787 lines
35 KiB
Python
787 lines
35 KiB
Python
![]() |
import html
|
|||
|
import inspect
|
|||
|
import re
|
|||
|
import urllib.parse as ul
|
|||
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|||
|
|
|||
|
import torch
|
|||
|
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
|||
|
|
|||
|
from ...loaders import StableDiffusionLoraLoaderMixin
|
|||
|
from ...models import UNet2DConditionModel
|
|||
|
from ...schedulers import DDPMScheduler
|
|||
|
from ...utils import (
|
|||
|
BACKENDS_MAPPING,
|
|||
|
is_bs4_available,
|
|||
|
is_ftfy_available,
|
|||
|
is_torch_xla_available,
|
|||
|
logging,
|
|||
|
replace_example_docstring,
|
|||
|
)
|
|||
|
from ...utils.torch_utils import randn_tensor
|
|||
|
from ..pipeline_utils import DiffusionPipeline
|
|||
|
from .pipeline_output import IFPipelineOutput
|
|||
|
from .safety_checker import IFSafetyChecker
|
|||
|
from .watermark import IFWatermarker
|
|||
|
|
|||
|
|
|||
|
if is_torch_xla_available():
|
|||
|
import torch_xla.core.xla_model as xm
|
|||
|
|
|||
|
XLA_AVAILABLE = True
|
|||
|
else:
|
|||
|
XLA_AVAILABLE = False
|
|||
|
|
|||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|||
|
|
|||
|
|
|||
|
if is_bs4_available():
|
|||
|
from bs4 import BeautifulSoup
|
|||
|
|
|||
|
if is_ftfy_available():
|
|||
|
import ftfy
|
|||
|
|
|||
|
|
|||
|
EXAMPLE_DOC_STRING = """
|
|||
|
Examples:
|
|||
|
```py
|
|||
|
>>> from diffusers import IFPipeline, IFSuperResolutionPipeline, DiffusionPipeline
|
|||
|
>>> from diffusers.utils import pt_to_pil
|
|||
|
>>> import torch
|
|||
|
|
|||
|
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
|
|||
|
>>> pipe.enable_model_cpu_offload()
|
|||
|
|
|||
|
>>> prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
|
|||
|
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
|
|||
|
|
|||
|
>>> image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt").images
|
|||
|
|
|||
|
>>> # save intermediate image
|
|||
|
>>> pil_image = pt_to_pil(image)
|
|||
|
>>> pil_image[0].save("./if_stage_I.png")
|
|||
|
|
|||
|
>>> super_res_1_pipe = IFSuperResolutionPipeline.from_pretrained(
|
|||
|
... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
|
|||
|
... )
|
|||
|
>>> super_res_1_pipe.enable_model_cpu_offload()
|
|||
|
|
|||
|
>>> image = super_res_1_pipe(
|
|||
|
... image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt"
|
|||
|
... ).images
|
|||
|
|
|||
|
>>> # save intermediate image
|
|||
|
>>> pil_image = pt_to_pil(image)
|
|||
|
>>> pil_image[0].save("./if_stage_I.png")
|
|||
|
|
|||
|
>>> safety_modules = {
|
|||
|
... "feature_extractor": pipe.feature_extractor,
|
|||
|
... "safety_checker": pipe.safety_checker,
|
|||
|
... "watermarker": pipe.watermarker,
|
|||
|
... }
|
|||
|
>>> super_res_2_pipe = DiffusionPipeline.from_pretrained(
|
|||
|
... "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
|
|||
|
... )
|
|||
|
>>> super_res_2_pipe.enable_model_cpu_offload()
|
|||
|
|
|||
|
>>> image = super_res_2_pipe(
|
|||
|
... prompt=prompt,
|
|||
|
... image=image,
|
|||
|
... ).images
|
|||
|
>>> image[0].save("./if_stage_II.png")
|
|||
|
```
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
class IFPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin):
|
|||
|
tokenizer: T5Tokenizer
|
|||
|
text_encoder: T5EncoderModel
|
|||
|
|
|||
|
unet: UNet2DConditionModel
|
|||
|
scheduler: DDPMScheduler
|
|||
|
|
|||
|
feature_extractor: Optional[CLIPImageProcessor]
|
|||
|
safety_checker: Optional[IFSafetyChecker]
|
|||
|
|
|||
|
watermarker: Optional[IFWatermarker]
|
|||
|
|
|||
|
bad_punct_regex = re.compile(
