646 lines
28 KiB
Python
646 lines
28 KiB
Python
![]() |
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
|
||
|
|
||
|
from dataclasses import dataclass
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import flax
|
||
|
import jax
|
||
|
import jax.numpy as jnp
|
||
|
|
||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
||
|
from .scheduling_utils_flax import (
|
||
|
CommonSchedulerState,
|
||
|
FlaxKarrasDiffusionSchedulers,
|
||
|
FlaxSchedulerMixin,
|
||
|
FlaxSchedulerOutput,
|
||
|
add_noise_common,
|
||
|
)
|
||
|
|
||
|
|
||
|
@flax.struct.dataclass
|
||
|
class DPMSolverMultistepSchedulerState:
|
||
|
common: CommonSchedulerState
|
||
|
alpha_t: jnp.ndarray
|
||
|
sigma_t: jnp.ndarray
|
||
|
lambda_t: jnp.ndarray
|
||
|
|
||
|
# setable values
|
||
|
init_noise_sigma: jnp.ndarray
|
||
|
timesteps: jnp.ndarray
|
||
|
num_inference_steps: Optional[int] = None
|
||
|
|
||
|
# running values
|
||
|
model_outputs: Optional[jnp.ndarray] = None
|
||
|
lower_order_nums: Optional[jnp.int32] = None
|
||
|
prev_timestep: Optional[jnp.int32] = None
|
||
|
cur_sample: Optional[jnp.ndarray] = None
|
||
|
|
||
|
@classmethod
|
||
|
def create(
|
||
|
cls,
|
||
|
common: CommonSchedulerState,
|
||
|
alpha_t: jnp.ndarray,
|
||
|
sigma_t: jnp.ndarray,
|
||
|
lambda_t: jnp.ndarray,
|
||
|
init_noise_sigma: jnp.ndarray,
|
||
|
timesteps: jnp.ndarray,
|
||
|
):
|
||
|
return cls(
|
||
|
common=common,
|
||
|
alpha_t=alpha_t,
|
||
|
sigma_t=sigma_t,
|
||
|
lambda_t=lambda_t,
|
||
|
init_noise_sigma=init_noise_sigma,
|
||
|
timesteps=timesteps,
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput):
|
||
|
state: DPMSolverMultistepSchedulerState
|
||
|
|
||
|
|
||
|
class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin):
|
||
|
"""
|
||
|
DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
|
||
|
the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
|
||
|
samples, and it can generate quite good samples even in only 10 steps.
|
||
|
|
||
|
For more details, see the original paper: https://huggingface.co/papers/2206.00927 and
|
||
|
https://huggingface.co/papers/2211.01095
|
||
|
|
||
|
Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We
|
||
|
recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
|
||
|
|
||
|
We also support the "dynamic thresholding" method in Imagen (https://huggingface.co/papers/2205.11487). For
|
||
|
pixel-space diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the
|
||
|
dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
|
||
|
stable-diffusion).
|
||
|
|
||
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
|
||
|
[`~SchedulerMixin.from_pretrained`] functions.
|
||
|
|
||
|
For more details, see the original paper: https://huggingface.co/papers/2206.00927 and
|
||
|
https://huggingface.co/papers/2211.01095
|
||
|
|
||
|
Args:
|
||
|
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
||
|
beta_start (`float`): the starting `beta` value of inference.
|
||
|
beta_end (`float`): the final `beta` value.
|
||
|
beta_schedule (`str`):
|
||
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||
|
trained_betas (`np.ndarray`, optional):
|
||
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
||
|
solver_order (`int`, default `2`):
|
||
|
the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
|
||
|
sampling, and `solver_order=3` for unconditional sampling.
|
||
|
prediction_type (`str`, default `epsilon`):
|
||
|
indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`,
|
||
|
or `v-prediction`.
|
||
|
thresholding (`bool`, default `False`):
|
||
|
whether to use the "dynamic thresholding" method (introduced by Imagen,
|
||
|
https://huggingface.co/papers/2205.11487). For pixel-space diffusion models, you can set both
|
||
|
`algorithm_type=dpmsolver++` and `thresholding=True` to use the dynamic thresholding. Note that the
|
||
|
thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion).
|
||
|
dynamic_thresholding_ratio (`float`, default `0.995`):
|
||
|
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
|
||
|
(https://huggingface.co/papers/2205.11487).
|
||
|
sample_max_value (`float`, default `1.0`):
|
||
|
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
|
||
|
`algorithm_type="dpmsolver++`.
