578 lines
24 KiB
Python
578 lines
24 KiB
Python
![]() |
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
|
||
|
|
||
|
import math
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
||
|
from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
|
||
|
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||
|
|
||
|
|
||
|
class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||
|
"""
|
||
|
Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021).
|
||
|
This scheduler was used in Stable Audio Open [1].
|
||
|
|
||
|
[1] Evans, Parker, et al. "Stable Audio Open" https://huggingface.co/papers/2407.14358
|
||
|
|
||
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||
|
methods the library implements for all schedulers such as loading and saving.
|
||
|
|
||
|
Args:
|
||
|
sigma_min (`float`, *optional*, defaults to 0.3):
|
||
|
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
|
||
|
sigma_max (`float`, *optional*, defaults to 500):
|
||
|
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
|
||
|
sigma_data (`float`, *optional*, defaults to 1.0):
|
||
|
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
|
||
|
sigma_schedule (`str`, *optional*, defaults to `exponential`):
|
||
|
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
|
||
|
(https://huggingface.co/papers/2206.00364). Other acceptable value is "exponential". The exponential
|
||
|
schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl.
|
||
|
num_train_timesteps (`int`, defaults to 1000):
|
||
|
The number of diffusion steps to train the model.
|
||
|
solver_order (`int`, defaults to 2):
|
||
|
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
|
||
|
prediction_type (`str`, defaults to `v_prediction`, *optional*):
|
||
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||
|
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||
|
solver_type (`str`, defaults to `midpoint`):
|
||
|
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
||
|
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
||
|
lower_order_final (`bool`, defaults to `True`):
|
||
|
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
||
|
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
||
|
euler_at_final (`bool`, defaults to `False`):
|
||
|
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
|
||
|
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
|
||
|
steps, but sometimes may result in blurring.
|
||
|
final_sigmas_type (`str`, defaults to `"zero"`):
|
||
|
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
||
|
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
||
|
"""
|
||
|
|
||
|
_compatibles = []
|
||
|
order = 1
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self,
|
||
|
sigma_min: float = 0.3,
|
||
|
sigma_max: float = 500,
|
||
|
sigma_data: float = 1.0,
|
||
|
sigma_schedule: str = "exponential",
|
||
|
num_train_timesteps: int = 1000,
|
||
|
solver_order: int = 2,
|
||
|
prediction_type: str = "v_prediction",
|
||
|
rho: float = 7.0,
|
||
|
solver_type: str = "midpoint",
|
||
|
lower_order_final: bool = True,
|
||
|
euler_at_final: bool = False,
|
||
|
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||
|
):
|
||
|
if solver_type not in ["midpoint", "heun"]:
|
||
|
if solver_type in ["logrho", "bh1", "bh2"]:
|
||
|
self.register_to_config(solver_type="midpoint")
|
||
|
else:
|
||
|
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
||
|
|
||
|
ramp = torch.linspace(0, 1, num_train_timesteps)
|
||
|
if sigma_schedule == "karras":
|
||
|
sigmas = self._compute_karras_sigmas(ramp)
|
||
|
elif sigma_schedule == "exponential":
|
||
|
sigmas = self._compute_exponential_sigmas(ramp)
|
||
|
|
||
|
self.timesteps = self.precondition_noise(sigmas)
|
||
|
|
||
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||
|
|
||
|
# setable values
|
||
|
self.num_inference_steps = None
|
||
|
self.model_outputs = [None] * solver_order
|
||
|
self.lower_order_nums = 0
|
||
|
self._step_index = None
|
||
|
self._begin_index = None
|
||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||
|
|
||
|
@property
|
||
|
def init_noise_sigma(self):
|
||
|
# standard deviation of the initial noise distribution
|
||
|
return (self.config.sigma_max**2 + 1) ** 0.5
|
||
|
|
||
|
@property
|
||
|
def step_index(self):
|
||
|
"""
|
||
|
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||
|
"""
|
||
|
return self._step_index
|
||
|
|
||
|
@property
|
||
|
def begin_index(self):
|
||
|
"""
|
||
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||
|
"""
|
||
|
return self._begin_index
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||
|
def set_begin_index(self, begin_index: int = 0):
|
||
|
"""
|
||
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||
|
|
||
|
Args:
|
||
|
begin_index (`int`):
|
||
|
The begin index for the scheduler.