|
|||
|
r"["
|
|||
|
+ "#®•©™&@·º½¾¿¡§~"
|
|||
|
+ r"\)"
|
|||
|
+ r"\("
|
|||
|
+ r"\]"
|
|||
|
+ r"\["
|
|||
|
+ r"\}"
|
|||
|
+ r"\{"
|
|||
|
+ r"\|"
|
|||
|
+ "\\"
|
|||
|
+ r"\/"
|
|||
|
+ r"\*"
|
|||
|
+ r"]{1,}"
|
|||
|
) # noqa
|
|||
|
|
|||
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
|||
|
model_cpu_offload_seq = "text_encoder->unet"
|
|||
|
_exclude_from_cpu_offload = ["watermarker"]
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
tokenizer: T5Tokenizer,
|
|||
|
text_encoder: T5EncoderModel,
|
|||
|
unet: UNet2DConditionModel,
|
|||
|
scheduler: DDPMScheduler,
|
|||
|
safety_checker: Optional[IFSafetyChecker],
|
|||
|
feature_extractor: Optional[CLIPImageProcessor],
|
|||
|
watermarker: Optional[IFWatermarker],
|
|||
|
requires_safety_checker: bool = True,
|
|||
|
):
|
|||
|
super().__init__()
|
|||
|
|
|||
|
if safety_checker is None and requires_safety_checker:
|
|||
|
logger.warning(
|
|||
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|||
|
" that you abide to the conditions of the IF license and do not expose unfiltered"
|
|||
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|||
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|||
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|||
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|||
|
)
|
|||
|
|
|||
|
if safety_checker is not None and feature_extractor is None:
|
|||
|
raise ValueError(
|
|||
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|||
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|||
|
)
|
|||
|
|
|||
|
self.register_modules(
|
|||
|
tokenizer=tokenizer,
|
|||
|
text_encoder=text_encoder,
|
|||
|
unet=unet,
|
|||
|
scheduler=scheduler,
|
|||
|
safety_checker=safety_checker,
|
|||
|
feature_extractor=feature_extractor,
|
|||
|
watermarker=watermarker,
|
|||
|
)
|
|||
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
def encode_prompt(
|
|||
|
self,
|
|||
|
prompt: Union[str, List[str]],
|
|||
|
do_classifier_free_guidance: bool = True,
|
|||
|
num_images_per_prompt: int = 1,
|
|||
|
device: Optional[torch.device] = None,
|
|||
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|||
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
clean_caption: bool = False,
|
|||
|
):
|
|||
|
r"""
|
|||
|
Encodes the prompt into text encoder hidden states.
|
|||
|
|
|||
|
Args:
|
|||
|
prompt (`str` or `List[str]`, *optional*):
|
|||
|
prompt to be encoded
|
|||
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
|||
|
whether to use classifier free guidance or not
|
|||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|||
|
number of images that should be generated per prompt
|
|||
|
device: (`torch.device`, *optional*):
|
|||
|
torch device to place the resulting embeddings on
|
|||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|||
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
|||
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|||
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|||
|
provided, text embeddings will be generated from `prompt` input argument.
|
|||
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|||
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|||
|
argument.
|
|||
|
clean_caption (bool, defaults to `False`):
|
|||
|
If `True`, the function will preprocess and clean the provided caption before encoding.
|
|||
|
"""
|
|||
|
if prompt is not None and negative_prompt is not None:
|
|||
|
if type(prompt) is not type(negative_prompt):
|
|||
|
raise TypeError(
|
|||
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|||
|
f" {type(prompt)}."
