
|
Tuple containing the number of output channels for each block
|
||
|
layers_per_block (:obj:`int`, *optional*, defaults to `2`):
|
||
|
Number of Resnet layer for each block
|
||
|
norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
|
||
|
norm num group
|
||
|
act_fn (:obj:`str`, *optional*, defaults to `silu`):
|
||
|
Activation function
|
||
|
double_z (:obj:`bool`, *optional*, defaults to `False`):
|
||
|
Whether to double the last output channels
|
||
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
||
|
parameters `dtype`
|
||
|
"""
|
||
|
|
||
|
in_channels: int = 3
|
||
|
out_channels: int = 3
|
||
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
|
||
|
block_out_channels: int = (64,)
|
||
|
layers_per_block: int = 2
|
||
|
norm_num_groups: int = 32
|
||
|
act_fn: str = "silu"
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
block_out_channels = self.block_out_channels
|
||
|
|
||
|
# z to block_in
|
||
|
self.conv_in = nn.Conv(
|
||
|
block_out_channels[-1],
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(1, 1),
|
||
|
padding=((1, 1), (1, 1)),
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
# middle
|
||
|
self.mid_block = FlaxUNetMidBlock2D(
|
||
|
in_channels=block_out_channels[-1],
|
||
|
resnet_groups=self.norm_num_groups,
|
||
|
num_attention_heads=None,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
# upsampling
|
||
|
reversed_block_out_channels = list(reversed(block_out_channels))
|
||
|
output_channel = reversed_block_out_channels[0]
|
||
|
up_blocks = []
|
||
|
for i, _ in enumerate(self.up_block_types):
|
||
|
prev_output_channel = output_channel
|
||
|
output_channel = reversed_block_out_channels[i]
|
||
|
|
||
|
is_final_block = i == len(block_out_channels) - 1
|
||
|
|
||
|
up_block = FlaxUpDecoderBlock2D(
|
||
|
in_channels=prev_output_channel,
|
||
|
out_channels=output_channel,
|
||
|
num_layers=self.layers_per_block + 1,
|
||
|
resnet_groups=self.norm_num_groups,
|
||
|
add_upsample=not is_final_block,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
up_blocks.append(up_block)
|
||
|
prev_output_channel = output_channel
|
||
|
|
||
|
self.up_blocks = up_blocks
|
||
|
|
||
|
# end
|
||
|
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
|
||
|
self.conv_out = nn.Conv(
|
||
|
self.out_channels,
|
||
|
kernel_size=(3, 3),
|
||
|
strides=(1, 1),
|
||
|
padding=((1, 1), (1, 1)),
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
def __call__(self, sample, deterministic: bool = True):
|
||
|
# z to block_in
|
||
|
sample = self.conv_in(sample)
|
||
|
|
||
|
# middle
|
||
|
sample = self.mid_block(sample, deterministic=deterministic)
|
||
|
|
||
|
# upsampling
|
||
|
for block in self.up_blocks:
|
||
|
sample = block(sample, deterministic=deterministic)
|
||
|
|
||
|
sample = self.conv_norm_out(sample)
|
||
|
sample = nn.swish(sample)
|
||
|
sample = self.conv_out(sample)
|
||
|
|
||
|
return sample
|
||
|
|
||
|
|
||
|
class FlaxDiagonalGaussianDistribution(object):
|
||
|
def __init__(self, parameters, deterministic=False):
|
||
|
# Last axis to account for channels-last
|
||
|
self.mean, self.logvar = jnp.split(parameters, 2, axis=-1)
|
||
|
self.logvar = jnp.clip(self.logvar, -30.0, 20.0)
|
||
|
self.deterministic = deterministic
|
||
|
self.std = jnp.exp(0.5 * self.logvar)
|
||
|
self.var = jnp.exp(self.logvar)
|
||
|
if self.deterministic:
|
||
|
self.var = self.std = jnp.zeros_like(self.mean)
|
||
|
|
||
|
def sample(self, key):
|
||
|
return self.mean + self.std * jax.random.normal(key, self.mean.shape)
|
||
|
|
||
|
def kl(self, other=None):
|
||
|
if self.deterministic:
|
||
|
return jnp.array([0.0])
|
||
|
|
||
|
if other is None:
|
||
|
return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3])
|
||
|
|
||
|
return 0.5 * jnp.sum(
|
||
|
jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||
|
axis=[1, 2, 3],
|
||
|
)
|
||
|
|
||
|
def nll(self, sample, axis=[1, 2, 3]):
|
||
|
if self.deterministic:
|
||
|
return jnp.array([0.0])
|
||
|
|
||
|
logtwopi = jnp.log(2.0 * jnp.pi)
|
||
|
return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis)
|
||
|
|
||
|
def mode(self):
|
||
|
return self.mean
|
||
|
|
||
|
|
||
|
@flax_register_to_config
|
||
|
class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
|
||
|
r"""
|
||
|
Flax implementation of a VAE model with KL loss for decoding latent representations.
|
||
|
|
||
|
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods
|
||
|
implemented for all models (such as downloading or saving).
|
||
|
|
||
|
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
|
||
|
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matter related to its
|
||
|
general usage and behavior.
|
||
|
|
||
|
Inherent JAX features such as the following are supported:
|
||
|
|
||
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
||
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
||
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
||
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (`int`, *optional*, defaults to 3):
|
||
|
Number of channels in the input image.
