231 lines
8.7 KiB
Python
231 lines
8.7 KiB
Python
![]() |
# Copyright (c) 2022 Pablo Pernías MIT License
|
||
|
# Copyright 2025 UC Berkeley Team and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
|
||
|
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
||
|
from ..utils import BaseOutput
|
||
|
from ..utils.torch_utils import randn_tensor
|
||
|
from .scheduling_utils import SchedulerMixin
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DDPMWuerstchenSchedulerOutput(BaseOutput):
|
||
|
"""
|
||
|
Output class for the scheduler's step function output.
|
||
|
|
||
|
Args:
|
||
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
||
|
denoising loop.
|
||
|
"""
|
||
|
|
||
|
prev_sample: torch.Tensor
|
||
|
|
||
|
|
||
|
def betas_for_alpha_bar(
|
||
|
num_diffusion_timesteps,
|
||
|
max_beta=0.999,
|
||
|
alpha_transform_type="cosine",
|
||
|
):
|
||
|
"""
|
||
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||
|
(1-beta) over time from t = [0,1].
|
||
|
|
||
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
||
|
to that part of the diffusion process.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
||
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
||
|
prevent singularities.
|
||
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
||
|
Choose from `cosine` or `exp`
|
||
|
|
||
|
Returns:
|
||
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
||
|
"""
|
||
|
if alpha_transform_type == "cosine":
|
||
|
|
||
|
def alpha_bar_fn(t):
|
||
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
||
|
|
||
|
elif alpha_transform_type == "exp":
|
||
|
|
||
|
def alpha_bar_fn(t):
|
||
|
return math.exp(t * -12.0)
|
||
|
|
||
|
else:
|
||
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
||
|
|
||
|
betas = []
|
||
|
for i in range(num_diffusion_timesteps):
|
||
|
t1 = i / num_diffusion_timesteps
|
||
|
t2 = (i + 1) / num_diffusion_timesteps
|
||
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
||
|
return torch.tensor(betas, dtype=torch.float32)
|
||
|
|
||
|
|
||
|
class DDPMWuerstchenScheduler(SchedulerMixin, ConfigMixin):
|
||
|
"""
|
||
|
Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
|
||
|
Langevin dynamics sampling.
|
||
|
|
||
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
|
||
|
[`~SchedulerMixin.from_pretrained`] functions.
|
||
|
|
||
|
For more details, see the original paper: https://huggingface.co/papers/2006.11239
|
||
|
|
||
|
Args:
|
||
|
scaler (`float`): ....
|
||
|
s (`float`): ....
|
||
|
"""
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self,
|
||
|
scaler: float = 1.0,
|
||
|
s: float = 0.008,
|
||
|
):
|
||
|
self.scaler = scaler
|
||
|
self.s = torch.tensor([s])
|
||
|
self._init_alpha_cumprod = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2
|
||
|
|
||
|
# standard deviation of the initial noise distribution
|
||
|
self.init_noise_sigma = 1.0
|
||
|
|
||
|
def _alpha_cumprod(self, t, device):
|
||
|
if self.scaler > 1:
|
||
|
t = 1 - (1 - t) ** self.scaler
|
||
|
elif self.scaler < 1:
|
||
|
t = t**self.scaler
|
||
|
alpha_cumprod = torch.cos(
|
||
|
(t + self.s.to(device)) / (1 + self.s.to(device)) * torch.pi * 0.5
|
||
|
) ** 2 / self._init_alpha_cumprod.to(device)
|
||
|
return alpha_cumprod.clamp(0.0001, 0.9999)
|
||
|
|
||
|
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
||
|
"""
|
||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||
|
current timestep.
|
||
|
|
||
|
Args:
|
||
|
sample (`torch.Tensor`): input sample
|
||
|
timestep (`int`, optional): current timestep
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: scaled input sample
|
||
|
"""
|
||
|
return sample
|
||
|
|
||
|
def set_timesteps(
|
||
|
self,
|
||
|
num_inference_steps: int = None,
|
||
|
timesteps: Optional[List[int]] = None,
|
||
|
device: Union[str, torch.device] = None,
|
||
|
):
|
||
|
"""
|
||
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||
|
|
||
|
Args:
|
||
|
num_inference_steps (`Dict[float, int]`):
|
||
|
the number of diffusion steps used when generating samples with a pre-trained model. If passed, then
|
||
|
`timesteps` must be `None`.