|
|||
|
)
|
|||
|
|
|||
|
if device is None:
|
|||
|
device = self._execution_device
|
|||
|
|
|||
|
if prompt is not None and isinstance(prompt, str):
|
|||
|
batch_size = 1
|
|||
|
elif prompt is not None and isinstance(prompt, list):
|
|||
|
batch_size = len(prompt)
|
|||
|
else:
|
|||
|
batch_size = prompt_embeds.shape[0]
|
|||
|
|
|||
|
# while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF
|
|||
|
max_length = 77
|
|||
|
|
|||
|
if prompt_embeds is None:
|
|||
|
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
|||
|
text_inputs = self.tokenizer(
|
|||
|
prompt,
|
|||
|
padding="max_length",
|
|||
|
max_length=max_length,
|
|||
|
truncation=True,
|
|||
|
add_special_tokens=True,
|
|||
|
return_tensors="pt",
|
|||
|
)
|
|||
|
text_input_ids = text_inputs.input_ids
|
|||
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|||
|
|
|||
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|||
|
text_input_ids, untruncated_ids
|
|||
|
):
|
|||
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
|||
|
logger.warning(
|
|||
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|||
|
f" {max_length} tokens: {removed_text}"
|
|||
|
)
|
|||
|
|
|||
|
attention_mask = text_inputs.attention_mask.to(device)
|
|||
|
|
|||
|
prompt_embeds = self.text_encoder(
|
|||
|
text_input_ids.to(device),
|
|||
|
attention_mask=attention_mask,
|
|||
|
)
|
|||
|
prompt_embeds = prompt_embeds[0]
|
|||
|
|
|||
|
if self.text_encoder is not None:
|
|||
|
dtype = self.text_encoder.dtype
|
|||
|
elif self.unet is not None:
|
|||
|
dtype = self.unet.dtype
|
|||
|
else:
|
|||
|
dtype = None
|
|||
|
|
|||
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|||
|
|
|||
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|||
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|||
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|||
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|||
|
|
|||
|
# get unconditional embeddings for classifier free guidance
|
|||
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|||
|
uncond_tokens: List[str]
|
|||
|
if negative_prompt is None:
|
|||
|
uncond_tokens = [""] * batch_size
|
|||
|
elif isinstance(negative_prompt, str):
|
|||
|
uncond_tokens = [negative_prompt]
|
|||
|
elif batch_size != len(negative_prompt):
|
|||
|
raise ValueError(
|
|||
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|||
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|||
|
" the batch size of `prompt`."
|
|||
|
)
|
|||
|
else:
|
|||
|
uncond_tokens = negative_prompt
|
|||
|
|
|||
|
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
|||
|
max_length = prompt_embeds.shape[1]
|
|||
|
uncond_input = self.tokenizer(
|
|||
|
uncond_tokens,
|
|||
|
padding="max_length",
|
|||
|
max_length=max_length,
|
|||
|
truncation=True,
|
|||
|
return_attention_mask=True,
|
|||
|
add_special_tokens=True,
|
|||
|
return_tensors="pt",
|
|||
|
)
|
|||
|
attention_mask = uncond_input.attention_mask.to(device)
|
|||
|
|
|||
|
negative_prompt_embeds = self.text_encoder(
|
|||
|
uncond_input.input_ids.to(device),
|
|||
|
attention_mask=attention_mask,
|
|||
|
)
|
|||
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|||
|
|
|||
|
if do_classifier_free_guidance:
|
|||
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|||
|
seq_len = negative_prompt_embeds.shape[1]