|
||
|
out_channels (`int`, *optional*, defaults to 3):
|
||
|
Number of channels in the output.
|
||
|
down_block_types (`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
|
||
|
Tuple of downsample block types.
|
||
|
up_block_types (`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
|
||
|
Tuple of upsample block types.
|
||
|
block_out_channels (`Tuple[str]`, *optional*, defaults to `(64,)`):
|
||
|
Tuple of block output channels.
|
||
|
layers_per_block (`int`, *optional*, defaults to `2`):
|
||
|
Number of ResNet layer for each block.
|
||
|
act_fn (`str`, *optional*, defaults to `silu`):
|
||
|
The activation function to use.
|
||
|
latent_channels (`int`, *optional*, defaults to `4`):
|
||
|
Number of channels in the latent space.
|
||
|
norm_num_groups (`int`, *optional*, defaults to `32`):
|
||
|
The number of groups for normalization.
|
||
|
sample_size (`int`, *optional*, defaults to 32):
|
||
|
Sample input size.
|
||
|
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
||
|
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
||
|
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
||
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
||
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
||
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
||
|
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
|
||
|
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
|
||
|
The `dtype` of the parameters.
|
||
|
"""
|
||
|
|
||
|
in_channels: int = 3
|
||
|
out_channels: int = 3
|
||
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
|
||
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
|
||
|
block_out_channels: Tuple[int] = (64,)
|
||
|
layers_per_block: int = 1
|
||
|
act_fn: str = "silu"
|
||
|
latent_channels: int = 4
|
||
|
norm_num_groups: int = 32
|
||
|
sample_size: int = 32
|
||
|
scaling_factor: float = 0.18215
|
||
|
dtype: jnp.dtype = jnp.float32
|
||
|
|
||
|
def setup(self):
|
||
|
self.encoder = FlaxEncoder(
|
||
|
in_channels=self.config.in_channels,
|
||
|
out_channels=self.config.latent_channels,
|
||
|
down_block_types=self.config.down_block_types,
|
||
|
block_out_channels=self.config.block_out_channels,
|
||
|
layers_per_block=self.config.layers_per_block,
|
||
|
act_fn=self.config.act_fn,
|
||
|
norm_num_groups=self.config.norm_num_groups,
|
||
|
double_z=True,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
self.decoder = FlaxDecoder(
|
||
|
in_channels=self.config.latent_channels,
|
||
|
out_channels=self.config.out_channels,
|
||
|
up_block_types=self.config.up_block_types,
|
||
|
block_out_channels=self.config.block_out_channels,
|
||
|
layers_per_block=self.config.layers_per_block,
|
||
|
norm_num_groups=self.config.norm_num_groups,
|
||
|
act_fn=self.config.act_fn,
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
self.quant_conv = nn.Conv(
|
||
|
2 * self.config.latent_channels,
|
||
|
kernel_size=(1, 1),
|
||
|
strides=(1, 1),
|
||
|
padding="VALID",
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
self.post_quant_conv = nn.Conv(
|
||
|
self.config.latent_channels,
|
||
|
kernel_size=(1, 1),
|
||
|
strides=(1, 1),
|
||
|
padding="VALID",
|
||
|
dtype=self.dtype,
|
||
|
)
|
||
|
|
||
|
def init_weights(self, rng: jax.Array) -> FrozenDict:
|
||
|
# init input tensors
|
||
|
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
|
||
|
sample = jnp.zeros(sample_shape, dtype=jnp.float32)
|
||
|
|
||
|
params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3)
|
||
|
rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng}
|
||
|
|
||
|
return self.init(rngs, sample)["params"]
|
||
|
|
||
|
def encode(self, sample, deterministic: bool = True, return_dict: bool = True):
|
||
|
sample = jnp.transpose(sample, (0, 2, 3, 1))
|
||
|
|
||
|
hidden_states = self.encoder(sample, deterministic=deterministic)
|
||
|
moments = self.quant_conv(hidden_states)
|
||
|
posterior = FlaxDiagonalGaussianDistribution(moments)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (posterior,)
|
||
|
|
||
|
return FlaxAutoencoderKLOutput(latent_dist=posterior)
|
||
|
|
||
|
def decode(self, latents, deterministic: bool = True, return_dict: bool = True):
|
||
|
if latents.shape[-1] != self.config.latent_channels:
|
||
|
latents = jnp.transpose(latents, (0, 2, 3, 1))
|
||
|
|
||
|
hidden_states = self.post_quant_conv(latents)
|
||
|
hidden_states = self.decoder(hidden_states, deterministic=deterministic)
|
||
|
|
||
|
hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2))
|
||
|
|
||
|
if not return_dict:
|
||
|
return (hidden_states,)
|
||
|
|
||
|
return FlaxDecoderOutput(sample=hidden_states)
|
||
|
|
||
|
def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True):
|
||
|
posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict)
|
||
|
if sample_posterior:
|
||
|
rng = self.make_rng("gaussian")
|
||
|
hidden_states = posterior.latent_dist.sample(rng)
|
||
|
else:
|
||
|
hidden_states = posterior.latent_dist.mode()
|
||
|
|
||
|
sample = self.decode(hidden_states, return_dict=return_dict).sample
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sample,)
|
||
|
|
||
|
return FlaxDecoderOutput(sample=sample)
|