|
||
|
algorithm_type (`str`, default `dpmsolver++`):
|
||
|
the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
|
||
|
algorithms in https://huggingface.co/papers/2206.00927, and the `dpmsolver++` type implements the
|
||
|
algorithms in https://huggingface.co/papers/2211.01095. We recommend to use `dpmsolver++` with
|
||
|
`solver_order=2` for guided sampling (e.g. stable-diffusion).
|
||
|
solver_type (`str`, default `midpoint`):
|
||
|
the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
|
||
|
the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
|
||
|
slightly better, so we recommend to use the `midpoint` type.
|
||
|
lower_order_final (`bool`, default `True`):
|
||
|
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
|
||
|
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
|
||
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
||
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||
|
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
|
||
|
the `dtype` used for params and computation.
|
||
|
"""
|
||
|
|
||
|
_compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
|
||
|
|
||
|
dtype: jnp.dtype
|
||
|
|
||
|
@property
|
||
|
def has_state(self):
|
||
|
return True
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self,
|
||
|
num_train_timesteps: int = 1000,
|
||
|
beta_start: float = 0.0001,
|
||
|
beta_end: float = 0.02,
|
||
|
beta_schedule: str = "linear",
|
||
|
trained_betas: Optional[jnp.ndarray] = None,
|
||
|
solver_order: int = 2,
|
||
|
prediction_type: str = "epsilon",
|
||
|
thresholding: bool = False,
|
||
|
dynamic_thresholding_ratio: float = 0.995,
|
||
|
sample_max_value: float = 1.0,
|
||
|
algorithm_type: str = "dpmsolver++",
|
||
|
solver_type: str = "midpoint",
|
||
|
lower_order_final: bool = True,
|
||
|
timestep_spacing: str = "linspace",
|
||
|
dtype: jnp.dtype = jnp.float32,
|
||
|
):
|
||
|
self.dtype = dtype
|
||
|
|
||
|
def create_state(self, common: Optional[CommonSchedulerState] = None) -> DPMSolverMultistepSchedulerState:
|
||
|
if common is None:
|
||
|
common = CommonSchedulerState.create(self)
|
||
|
|
||
|
# Currently we only support VP-type noise schedule
|
||
|
alpha_t = jnp.sqrt(common.alphas_cumprod)
|
||
|
sigma_t = jnp.sqrt(1 - common.alphas_cumprod)
|
||
|
lambda_t = jnp.log(alpha_t) - jnp.log(sigma_t)
|
||
|
|
||
|
# settings for DPM-Solver
|
||
|
if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]:
|
||
|
raise NotImplementedError(f"{self.config.algorithm_type} is not implemented for {self.__class__}")
|
||
|
if self.config.solver_type not in ["midpoint", "heun"]:
|
||
|
raise NotImplementedError(f"{self.config.solver_type} is not implemented for {self.__class__}")
|
||
|
|
||
|
# standard deviation of the initial noise distribution
|
||
|
init_noise_sigma = jnp.array(1.0, dtype=self.dtype)
|
||
|
|
||
|
timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]
|
||
|
|
||
|
return DPMSolverMultistepSchedulerState.create(
|
||
|
common=common,
|
||
|
alpha_t=alpha_t,
|
||
|
sigma_t=sigma_t,
|
||
|
lambda_t=lambda_t,
|
||
|
init_noise_sigma=init_noise_sigma,
|
||
|
timesteps=timesteps,
|
||
|
)
|
||
|
|
||
|
def set_timesteps(
|
||
|
self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple
|
||
|
) -> DPMSolverMultistepSchedulerState:
|
||
|
"""
|
||
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||
|
|
||
|
Args:
|
||
|
state (`DPMSolverMultistepSchedulerState`):
|
||
|
the `FlaxDPMSolverMultistepScheduler` state data class instance.
|
||
|
num_inference_steps (`int`):
|
||
|
the number of diffusion steps used when generating samples with a pre-trained model.
|
||
|
shape (`Tuple`):
|
||
|
the shape of the samples to be generated.