|
|||
|
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
|||
|
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|||
|
|
|||
|
# For classifier free guidance, we need to do two forward passes.
|
|||
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|||
|
# to avoid doing two forward passes
|
|||
|
else:
|
|||
|
negative_prompt_embeds = None
|
|||
|
|
|||
|
return prompt_embeds, negative_prompt_embeds
|
|||
|
|
|||
|
def run_safety_checker(self, image, device, dtype):
|
|||
|
if self.safety_checker is not None:
|
|||
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
|||
|
image, nsfw_detected, watermark_detected = self.safety_checker(
|
|||
|
images=image,
|
|||
|
clip_input=safety_checker_input.pixel_values.to(dtype=dtype),
|
|||
|
)
|
|||
|
else:
|
|||
|
nsfw_detected = None
|
|||
|
watermark_detected = None
|
|||
|
|
|||
|
return image, nsfw_detected, watermark_detected
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|||
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|||
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|||
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|||
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|||
|
# and should be between [0, 1]
|
|||
|
|
|||
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|||
|
extra_step_kwargs = {}
|
|||
|
if accepts_eta:
|
|||
|
extra_step_kwargs["eta"] = eta
|
|||
|
|
|||
|
# check if the scheduler accepts generator
|
|||
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|||
|
if accepts_generator:
|
|||
|
extra_step_kwargs["generator"] = generator
|
|||
|
return extra_step_kwargs
|
|||
|
|
|||
|
def check_inputs(
|
|||
|
self,
|
|||
|
prompt,
|
|||
|
callback_steps,
|
|||
|
negative_prompt=None,
|
|||
|
prompt_embeds=None,
|
|||
|
negative_prompt_embeds=None,
|
|||
|
):
|
|||
|
if (callback_steps is None) or (
|
|||
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|||
|
):
|
|||
|
raise ValueError(
|
|||
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|||
|
f" {type(callback_steps)}."
|
|||
|
)
|
|||
|
|
|||
|
if prompt is not None and prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|||
|
" only forward one of the two."
|
|||
|
)
|
|||
|
elif prompt is None and prompt_embeds is None:
|
|||
|
raise ValueError(
|
|||
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|||
|
)
|
|||
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|||
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|||
|
|
|||
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|||
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|||
|
)
|
|||
|
|
|||
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|||
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|||
|
raise ValueError(
|
|||
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|||
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|||
|
f" {negative_prompt_embeds.shape}."
|
|||
|
)
|
|||
|
|
|||
|
def prepare_intermediate_images(self, batch_size, num_channels, height, width, dtype, device, generator):
|
|||
|
shape = (batch_size, num_channels, height, width)
|
|||
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|||
|
raise ValueError(
|
|||
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|||
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|||
|
)
|
|||
|
|
|||
|
intermediate_images = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|||
|
|
|||
|
# scale the initial noise by the standard deviation required by the scheduler
|
|||
|
intermediate_images = intermediate_images * self.scheduler.init_noise_sigma
|
|||
|
return intermediate_images
|
|||
|
|
|||
|
def _text_preprocessing(self, text, clean_caption=False):
|
|||
|
if clean_caption and not is_bs4_available():
|
|||
|
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
|||
|
logger.warning("Setting `clean_caption` to False...")
|
|||
|
clean_caption = False
|
|||
|
|
|||
|
if clean_caption and not is_ftfy_available():
|
|||
|
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
|||
|
logger.warning("Setting `clean_caption` to False...")