|
||
|
device (`str` or `torch.device`, optional):
|
||
|
the device to which the timesteps are moved to. {2 / 3: 20, 0.0: 10}
|
||
|
"""
|
||
|
if timesteps is None:
|
||
|
timesteps = torch.linspace(1.0, 0.0, num_inference_steps + 1, device=device)
|
||
|
if not isinstance(timesteps, torch.Tensor):
|
||
|
timesteps = torch.Tensor(timesteps).to(device)
|
||
|
self.timesteps = timesteps
|
||
|
|
||
|
def step(
|
||
|
self,
|
||
|
model_output: torch.Tensor,
|
||
|
timestep: int,
|
||
|
sample: torch.Tensor,
|
||
|
generator=None,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[DDPMWuerstchenSchedulerOutput, Tuple]:
|
||
|
"""
|
||
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
||
|
process from the learned model outputs (most often the predicted noise).
|
||
|
|
||
|
Args:
|
||
|
model_output (`torch.Tensor`): direct output from learned diffusion model.
|
||
|
timestep (`int`): current discrete timestep in the diffusion chain.
|
||
|
sample (`torch.Tensor`):
|
||
|
current instance of sample being created by diffusion process.
|
||
|
generator: random number generator.
|
||
|
return_dict (`bool`): option for returning tuple rather than DDPMWuerstchenSchedulerOutput class
|
||
|
|
||
|
Returns:
|
||
|
[`DDPMWuerstchenSchedulerOutput`] or `tuple`: [`DDPMWuerstchenSchedulerOutput`] if `return_dict` is True,
|
||
|
otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
|
||
|
|
||
|
"""
|
||
|
dtype = model_output.dtype
|
||
|
device = model_output.device
|
||
|
t = timestep
|
||
|
|
||
|
prev_t = self.previous_timestep(t)
|
||
|
|
||
|
alpha_cumprod = self._alpha_cumprod(t, device).view(t.size(0), *[1 for _ in sample.shape[1:]])
|
||
|
alpha_cumprod_prev = self._alpha_cumprod(prev_t, device).view(prev_t.size(0), *[1 for _ in sample.shape[1:]])
|
||
|
alpha = alpha_cumprod / alpha_cumprod_prev
|
||
|
|
||
|
mu = (1.0 / alpha).sqrt() * (sample - (1 - alpha) * model_output / (1 - alpha_cumprod).sqrt())
|
||
|
|
||
|
std_noise = randn_tensor(mu.shape, generator=generator, device=model_output.device, dtype=model_output.dtype)
|
||
|
std = ((1 - alpha) * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)).sqrt() * std_noise
|
||
|
pred = mu + std * (prev_t != 0).float().view(prev_t.size(0), *[1 for _ in sample.shape[1:]])
|
||
|
|
||
|
if not return_dict:
|
||
|
return (pred.to(dtype),)
|
||
|
|
||
|
return DDPMWuerstchenSchedulerOutput(prev_sample=pred.to(dtype))
|
||
|
|
||
|
def add_noise(
|
||
|
self,
|
||
|
original_samples: torch.Tensor,
|
||
|
noise: torch.Tensor,
|
||
|
timesteps: torch.Tensor,
|
||
|
) -> torch.Tensor:
|
||
|
device = original_samples.device
|
||
|
dtype = original_samples.dtype
|
||
|
alpha_cumprod = self._alpha_cumprod(timesteps, device=device).view(
|
||
|
timesteps.size(0), *[1 for _ in original_samples.shape[1:]]
|
||
|
)
|
||
|
noisy_samples = alpha_cumprod.sqrt() * original_samples + (1 - alpha_cumprod).sqrt() * noise
|
||
|
return noisy_samples.to(dtype=dtype)
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.config.num_train_timesteps
|
||
|
|
||
|
def previous_timestep(self, timestep):
|
||
|
index = (self.timesteps - timestep[0]).abs().argmin().item()
|
||
|
prev_t = self.timesteps[index + 1][None].expand(timestep.shape[0])
|
||
|
return prev_t
|