911 lines
42 KiB
Python
911 lines
42 KiB
Python
![]() |
# Copyright 2025 the Latte Team and The HuggingFace Team.
|
|||
|
# All rights reserved.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
|
|||
|
import html
|
|||
|
import inspect
|
|||
|
import re
|
|||
|
import urllib.parse as ul
|
|||
|
from dataclasses import dataclass
|
|||
|
from typing import Callable, Dict, List, Optional, Tuple, Union
|
|||
|
|
|||
|
import torch
|
|||
|
from transformers import T5EncoderModel, T5Tokenizer
|
|||
|
|
|||
|
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
|||
|
from ...models import AutoencoderKL, LatteTransformer3DModel
|
|||
|
from ...pipelines.pipeline_utils import DiffusionPipeline
|
|||
|
from ...schedulers import KarrasDiffusionSchedulers
|
|||
|
from ...utils import (
|
|||
|
BACKENDS_MAPPING,
|
|||
|
BaseOutput,
|
|||
|
deprecate,
|
|||
|
is_bs4_available,
|
|||
|
is_ftfy_available,
|
|||
|
is_torch_xla_available,
|
|||
|
logging,
|
|||
|
replace_example_docstring,
|
|||
|
)
|
|||
|
from ...utils.torch_utils import is_compiled_module, randn_tensor
|
|||
|
from ...video_processor import VideoProcessor
|
|||
|
|
|||
|
|
|||
|
if is_torch_xla_available():
|
|||
|
import torch_xla.core.xla_model as xm
|
|||
|
|
|||
|
XLA_AVAILABLE = True
|
|||
|
else:
|
|||
|
XLA_AVAILABLE = False
|
|||
|
|
|||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|||
|
|
|||
|
|
|||
|
if is_bs4_available():
|
|||
|
from bs4 import BeautifulSoup
|
|||
|
|
|||
|
if is_ftfy_available():
|
|||
|
import ftfy
|
|||
|
|
|||
|
|
|||
|
EXAMPLE_DOC_STRING = """
|
|||
|
Examples:
|
|||
|
```py
|
|||
|
>>> import torch
|
|||
|
>>> from diffusers import LattePipeline
|
|||
|
>>> from diffusers.utils import export_to_gif
|
|||
|
|
|||
|
>>> # You can replace the checkpoint id with "maxin-cn/Latte-1" too.
|
|||
|
>>> pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16)
|
|||
|
>>> # Enable memory optimizations.
|
|||
|
>>> pipe.enable_model_cpu_offload()
|
|||
|
|
|||
|
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
|||
|
>>> videos = pipe(prompt).frames[0]
|
|||
|
>>> export_to_gif(videos, "latte.gif")
|
|||
|
```
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|||
|
def retrieve_timesteps(
|
|||
|
scheduler,
|
|||
|
num_inference_steps: Optional[int] = None,
|
|||
|
device: Optional[Union[str, torch.device]] = None,
|
|||
|
timesteps: Optional[List[int]] = None,
|
|||
|
sigmas: Optional[List[float]] = None,
|
|||
|
**kwargs,
|
|||
|
):
|
|||
|
r"""
|
|||
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|||
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|||
|
|
|||
|
Args:
|
|||
|
scheduler (`SchedulerMixin`):
|
|||
|
The scheduler to get timesteps from.
|
|||
|
num_inference_steps (`int`):
|
|||
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|||
|
must be `None`.
|
|||
|
device (`str` or `torch.device`, *optional*):
|
|||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|||
|
timesteps (`List[int]`, *optional*):
|
|||
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|||
|
`num_inference_steps` and `sigmas` must be `None`.
|
|||
|
sigmas (`List[float]`, *optional*):
|
|||
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|||
|
`num_inference_steps` and `timesteps` must be `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|||
|
second element is the number of inference steps.