|
|||
|
clean_caption = False
|
|||
|
|
|||
|
if not isinstance(text, (tuple, list)):
|
|||
|
text = [text]
|
|||
|
|
|||
|
def process(text: str):
|
|||
|
if clean_caption:
|
|||
|
text = self._clean_caption(text)
|
|||
|
text = self._clean_caption(text)
|
|||
|
else:
|
|||
|
text = text.lower().strip()
|
|||
|
return text
|
|||
|
|
|||
|
return [process(t) for t in text]
|
|||
|
|
|||
|
def _clean_caption(self, caption):
|
|||
|
caption = str(caption)
|
|||
|
caption = ul.unquote_plus(caption)
|
|||
|
caption = caption.strip().lower()
|
|||
|
caption = re.sub("<person>", "person", caption)
|
|||
|
# urls:
|
|||
|
caption = re.sub(
|
|||
|
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
|||
|
"",
|
|||
|
caption,
|
|||
|
) # regex for urls
|
|||
|
caption = re.sub(
|
|||
|
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
|||
|
"",
|
|||
|
caption,
|
|||
|
) # regex for urls
|
|||
|
# html:
|
|||
|
caption = BeautifulSoup(caption, features="html.parser").text
|
|||
|
|
|||
|
# @<nickname>
|
|||
|
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
|||
|
|
|||
|
# 31C0—31EF CJK Strokes
|
|||
|
# 31F0—31FF Katakana Phonetic Extensions
|
|||
|
# 3200—32FF Enclosed CJK Letters and Months
|
|||
|
# 3300—33FF CJK Compatibility
|
|||
|
# 3400—4DBF CJK Unified Ideographs Extension A
|
|||
|
# 4DC0—4DFF Yijing Hexagram Symbols
|
|||
|
# 4E00—9FFF CJK Unified Ideographs
|
|||
|
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
|||
|
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
|||
|
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
|||
|
#######################################################
|
|||
|
|
|||
|
# все виды тире / all types of dash --> "-"
|
|||
|
caption = re.sub(
|
|||
|
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
|||
|
"-",
|
|||
|
caption,
|
|||
|
)
|
|||
|
|
|||
|
# кавычки к одному стандарту
|
|||
|
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
|||
|
caption = re.sub(r"[‘’]", "'", caption)
|
|||
|
|
|||
|
# "
|
|||
|
caption = re.sub(r""?", "", caption)
|
|||
|
# &
|
|||
|
caption = re.sub(r"&", "", caption)
|
|||
|
|
|||
|
# ip addresses:
|
|||
|
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
|||
|
|
|||
|
# article ids:
|
|||
|
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
|||
|
|
|||
|
# \n
|
|||
|
caption = re.sub(r"\\n", " ", caption)
|
|||
|
|
|||
|
# "#123"
|
|||
|
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
|||
|
# "#12345.."
|
|||
|
caption = re.sub(r"#\d{5,}\b", "", caption)
|
|||
|
# "123456.."
|
|||
|
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
|||
|
# filenames:
|
|||
|
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
|||
|
|
|||
|
#
|
|||
|
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
|||
|
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
|||
|
|
|||
|
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
|||
|
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
|||
|
|
|||
|
# this-is-my-cute-cat / this_is_my_cute_cat
|
|||
|
regex2 = re.compile(r"(?:\-|\_)")
|
|||
|
if len(re.findall(regex2, caption)) > 3:
|
|||
|
caption = re.sub(regex2, " ", caption)
|
|||
|
|
|||
|
caption = ftfy.fix_text(caption)
|
|||
|
caption = html.unescape(html.unescape(caption))
|
|||
|
|
|||
|
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
|||
|
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
|||
|
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
|||
|
|
|||
|
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
|||
|
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
|||
|
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
|||
|
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
|||
|
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
|||
|
|
|||
|
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
|||
|
|
|||
|
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
|||
|
|
|||
|
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
|||
|
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
|||
|
caption = re.sub(r"\s+", " ", caption)
|
|||
|
|
|||
|
caption.strip()
|
|||
|
|
|||
|
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
|||
|
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
|||
|
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
|||
|
caption = re.sub(r"^\.\S+$", "", caption)
|
|||
|
|
|||
|
return caption.strip()
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|||
|
def __call__(
|
|||
|
self,
|
|||
|
prompt: Union[str, List[str]] = None,
|
|||
|
num_inference_steps: int = 100,
|
|||
|
timesteps: List[int] = None,
|
|||
|
guidance_scale: float = 7.0,
|
|||
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|||
|
num_images_per_prompt: Optional[int] = 1,
|
|||
|
height: Optional[int] = None,
|
|||
|
width: Optional[int] = None,
|
|||
|
eta: float = 0.0,
|
|||
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|||
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|||
|
output_type: Optional[str] = "pil",
|
|||
|
return_dict: bool = True,
|
|||
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
|||
|
callback_steps: int = 1,
|
|||
|
clean_caption: bool = True,
|
|||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|||
|
):
|
|||
|
"""
|
|||
|
Function invoked when calling the pipeline for generation.