|
||
|
"""
|
||
|
self._begin_index = begin_index
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
|
||
|
def precondition_inputs(self, sample, sigma):
|
||
|
c_in = self._get_conditioning_c_in(sigma)
|
||
|
scaled_sample = sample * c_in
|
||
|
return scaled_sample
|
||
|
|
||
|
def precondition_noise(self, sigma):
|
||
|
if not isinstance(sigma, torch.Tensor):
|
||
|
sigma = torch.tensor([sigma])
|
||
|
|
||
|
return sigma.atan() / math.pi * 2
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
|
||
|
def precondition_outputs(self, sample, model_output, sigma):
|
||
|
sigma_data = self.config.sigma_data
|
||
|
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
||
|
|
||
|
if self.config.prediction_type == "epsilon":
|
||
|
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
||
|
elif self.config.prediction_type == "v_prediction":
|
||
|
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
||
|
else:
|
||
|
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
|
||
|
|
||
|
denoised = c_skip * sample + c_out * model_output
|
||
|
|
||
|
return denoised
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
|
||
|
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
||
|
"""
|
||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
||
|
|
||
|
Args:
|
||
|
sample (`torch.Tensor`):
|
||
|
The input sample.
|
||
|
timestep (`int`, *optional*):
|
||
|
The current timestep in the diffusion chain.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`:
|
||
|
A scaled input sample.
|
||
|
"""
|
||
|
if self.step_index is None:
|
||
|
self._init_step_index(timestep)
|
||
|
|
||
|
sigma = self.sigmas[self.step_index]
|
||
|
sample = self.precondition_inputs(sample, sigma)
|
||
|
|
||
|
self.is_scale_input_called = True
|
||
|
return sample
|
||
|
|
||
|
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
||
|
"""
|
||
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||
|
|
||
|
Args:
|
||
|
num_inference_steps (`int`):
|
||
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
||
|
device (`str` or `torch.device`, *optional*):
|
||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||
|
"""
|
||
|
|
||
|
self.num_inference_steps = num_inference_steps
|
||
|
|
||
|
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
||
|
if self.config.sigma_schedule == "karras":
|
||
|
sigmas = self._compute_karras_sigmas(ramp)
|
||
|
elif self.config.sigma_schedule == "exponential":
|
||
|
sigmas = self._compute_exponential_sigmas(ramp)
|
||
|
|
||
|
sigmas = sigmas.to(dtype=torch.float32, device=device)
|
||
|
self.timesteps = self.precondition_noise(sigmas)
|
||
|
|
||
|
if self.config.final_sigmas_type == "sigma_min":
|
||
|
sigma_last = self.config.sigma_min
|
||
|
elif self.config.final_sigmas_type == "zero":
|
||
|
sigma_last = 0
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
||
|
)
|
||
|
|
||
|
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
|
||
|
|
||
|
self.model_outputs = [
|
||
|
None,
|
||
|
] * self.config.solver_order
|
||
|
self.lower_order_nums = 0
|
||
|
|
||
|
# add an index counter for schedulers that allow duplicated timesteps
|
||
|
self._step_index = None
|
||
|
self._begin_index = None
|
||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||
|
|
||
|
# if a noise sampler is used, reinitialise it
|
||
|
self.noise_sampler = None
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
|
||
|
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
||
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||
|
sigma_min = sigma_min or self.config.sigma_min
|
||
|
sigma_max = sigma_max or self.config.sigma_max
|
||
|
|
||
|
rho = self.config.rho
|
||
|
min_inv_rho = sigma_min ** (1 / rho)
|
||
|
max_inv_rho = sigma_max ** (1 / rho)
|
||
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||
|
return sigmas
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
|
||
|
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
||
|
"""Implementation closely follows k-diffusion.
|
||
|
|
||
|
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
|
||
|
"""
|
||
|
sigma_min = sigma_min or self.config.sigma_min
|
||
|
sigma_max = sigma_max or self.config.sigma_max
|
||
|
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
|
||
|
return sigmas
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||
|
def _sigma_to_t(self, sigma, log_sigmas):
|
||
|
# get log sigma
|
||
|
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
||
|
|
||
|
# get distribution
|
||
|
dists = log_sigma - log_sigmas[:, np.newaxis]
|
||
|
|
||
|
# get sigmas range
|
||
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
||
|
high_idx = low_idx + 1
|
||
|
|
||
|
low = log_sigmas[low_idx]
|
||
|
high = log_sigmas[high_idx]
|
||
|
|
||
|
# interpolate sigmas
|
||
|
w = (low - log_sigma) / (low - high)
|
||
|
w = np.clip(w, 0, 1)
|
||
|
|
||
|
# transform interpolation to time range
|
||
|
t = (1 - w) * low_idx + w * high_idx
|
||
|
t = t.reshape(sigma.shape)
|
||
|
return t
|
||
|
|
||
|
def _sigma_to_alpha_sigma_t(self, sigma):
|
||
|
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
|
||
|
sigma_t = sigma
|
||
|
|
||
|
return alpha_t, sigma_t
|
||
|
|
||
|
def convert_model_output(
|
||
|
self,
|
||
|
model_output: torch.Tensor,
|
||
|
sample: torch.Tensor = None,
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
||
|
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
||
|
integral of the data prediction model.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
|
||
|
prediction and data prediction models.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Args:
|
||
|
model_output (`torch.Tensor`):
|
||
|
The direct output from the learned diffusion model.