|
|||
|
"""
|
|||
|
if timesteps is not None and sigmas is not None:
|
|||
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|||
|
if timesteps is not None:
|
|||
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|||
|
if not accepts_timesteps:
|
|||
|
raise ValueError(
|
|||
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|||
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|||
|
)
|
|||
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|||
|
timesteps = scheduler.timesteps
|
|||
|
num_inference_steps = len(timesteps)
|
|||
|
elif sigmas is not None:
|
|||
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|||
|
if not accept_sigmas:
|
|||
|
raise ValueError(
|
|||
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|||
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|||
|
)
|
|||
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|||
|
timesteps = scheduler.timesteps
|
|||
|
num_inference_steps = len(timesteps)
|
|||
|
else:
|
|||
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|||
|
timesteps = scheduler.timesteps
|
|||
|
return timesteps, num_inference_steps
|
|||
|
|
|||
|
|
|||
|
@dataclass
|
|||
|
class LattePipelineOutput(BaseOutput):
|
|||
|
frames: torch.Tensor
|
|||
|
|
|||
|
|
|||
|
class LattePipeline(DiffusionPipeline):
|
|||
|
r"""
|
|||
|
Pipeline for text-to-video generation using Latte.
|
|||
|
|
|||
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|||
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|||
|
|
|||
|
Args:
|
|||
|
vae ([`AutoencoderKL`]):
|
|||
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
|||
|
text_encoder ([`T5EncoderModel`]):
|
|||
|
Frozen text-encoder. Latte uses
|
|||
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
|||
|
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
|||
|
tokenizer (`T5Tokenizer`):
|
|||
|
Tokenizer of class
|
|||
|
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
|||
|
transformer ([`LatteTransformer3DModel`]):
|
|||
|
A text conditioned `LatteTransformer3DModel` to denoise the encoded video latents.
|
|||
|
scheduler ([`SchedulerMixin`]):
|
|||
|
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
|||
|
"""
|
|||
|
|
|||
|
bad_punct_regex = re.compile(r"[#®•©™&@·º½¾¿¡§~\)\(\]\[\}\{\|\\/\\*]{1,}")
|
|||
|
|
|||
|
_optional_components = ["tokenizer", "text_encoder"]
|
|||
|
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
|||
|
|
|||
|
_callback_tensor_inputs = [
|
|||
|
"latents",
|
|||
|
"prompt_embeds",
|
|||
|
"negative_prompt_embeds",
|
|||
|
]
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
tokenizer: T5Tokenizer,
|
|||
|
text_encoder: T5EncoderModel,
|
|||
|
vae: AutoencoderKL,
|
|||
|
transformer: LatteTransformer3DModel,
|
|||
|
scheduler: KarrasDiffusionSchedulers,
|
|||
|
):
|
|||
|
super().__init__()
|
|||
|
|
|||
|
self.register_modules(
|
|||
|
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
|||
|
)
|
|||
|
|
|||
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|||
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
|
|||
|
|
|||
|
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
|
|||
|
def mask_text_embeddings(self, emb, mask):
|
|||
|
if emb.shape[0] == 1:
|
|||
|
keep_index = mask.sum().item()
|
|||
|
return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096
|
|||
|
else:
|
|||
|
masked_feature = emb * mask[:, None, :, None] # 1 120 4096
|
|||
|
return masked_feature, emb.shape[2]
|
|||
|
|
|||
|
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
|||
|
def encode_prompt(
|
|||
|
self,
|
|||
|
prompt: Union[str, List[str]],
|
|||
|
do_classifier_free_guidance: bool = True,
|
|||
|
negative_prompt: str = "",
|
|||
|
num_images_per_prompt: int = 1,
|
|||
|
device: Optional[torch.device] = None,
|
|||
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|||
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|||
|
clean_caption: bool = False,
|
|||
|
mask_feature: bool = True,
|
|||
|
dtype=None,
|
|||
|
):
|
|||
|
r"""
|
|||
|
Encodes the prompt into text encoder hidden states.
|
|||
|
|
|||
|
Args:
|
|||
|
prompt (`str` or `List[str]`, *optional*):
|
|||
|
prompt to be encoded
|
|||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds`
|
|||
|
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
|||
|
Latte, this should be "".