|
|||
|
|
|||
|
Args:
|
|||
|
prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|||
|
instead.
|
|||
|
num_inference_steps (`int`, *optional*, defaults to 100):
|
|||
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|||
|
expense of slower inference.
|
|||
|
timesteps (`List[int]`, *optional*):
|
|||
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
|||
|
timesteps are used. Must be in descending order.
|
|||
|
guidance_scale (`float`, *optional*, defaults to 7.0):
|
|||
|
Guidance scale as defined in [Classifier-Free Diffusion
|
|||
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
|||
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
|||
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
|||
|
the text `prompt`, usually at the expense of lower image quality.
|
|||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|||
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|||
|
less than `1`).
|
|||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|||
|
The number of images to generate per prompt.
|
|||
|
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|||
|
The height in pixels of the generated image.
|
|||
|
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|||
|
The width in pixels of the generated image.
|
|||
|
eta (`float`, *optional*, defaults to 0.0):
|
|||
|
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
|
|||
|
applies to [`schedulers.DDIMScheduler`], will be ignored for others.
|
|||
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|||
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|||
|
to make generation deterministic.
|
|||
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|||
|
provided, text embeddings will be generated from `prompt` input argument.
|
|||
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|||
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|||
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|||
|
argument.
|
|||
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|||
|
The output format of the generate image. Choose between
|
|||
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|||
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
|||
|
callback (`Callable`, *optional*):
|
|||
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|||
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
|||
|
callback_steps (`int`, *optional*, defaults to 1):
|
|||
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|||
|
called at every step.
|
|||
|
clean_caption (`bool`, *optional*, defaults to `True`):
|
|||
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
|||
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
|||
|
prompt.
|
|||
|
cross_attention_kwargs (`dict`, *optional*):
|
|||
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|||
|
`self.processor` in
|
|||
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|||
|
|
|||
|
Examples:
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`:
|
|||
|
[`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
|
|||
|
returning a tuple, the first element is a list with the generated images, and the second element is a list
|
|||
|
of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
|
|||
|
or watermarked content, according to the `safety_checker`.
|
|||
|
"""
|
|||
|
# 1. Check inputs. Raise error if not correct
|
|||
|
self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
|||
|
|
|||
|
# 2. Define call parameters
|
|||
|
height = height or self.unet.config.sample_size
|
|||
|
width = width or self.unet.config.sample_size
|
|||
|
|
|||
|
if prompt is not None and isinstance(prompt, str):
|
|||
|
batch_size = 1
|
|||
|
elif prompt is not None and isinstance(prompt, list):
|
|||
|
batch_size = len(prompt)
|
|||
|
else:
|
|||
|
batch_size = prompt_embeds.shape[0]