|
||
|
sample (`torch.Tensor`):
|
||
|
A current instance of a sample created by the diffusion process.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`:
|
||
|
The converted model output.
|
||
|
"""
|
||
|
sigma = self.sigmas[self.step_index]
|
||
|
x0_pred = self.precondition_outputs(sample, model_output, sigma)
|
||
|
|
||
|
return x0_pred
|
||
|
|
||
|
def dpm_solver_first_order_update(
|
||
|
self,
|
||
|
model_output: torch.Tensor,
|
||
|
sample: torch.Tensor = None,
|
||
|
noise: Optional[torch.Tensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
One step for the first-order DPMSolver (equivalent to DDIM).
|
||
|
|
||
|
Args:
|
||
|
model_output (`torch.Tensor`):
|
||
|
The direct output from the learned diffusion model.
|
||
|
sample (`torch.Tensor`):
|
||
|
A current instance of a sample created by the diffusion process.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`:
|
||
|
The sample tensor at the previous timestep.
|
||
|
"""
|
||
|
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
||
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||
|
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
||
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
||
|
|
||
|
h = lambda_t - lambda_s
|
||
|
assert noise is not None
|
||
|
x_t = (
|
||
|
(sigma_t / sigma_s * torch.exp(-h)) * sample
|
||
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
|
||
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
||
|
)
|
||
|
|
||
|
return x_t
|
||
|
|
||
|
def multistep_dpm_solver_second_order_update(
|
||
|
self,
|
||
|
model_output_list: List[torch.Tensor],
|
||
|
sample: torch.Tensor = None,
|
||
|
noise: Optional[torch.Tensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
One step for the second-order multistep DPMSolver.
|
||
|
|
||
|
Args:
|
||
|
model_output_list (`List[torch.Tensor]`):
|
||
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
||
|
sample (`torch.Tensor`):
|
||
|
A current instance of a sample created by the diffusion process.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`:
|
||
|
The sample tensor at the previous timestep.
|
||
|
"""
|
||
|
sigma_t, sigma_s0, sigma_s1 = (
|
||
|
self.sigmas[self.step_index + 1],
|
||
|
self.sigmas[self.step_index],
|
||
|
self.sigmas[self.step_index - 1],
|
||
|
)
|
||
|
|
||
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
||
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
||
|
|
||
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
||
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
||
|
|
||
|
m0, m1 = model_output_list[-1], model_output_list[-2]
|
||
|
|
||
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
||
|
r0 = h_0 / h
|
||
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
||
|
|
||
|
# sde-dpmsolver++
|
||
|
assert noise is not None
|
||
|
if self.config.solver_type == "midpoint":
|
||
|
x_t = (
|
||
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
||
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
||
|
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
|
||
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
||
|
)
|
||
|
elif self.config.solver_type == "heun":
|
||
|
x_t = (
|
||
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
||
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
||
|
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
|
||
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
||
|
)
|
||
|
|
||
|
return x_t
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||
|
if schedule_timesteps is None:
|
||
|
schedule_timesteps = self.timesteps
|
||
|
|
||
|
index_candidates = (schedule_timesteps == timestep).nonzero()
|
||
|
|
||
|
if len(index_candidates) == 0:
|
||
|
step_index = len(self.timesteps) - 1
|
||
|
# The sigma index that is taken for the **very** first `step`
|
||
|
# is always the second index (or the last index if there is only 1)
|
||
|
# This way we can ensure we don't accidentally skip a sigma in
|
||
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||
|
elif len(index_candidates) > 1:
|
||
|
step_index = index_candidates[1].item()
|
||
|
else:
|
||
|
step_index = index_candidates[0].item()
|
||
|
|
||
|
return step_index
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
||
|
def _init_step_index(self, timestep):
|
||
|
"""
|
||
|
Initialize the step_index counter for the scheduler.