|
|||
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
|||
|
whether to use classifier free guidance or not
|
|||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|||
|
number of video that should be generated per prompt
|
|||
|
device: (`torch.device`, *optional*):
|
|||
|
torch device to place the resulting embeddings on
|
|||
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|||
|
provided, text embeddings will be generated from `prompt` input argument.
|
|||
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|||
|
Pre-generated negative text embeddings. For Latte, it's should be the embeddings of the "" string.
|
|||
|
clean_caption (bool, defaults to `False`):
|
|||
|
If `True`, the function will preprocess and clean the provided caption before encoding.
|
|||
|
mask_feature: (bool, defaults to `True`):
|
|||
|
If `True`, the function will mask the text embeddings.
|
|||
|
"""
|
|||
|
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
|
|||
|
|
|||
|
if device is None:
|
|||
|
device = self._execution_device
|
|||
|
|
|||
|
if prompt is not None and isinstance(prompt, str):
|
|||
|
batch_size = 1
|
|||
|
elif prompt is not None and isinstance(prompt, list):
|
|||
|
batch_size = len(prompt)
|
|||
|
else:
|
|||
|
batch_size = prompt_embeds.shape[0]
|
|||
|
|
|||
|
max_length = 120
|
|||
|
if prompt_embeds is None:
|
|||
|
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
|||
|
text_inputs = self.tokenizer(
|
|||
|
prompt,
|
|||
|
padding="max_length",
|
|||
|
max_length=max_length,
|
|||
|
truncation=True,
|
|||
|
return_attention_mask=True,
|
|||
|
add_special_tokens=True,
|
|||
|
return_tensors="pt",
|
|||
|
)
|
|||
|
text_input_ids = text_inputs.input_ids
|
|||
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|||
|
|
|||
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|||
|
text_input_ids, untruncated_ids
|
|||
|
):
|
|||
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
|||
|
logger.warning(
|
|||
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|||
|
f" {max_length} tokens: {removed_text}"
|
|||
|
)
|
|||
|
|
|||
|
attention_mask = text_inputs.attention_mask.to(device)
|
|||
|
prompt_embeds_attention_mask = attention_mask
|
|||
|
|
|||
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
|||
|
prompt_embeds = prompt_embeds[0]
|
|||
|
else:
|
|||
|
prompt_embeds_attention_mask = torch.ones_like(prompt_embeds)
|
|||
|
|
|||
|
if self.text_encoder is not None:
|
|||
|
dtype = self.text_encoder.dtype
|
|||
|
elif self.transformer is not None:
|
|||
|
dtype = self.transformer.dtype
|
|||
|
else:
|
|||
|
dtype = None
|
|||
|
|
|||
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|||
|
|
|||
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|||
|
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
|||
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|||
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|||
|
prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1)
|
|||
|
prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1)
|
|||
|
|
|||
|
# get unconditional embeddings for classifier free guidance
|
|||
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|||
|
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
|||
|
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
|||
|
max_length = prompt_embeds.shape[1]
|
|||
|
uncond_input = self.tokenizer(
|
|||
|
uncond_tokens,
|
|||
|
padding="max_length",
|
|||
|
max_length=max_length,
|
|||
|
truncation=True,
|
|||
|
return_attention_mask=True,
|
|||
|
add_special_tokens=True,
|
|||
|
return_tensors="pt",
|
|||
|
)
|
|||
|
attention_mask = uncond_input.attention_mask.to(device)
|
|||
|
|
|||
|
negative_prompt_embeds = self.text_encoder(
|
|||
|
uncond_input.input_ids.to(device),
|
|||
|
attention_mask=attention_mask,
|
|||
|
)
|
|||
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|||
|
|
|||
|
if do_classifier_free_guidance:
|
|||
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|||
|
seq_len = negative_prompt_embeds.shape[1]