|
|||
|
|
|||
|
device = self._execution_device
|
|||
|
|
|||
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|||
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|||
|
# corresponds to doing no classifier free guidance.
|
|||
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|||
|
|
|||
|
# 3. Encode input prompt
|
|||
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
|||
|
prompt,
|
|||
|
do_classifier_free_guidance,
|
|||
|
num_images_per_prompt=num_images_per_prompt,
|
|||
|
device=device,
|
|||
|
negative_prompt=negative_prompt,
|
|||
|
prompt_embeds=prompt_embeds,
|
|||
|
negative_prompt_embeds=negative_prompt_embeds,
|
|||
|
clean_caption=clean_caption,
|
|||
|
)
|
|||
|
|
|||
|
if do_classifier_free_guidance:
|
|||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|||
|
|
|||
|
# 4. Prepare timesteps
|
|||
|
if timesteps is not None:
|
|||
|
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
|
|||
|
timesteps = self.scheduler.timesteps
|
|||
|
num_inference_steps = len(timesteps)
|
|||
|
else:
|
|||
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|||
|
timesteps = self.scheduler.timesteps
|
|||
|
|
|||
|
if hasattr(self.scheduler, "set_begin_index"):
|
|||
|
self.scheduler.set_begin_index(0)
|
|||
|
|
|||
|
# 5. Prepare intermediate images
|
|||
|
intermediate_images = self.prepare_intermediate_images(
|
|||
|
batch_size * num_images_per_prompt,
|
|||
|
self.unet.config.in_channels,
|
|||
|
height,
|
|||
|
width,
|
|||
|
prompt_embeds.dtype,
|
|||
|
device,
|
|||
|
generator,
|
|||
|
)
|
|||
|
|
|||
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|||
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|||
|
|
|||
|
# HACK: see comment in `enable_model_cpu_offload`
|
|||
|
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
|
|||
|
self.text_encoder_offload_hook.offload()
|
|||
|
|
|||
|
# 7. Denoising loop
|
|||
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|||
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|||
|
for i, t in enumerate(timesteps):
|
|||
|
model_input = (
|
|||
|
torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images
|
|||
|
)
|
|||
|
model_input = self.scheduler.scale_model_input(model_input, t)
|
|||
|
|
|||
|
# predict the noise residual
|
|||
|
noise_pred = self.unet(
|
|||
|
model_input,
|
|||
|
t,
|
|||
|
encoder_hidden_states=prompt_embeds,
|
|||
|
cross_attention_kwargs=cross_attention_kwargs,
|
|||
|
return_dict=False,
|
|||
|
)[0]
|
|||
|
|
|||
|
# perform guidance
|
|||
|
if do_classifier_free_guidance:
|
|||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|||
|
noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1], dim=1)
|
|||
|
noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1], dim=1)
|
|||
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|||
|
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
|
|||
|
|
|||
|
if self.scheduler.config.variance_type not in ["learned", "learned_range"]:
|
|||
|
noise_pred, _ = noise_pred.split(model_input.shape[1], dim=1)
|
|||
|
|
|||
|
# compute the previous noisy sample x_t -> x_t-1
|
|||
|
intermediate_images = self.scheduler.step(
|
|||
|
noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False
|
|||
|
)[0]
|
|||
|
|
|||
|
# call the callback, if provided
|
|||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|||
|
progress_bar.update()
|
|||
|
if callback is not None and i % callback_steps == 0:
|
|||
|
callback(i, t, intermediate_images)
|
|||
|
|
|||
|
if XLA_AVAILABLE:
|
|||
|
xm.mark_step()
|
|||
|
|
|||
|
image = intermediate_images
|
|||
|
|
|||
|
if output_type == "pil":
|
|||
|
# 8. Post-processing
|
|||
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|||
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|||
|
|
|||
|
# 9. Run safety checker
|
|||
|
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|||
|
|
|||
|
# 10. Convert to PIL
|
|||
|
image = self.numpy_to_pil(image)
|
|||
|
|
|||
|
# 11. Apply watermark
|
|||
|
if self.watermarker is not None:
|
|||
|
image = self.watermarker.apply_watermark(image, self.unet.config.sample_size)
|
|||
|
elif output_type == "pt":
|
|||
|
nsfw_detected = None
|
|||
|
watermark_detected = None
|
|||
|
|
|||
|
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
|
|||
|
self.unet_offload_hook.offload()
|
|||
|
else:
|
|||
|
# 8. Post-processing
|
|||
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|||
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|||
|
|
|||
|
# 9. Run safety checker
|
|||
|
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|||
|
|
|||
|
# Offload all models
|
|||
|
self.maybe_free_model_hooks()
|
|||
|
|
|||
|
if not return_dict:
|
|||
|
return (image, nsfw_detected, watermark_detected)
|
|||
|
|
|||
|
return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected)
|