|
||
|
"""
|
||
|
|
||
|
if self.begin_index is None:
|
||
|
if isinstance(timestep, torch.Tensor):
|
||
|
timestep = timestep.to(self.timesteps.device)
|
||
|
self._step_index = self.index_for_timestep(timestep)
|
||
|
else:
|
||
|
self._step_index = self._begin_index
|
||
|
|
||
|
def step(
|
||
|
self,
|
||
|
model_output: torch.Tensor,
|
||
|
timestep: Union[int, torch.Tensor],
|
||
|
sample: torch.Tensor,
|
||
|
generator=None,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[SchedulerOutput, Tuple]:
|
||
|
"""
|
||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
||
|
the multistep DPMSolver.
|
||
|
|
||
|
Args:
|
||
|
model_output (`torch.Tensor`):
|
||
|
The direct output from learned diffusion model.
|
||
|
timestep (`int`):
|
||
|
The current discrete timestep in the diffusion chain.
|
||
|
sample (`torch.Tensor`):
|
||
|
A current instance of a sample created by the diffusion process.
|
||
|
generator (`torch.Generator`, *optional*):
|
||
|
A random number generator.
|
||
|
return_dict (`bool`):
|
||
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
||
|
|
||
|
Returns:
|
||
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
||
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||
|
tuple is returned where the first element is the sample tensor.
|
||
|
|
||
|
"""
|
||
|
if self.num_inference_steps is None:
|
||
|
raise ValueError(
|
||
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||
|
)
|
||
|
|
||
|
if self.step_index is None:
|
||
|
self._init_step_index(timestep)
|
||
|
|
||
|
# Improve numerical stability for small number of steps
|
||
|
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
|
||
|
self.config.euler_at_final
|
||
|
or (self.config.lower_order_final and len(self.timesteps) < 15)
|
||
|
or self.config.final_sigmas_type == "zero"
|
||
|
)
|
||
|
lower_order_second = (
|
||
|
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
|
||
|
)
|
||
|
|
||
|
model_output = self.convert_model_output(model_output, sample=sample)
|
||
|
for i in range(self.config.solver_order - 1):
|
||
|
self.model_outputs[i] = self.model_outputs[i + 1]
|
||
|
self.model_outputs[-1] = model_output
|
||
|
|
||
|
if self.noise_sampler is None:
|
||
|
seed = None
|
||
|
if generator is not None:
|
||
|
seed = (
|
||
|
[g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
|
||
|
)
|
||
|
self.noise_sampler = BrownianTreeNoiseSampler(
|
||
|
model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
|
||
|
)
|
||
|
noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
|
||
|
model_output.device
|
||
|
)
|
||
|
|
||
|
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
|
||
|
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
|
||
|
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
|
||
|
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
|
||
|
|
||
|
if self.lower_order_nums < self.config.solver_order:
|
||
|
self.lower_order_nums += 1
|
||
|
|
||
|
# upon completion increase step index by one
|
||
|
self._step_index += 1
|
||
|
|
||
|
if not return_dict:
|
||
|
return (prev_sample,)
|
||
|
|
||
|
return SchedulerOutput(prev_sample=prev_sample)
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
||
|
def add_noise(
|
||
|
self,
|
||
|
original_samples: torch.Tensor,
|
||
|
noise: torch.Tensor,
|
||
|
timesteps: torch.Tensor,
|
||
|
) -> torch.Tensor:
|
||
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||
|
# mps does not support float64
|
||
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
||
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
||
|
else:
|
||
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
||
|
timesteps = timesteps.to(original_samples.device)
|
||
|
|
||
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
||
|
if self.begin_index is None:
|
||
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
||
|
elif self.step_index is not None:
|
||
|
# add_noise is called after first denoising step (for inpainting)
|
||
|
step_indices = [self.step_index] * timesteps.shape[0]
|
||
|
else:
|
||
|
# add noise is called before first denoising step to create initial latent(img2img)
|
||
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
||
|
|
||
|
sigma = sigmas[step_indices].flatten()
|
||
|
while len(sigma.shape) < len(original_samples.shape):
|
||
|
sigma = sigma.unsqueeze(-1)
|
||
|
|
||
|
noisy_samples = original_samples + noise * sigma
|
||
|
return noisy_samples
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._get_conditioning_c_in
|
||
|
def _get_conditioning_c_in(self, sigma):
|
||
|
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
||
|
return c_in
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.config.num_train_timesteps
|