|
|||
|
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
|||
|
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|||
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|||
|
|
|||
|
# For classifier free guidance, we need to do two forward passes.
|
|||
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|||
|
# to avoid doing two forward passes
|
|||
|
else:
|
|||
|
negative_prompt_embeds = None
|
|||
|
|
|||
|
# Perform additional masking.
|
|||
|
if mask_feature and not embeds_initially_provided:
|
|||
|
prompt_embeds = prompt_embeds.unsqueeze(1)
|
|||
|
masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
|
|||
|
masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
|
|||
|
masked_negative_prompt_embeds = (
|
|||
|
negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None
|
|||
|
)
|
|||
|
|
|||
|
return masked_prompt_embeds, masked_negative_prompt_embeds
|
|||
|
|
|||
|
return prompt_embeds, negative_prompt_embeds
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|||
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|||
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|||
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|||
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|||
|
# and should be between [0, 1]
|
|||
|
|
|||
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|||
|
extra_step_kwargs = {}
|
|||
|
if accepts_eta:
|
|||
|
extra_step_kwargs["eta"] = eta
|
|||
|
|
|||
|
# check if the scheduler accepts generator
|
|||
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|||
|
if accepts_generator:
|
|||
|
extra_step_kwargs["generator"] = generator
|
|||
|
return extra_step_kwargs
|
|||
|
|
|||
|
def check_inputs(
|
|||
|
self,
|
|||
|
prompt,
|
|||
|
height,
|
|||
|
width,
|
|||
|
negative_prompt,
|
|||
|
callback_on_step_end_tensor_inputs,
|
|||
|
prompt_embeds=None,
|
|||
|
negative_prompt_embeds=None,
|
|||
|
):
|
|||
|
if height % 8 != 0 or width % 8 != 0:
|
|||
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|||
|
|
|||
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|||
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|||
|
):
|
|||
|
raise ValueError(
|
|||
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|||
|
)
|
|||
|
if prompt is not None and prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|||
|
" only forward one of the two."
|
|||
|
)
|
|||
|
elif prompt is None and prompt_embeds is None:
|
|||
|
raise ValueError(
|
|||
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|||
|
)
|
|||
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|||
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|||
|
|
|||
|
if prompt is not None and negative_prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
|||
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|||
|
)
|
|||
|
|
|||
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|||
|
raise ValueError(
|
|||
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|||
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|||
|
)
|
|||
|
|
|||
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|||
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|||
|
raise ValueError(
|
|||
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|||
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|||
|
f" {negative_prompt_embeds.shape}."
|
|||
|
)
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
|||
|
def _text_preprocessing(self, text, clean_caption=False):
|
|||
|
if clean_caption and not is_bs4_available():
|
|||
|
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
|||
|
logger.warning("Setting `clean_caption` to False...")
|
|||
|
clean_caption = False
|
|||
|
|
|||
|
if clean_caption and not is_ftfy_available():
|
|||
|
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
|||
|
logger.warning("Setting `clean_caption` to False...")
|
|||
|
clean_caption = False
|
|||
|
|
|||
|
if not isinstance(text, (tuple, list)):
|
|||
|
text = [text]
|
|||
|
|
|||
|
def process(text: str):
|
|||
|
if clean_caption:
|
|||
|
text = self._clean_caption(text)
|
|||
|
text = self._clean_caption(text)
|
|||
|
else:
|
|||
|
text = text.lower().strip()
|
|||
|
return text
|
|||
|
|
|||
|
return [process(t) for t in text]
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
|||
|
def _clean_caption(self, caption):
|
|||
|
caption = str(caption)
|
|||
|
caption = ul.unquote_plus(caption)
|
|||
|
caption = caption.strip().lower()
|
|||
|
caption = re.sub("<person>", "person", caption)
|
|||
|
# urls:
|
|||
|
caption = re.sub(
|
|||
|
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
|||
|
"",
|
|||
|
caption,
|
|||
|
) # regex for urls
|
|||
|
caption = re.sub(
|
|||
|
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
|||
|
"",
|
|||
|
caption,
|
|||
|
) # regex for urls
|
|||
|
# html:
|
|||
|
caption = BeautifulSoup(caption, features="html.parser").text
|
|||
|
|
|||
|
# @<nickname>
|
|||
|
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
|||
|
|
|||
|
# 31C0—31EF CJK Strokes
|
|||
|
# 31F0—31FF Katakana Phonetic Extensions
|
|||
|
# 3200—32FF Enclosed CJK Letters and Months
|
|||
|
# 3300—33FF CJK Compatibility
|
|||
|
# 3400—4DBF CJK Unified Ideographs Extension A
|
|||
|
# 4DC0—4DFF Yijing Hexagram Symbols
|
|||
|
# 4E00—9FFF CJK Unified Ideographs
|
|||
|
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
|||
|
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
|||
|
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
|||
|
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
|||
|
#######################################################
|
|||
|
|
|||
|
# все виды тире / all types of dash --> "-"
|
|||
|
caption = re.sub(
|
|||
|
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
|||
|
"-",
|
|||
|
caption,
|
|||
|
)
|
|||
|
|
|||
|
# кавычки к одному стандарту
|
|||
|
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
|||
|
caption = re.sub(r"[‘’]", "'", caption)
|
|||
|
|
|||
|
# "
|
|||
|
caption = re.sub(r""?", "", caption)
|
|||
|
# &
|
|||
|
caption = re.sub(r"&", "", caption)
|
|||
|
|
|||
|
# ip addresses:
|
|||
|
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
|||
|
|
|||
|
# article ids:
|
|||
|
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
|||
|
|
|||
|
# \n
|
|||
|
caption = re.sub(r"\\n", " ", caption)
|
|||
|
|
|||
|
# "#123"
|
|||
|
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
|||
|
# "#12345.."
|
|||
|
caption = re.sub(r"#\d{5,}\b", "", caption)
|
|||
|
# "123456.."
|
|||
|
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
|||
|
# filenames:
|
|||
|
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
|||
|
|
|||
|
#
|
|||
|
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
|||
|
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
|||
|
|
|||
|
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
|||
|
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
|||
|
|
|||
|
# this-is-my-cute-cat / this_is_my_cute_cat
|
|||
|
regex2 = re.compile(r"(?:\-|\_)")
|
|||
|
if len(re.findall(regex2, caption)) > 3:
|
|||
|
caption = re.sub(regex2, " ", caption)
|
|||
|
|
|||
|
caption = ftfy.fix_text(caption)
|
|||
|
caption = html.unescape(html.unescape(caption))
|
|||
|
|
|||
|
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
|||
|
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
|||
|
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
|||
|
|
|||
|
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
|||
|
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
|||
|
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
|||
|
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
|||
|
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
|||
|
|
|||
|
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
|||
|
|
|||
|
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
|||
|
|
|||
|
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
|||
|
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
|||
|
caption = re.sub(r"\s+", " ", caption)
|
|||
|
|
|||
|
caption.strip()
|
|||
|
|
|||
|
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
|||
|
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
|||
|
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
|||
|
caption = re.sub(r"^\.\S+$", "", caption)
|
|||
|
|
|||
|
return caption.strip()
|
|||
|
|
|||
|
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
|
|||
|
def prepare_latents(
|
|||
|
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
|||
|
):
|
|||
|
shape = (
|
|||
|
batch_size,
|
|||
|
num_channels_latents,
|
|||
|
num_frames,
|
|||
|
height // self.vae_scale_factor,
|
|||
|
width // self.vae_scale_factor,
|
|||
|
)
|
|||
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|||
|
raise ValueError(
|
|||
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|||
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|||
|
)
|
|||
|
|
|||
|
if latents is None:
|
|||
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|||
|
else:
|
|||
|
latents = latents.to(device)
|
|||
|
|
|||
|
# scale the initial noise by the standard deviation required by the scheduler
|
|||
|
latents = latents * self.scheduler.init_noise_sigma
|
|||
|
return latents
|
|||
|
|
|||
|
@property
|
|||
|
def guidance_scale(self):
|
|||
|
return self._guidance_scale
|
|||
|
|
|||
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|||
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|||
|
# corresponds to doing no classifier free guidance.
|
|||
|
@property
|
|||
|
def do_classifier_free_guidance(self):
|
|||
|
return self._guidance_scale > 1
|
|||
|
|
|||
|
@property
|
|||
|
def num_timesteps(self):
|
|||
|
return self._num_timesteps
|
|||
|
|
|||
|
@property
|
|||
|
def current_timestep(self):
|
|||
|
return self._current_timestep
|
|||
|
|
|||
|
@property
|
|||
|
def interrupt(self):
|
|||
|
return self._interrupt
|
|||
|
|
|||
|
@torch.no_grad()
|
|||
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|||
|
def __call__(
|
|||
|
self,
|
|||
|
prompt: Union[str, List[str]] = None,
|
|||
|
negative_prompt: str = "",
|
|||
|
num_inference_steps: int = 50,
|
|||
|
timesteps: Optional[List[int]] = None,
|
|||
|
guidance_scale: float = 7.5,
|
|||
|
num_images_per_prompt: int = 1,
|
|||
|
video_length: int = 16,
|
|||
|
height: int = 512,
|
|||
|
width: int = 512,
|
|||
|
eta: float = 0.0,
|
|||
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|||
|
latents: Optional[torch.FloatTensor] = None,
|
|||
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|||
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|||
|
output_type: str = "pil",
|
|||
|
return_dict: bool = True,
|
|||
|
callback_on_step_end: Optional[
|
|||
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
|||
|
] = None,
|
|||
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|||
|
clean_caption: bool = True,
|
|||
|
mask_feature: bool = True,
|
|||
|
enable_temporal_attentions: bool = True,
|
|||
|
decode_chunk_size: int = 14,
|
|||
|
) -> Union[LattePipelineOutput, Tuple]:
|
|||
|
"""
|
|||
|
Function invoked when calling the pipeline for generation.
|
|||
|
|
|||
|
Args:
|
|||
|
prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
|
|||
|
instead.
|
|||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|||
|
The prompt or prompts not to guide the video generation. If not defined, one has to pass
|
|||
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|||
|
less than `1`).
|
|||
|
num_inference_steps (`int`, *optional*, defaults to 100):
|
|||
|
The number of denoising steps. More denoising steps usually lead to a higher quality video at the
|
|||
|
expense of slower inference.
|
|||
|
timesteps (`List[int]`, *optional*):
|
|||
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
|||
|
timesteps are used. Must be in descending order.
|
|||
|
guidance_scale (`float`, *optional*, defaults to 7.0):
|
|||
|
Guidance scale as defined in [Classifier-Free Diffusion
|
|||
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
|||
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
|||
|
`guidance_scale > 1`. Higher guidance scale encourages to generate videos that are closely linked to
|
|||
|
the text `prompt`, usually at the expense of lower video quality.
|
|||
|
video_length (`int`, *optional*, defaults to 16):
|
|||
|
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
|||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|||
|
The number of videos to generate per prompt.
|
|||
|
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|||
|
The height in pixels of the generated video.
|
|||
|
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|||
|
The width in pixels of the generated video.
|
|||
|
eta (`float`, *optional*, defaults to 0.0):
|
|||
|
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
|
|||
|
applies to [`schedulers.DDIMScheduler`], will be ignored for others.
|
|||
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|||
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|||
|
to make generation deterministic.
|
|||
|
latents (`torch.FloatTensor`, *optional*):
|
|||
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
|
|||
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|||
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|||
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|||
|
provided, text embeddings will be generated from `prompt` input argument.
|
|||
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|||
|
Pre-generated negative text embeddings. For Latte this negative prompt should be "". If not provided,
|
|||
|
negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
|||
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|||
|
The output format of the generate video. Choose between
|
|||
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|||
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
|||
|
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
|||
|
A callback function or a list of callback functions to be called at the end of each denoising step.
|
|||
|
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
|
|||
|
A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
|
|||
|
inputs will be passed.
|
|||
|
clean_caption (`bool`, *optional*, defaults to `True`):
|
|||
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
|||
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
|||
|
prompt.
|
|||
|
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
|
|||
|
enable_temporal_attentions (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions
|
|||
|
decode_chunk_size (`int`, *optional*):
|
|||
|
The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the
|
|||
|
expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality.
|
|||
|
For lower memory usage, reduce `decode_chunk_size`.
|
|||
|
|
|||
|
Examples:
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~pipelines.latte.pipeline_latte.LattePipelineOutput`] or `tuple`:
|
|||
|
If `return_dict` is `True`, [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] is returned,
|
|||
|
otherwise a `tuple` is returned where the first element is a list with the generated images
|
|||
|
"""
|
|||
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|||
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|||
|
|
|||
|
# 0. Default
|
|||
|
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else video_length
|
|||
|
|
|||
|
# 1. Check inputs. Raise error if not correct
|
|||
|
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
|||
|
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
|||
|
self.check_inputs(
|
|||
|
prompt,
|
|||
|
height,
|
|||
|
width,
|
|||
|
negative_prompt,
|
|||
|
callback_on_step_end_tensor_inputs,
|
|||
|
prompt_embeds,
|
|||
|
negative_prompt_embeds,
|
|||
|
)
|
|||
|
self._guidance_scale = guidance_scale
|
|||
|
self._current_timestep = None
|
|||
|
self._interrupt = False
|
|||
|
|
|||
|
# 2. Default height and width to transformer
|
|||
|
if prompt is not None and isinstance(prompt, str):
|
|||
|
batch_size = 1
|
|||
|
elif prompt is not None and isinstance(prompt, list):
|
|||
|
batch_size = len(prompt)
|
|||
|
else:
|
|||
|
batch_size = prompt_embeds.shape[0]
|
|||
|
|
|||
|
device = self._execution_device
|
|||
|
|
|||
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|||
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|||
|
# corresponds to doing no classifier free guidance.
|
|||
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|||
|
|
|||
|
# 3. Encode input prompt
|
|||
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
|||
|
prompt,
|
|||
|
do_classifier_free_guidance,
|
|||
|
negative_prompt=negative_prompt,
|
|||
|
num_images_per_prompt=num_images_per_prompt,
|
|||
|
device=device,
|
|||
|
prompt_embeds=prompt_embeds,
|
|||
|
negative_prompt_embeds=negative_prompt_embeds,
|
|||
|
clean_caption=clean_caption,
|
|||
|
mask_feature=mask_feature,
|
|||
|
)
|
|||
|
if do_classifier_free_guidance:
|
|||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|||
|
|
|||
|
# 4. Prepare timesteps
|
|||
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
|||
|
self._num_timesteps = len(timesteps)
|
|||
|
|
|||
|
# 5. Prepare latents.
|
|||
|
latent_channels = self.transformer.config.in_channels
|
|||
|
latents = self.prepare_latents(
|
|||
|
batch_size * num_images_per_prompt,
|
|||
|
latent_channels,
|
|||
|
video_length,
|
|||
|
height,
|
|||
|
width,
|
|||
|
prompt_embeds.dtype,
|
|||
|
device,
|
|||
|
generator,
|
|||
|
latents,
|
|||
|
)
|
|||
|
|
|||
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|||
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|||
|
|
|||
|
# 7. Denoising loop
|
|||
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|||
|
|
|||
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|||
|
for i, t in enumerate(timesteps):
|
|||
|
if self.interrupt:
|
|||
|
continue
|
|||
|
|
|||
|
self._current_timestep = t
|
|||
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|||
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|||
|
|
|||
|
current_timestep = t
|
|||
|
if not torch.is_tensor(current_timestep):
|
|||
|
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
|||
|
# This would be a good case for the `match` statement (Python 3.10+)
|
|||
|
is_mps = latent_model_input.device.type == "mps"
|
|||
|
is_npu = latent_model_input.device.type == "npu"
|
|||
|
if isinstance(current_timestep, float):
|
|||
|
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
|||
|
else:
|
|||
|
dtype = torch.int32 if (is_mps or is_npu) else torch.int64
|
|||
|
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
|||
|
elif len(current_timestep.shape) == 0:
|
|||
|
current_timestep = current_timestep[None].to(latent_model_input.device)
|
|||
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|||
|
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
|||
|
|
|||
|
# predict noise model_output
|
|||
|
noise_pred = self.transformer(
|
|||
|
hidden_states=latent_model_input,
|
|||
|
encoder_hidden_states=prompt_embeds,
|
|||
|
timestep=current_timestep,
|
|||
|
enable_temporal_attentions=enable_temporal_attentions,
|
|||
|
return_dict=False,
|
|||
|
)[0]
|
|||
|
|
|||
|
# perform guidance
|
|||
|
if do_classifier_free_guidance:
|
|||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|||
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|||
|
|
|||
|
# use learned sigma?
|
|||
|
if not (
|
|||
|
hasattr(self.scheduler.config, "variance_type")
|
|||
|
and self.scheduler.config.variance_type in ["learned", "learned_range"]
|
|||
|
):
|
|||
|
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
|||
|
|
|||
|
# compute previous video: x_t -> x_t-1
|
|||
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|||
|
|
|||
|
# call the callback, if provided
|
|||
|
if callback_on_step_end is not None:
|
|||
|
callback_kwargs = {}
|
|||
|
for k in callback_on_step_end_tensor_inputs:
|
|||
|
callback_kwargs[k] = locals()[k]
|
|||
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|||
|
|
|||
|
latents = callback_outputs.pop("latents", latents)
|
|||
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|||
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|||
|
|
|||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|||
|
progress_bar.update()
|
|||
|
|
|||
|
if XLA_AVAILABLE:
|
|||
|
xm.mark_step()
|
|||
|
|
|||
|
self._current_timestep = None
|
|||
|
|
|||
|
if output_type == "latents":
|
|||
|
deprecation_message = (
|
|||
|
"Passing `output_type='latents'` is deprecated. Please pass `output_type='latent'` instead."
|
|||
|
)
|
|||
|
deprecate("output_type_latents", "1.0.0", deprecation_message, standard_warn=False)
|
|||
|
output_type = "latent"
|
|||
|
|
|||
|
if not output_type == "latent":
|
|||
|
video = self.decode_latents(latents, video_length, decode_chunk_size=decode_chunk_size)
|
|||
|
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
|||
|
else:
|
|||
|
video = latents
|
|||
|
|
|||
|
# Offload all models
|
|||
|
self.maybe_free_model_hooks()
|
|||
|
|
|||
|
if not return_dict:
|
|||
|
return (video,)
|
|||
|
|
|||
|
return LattePipelineOutput(frames=video)
|
|||
|
|
|||
|
# Similar to diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion.decode_latents
|
|||
|
def decode_latents(self, latents: torch.Tensor, video_length: int, decode_chunk_size: int = 14):
|
|||
|
# [batch, channels, frames, height, width] -> [batch*frames, channels, height, width]
|
|||
|
latents = latents.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
|||
|
|
|||
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|||
|
|
|||
|
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
|||
|
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
|||
|
|
|||
|
# decode decode_chunk_size frames at a time to avoid OOM
|
|||
|
frames = []
|
|||
|
for i in range(0, latents.shape[0], decode_chunk_size):
|
|||
|
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
|||
|
decode_kwargs = {}
|
|||
|
if accepts_num_frames:
|
|||
|
# we only pass num_frames_in if it's expected
|
|||
|
decode_kwargs["num_frames"] = num_frames_in
|
|||
|
|
|||
|
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
|
|||
|
frames.append(frame)
|
|||
|
frames = torch.cat(frames, dim=0)
|
|||
|
|
|||
|
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
|||
|
frames = frames.reshape(-1, video_length, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
|||
|
|
|||
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
|||
|
frames = frames.float()
|
|||
|
return frames
|