|
||
|
"""
|
||
|
last_timestep = self.config.num_train_timesteps
|
||
|
if self.config.timestep_spacing == "linspace":
|
||
|
timesteps = (
|
||
|
jnp.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].astype(jnp.int32)
|
||
|
)
|
||
|
elif self.config.timestep_spacing == "leading":
|
||
|
step_ratio = last_timestep // (num_inference_steps + 1)
|
||
|
# creates integer timesteps by multiplying by ratio
|
||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
||
|
timesteps = (
|
||
|
(jnp.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(jnp.int32)
|
||
|
)
|
||
|
timesteps += self.config.steps_offset
|
||
|
elif self.config.timestep_spacing == "trailing":
|
||
|
step_ratio = self.config.num_train_timesteps / num_inference_steps
|
||
|
# creates integer timesteps by multiplying by ratio
|
||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
||
|
timesteps = jnp.arange(last_timestep, 0, -step_ratio).round().copy().astype(jnp.int32)
|
||
|
timesteps -= 1
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
||
|
)
|
||
|
|
||
|
# initial running values
|
||
|
|
||
|
model_outputs = jnp.zeros((self.config.solver_order,) + shape, dtype=self.dtype)
|
||
|
lower_order_nums = jnp.int32(0)
|
||
|
prev_timestep = jnp.int32(-1)
|
||
|
cur_sample = jnp.zeros(shape, dtype=self.dtype)
|
||
|
|
||
|
return state.replace(
|
||
|
num_inference_steps=num_inference_steps,
|
||
|
timesteps=timesteps,
|
||
|
model_outputs=model_outputs,
|
||
|
lower_order_nums=lower_order_nums,
|
||
|
prev_timestep=prev_timestep,
|
||
|
cur_sample=cur_sample,
|
||
|
)
|
||
|
|
||
|
def convert_model_output(
|
||
|
self,
|
||
|
state: DPMSolverMultistepSchedulerState,
|
||
|
model_output: jnp.ndarray,
|
||
|
timestep: int,
|
||
|
sample: jnp.ndarray,
|
||
|
) -> jnp.ndarray:
|
||
|
"""
|
||
|
Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.
|
||
|
|
||
|
DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
|
||
|
discretize an integral of the data prediction model. So we need to first convert the model output to the
|
||
|
corresponding type to match the algorithm.
|
||
|
|
||
|
Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
|
||
|
DPM-Solver++ for both noise prediction model and data prediction model.
|
||
|
|
||
|
Args:
|
||
|
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||
|
timestep (`int`): current discrete timestep in the diffusion chain.
|
||
|
sample (`jnp.ndarray`):
|
||
|
current instance of sample being created by diffusion process.
|
||
|
|
||
|
Returns:
|
||
|
`jnp.ndarray`: the converted model output.
|
||
|
"""
|
||
|
# DPM-Solver++ needs to solve an integral of the data prediction model.
|
||
|
if self.config.algorithm_type == "dpmsolver++":
|
||
|
if self.config.prediction_type == "epsilon":
|
||
|
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
|
||
|
x0_pred = (sample - sigma_t * model_output) / alpha_t
|
||
|
elif self.config.prediction_type == "sample":
|
||
|
x0_pred = model_output
|
||
|
elif self.config.prediction_type == "v_prediction":
|
||
|
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
|
||
|
x0_pred = alpha_t * sample - sigma_t * model_output
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
|
||
|
" or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
|
||
|
)
|
||
|
|
||
|
if self.config.thresholding:
|
||
|
# Dynamic thresholding in https://huggingface.co/papers/2205.11487
|
||
|
dynamic_max_val = jnp.percentile(
|
||
|
jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim))
|
||
|
)
|
||
|
dynamic_max_val = jnp.maximum(
|
||
|
dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val)
|
||
|
)
|
||
|
x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
|
||
|
return x0_pred
|
||
|
# DPM-Solver needs to solve an integral of the noise prediction model.
|
||
|
elif self.config.algorithm_type == "dpmsolver":
|
||
|
if self.config.prediction_type == "epsilon":
|
||
|
return model_output
|
||
|
elif self.config.prediction_type == "sample":
|
||
|
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
|
||
|
epsilon = (sample - alpha_t * model_output) / sigma_t
|
||
|
return epsilon
|
||
|
elif self.config.prediction_type == "v_prediction":
|
||
|
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
|
||
|
epsilon = alpha_t * model_output + sigma_t * sample
|
||
|
return epsilon
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
|
||
|
" or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
|
||
|
)
|
||
|
|
||
|
def dpm_solver_first_order_update(
|
||
|
self,
|
||
|
state: DPMSolverMultistepSchedulerState,
|
||
|
model_output: jnp.ndarray,
|
||
|
timestep: int,
|
||
|
prev_timestep: int,
|
||
|
sample: jnp.ndarray,
|
||
|
) -> jnp.ndarray:
|
||
|
"""
|
||
|
One step for the first-order DPM-Solver (equivalent to DDIM).
|
||
|
|
||
|
See https://huggingface.co/papers/2206.00927 for the detailed derivation.
|
||
|
|
||
|
Args:
|
||
|
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||
|
timestep (`int`): current discrete timestep in the diffusion chain.
|
||
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
|
||
|
sample (`jnp.ndarray`):
|
||
|
current instance of sample being created by diffusion process.
|
||
|
|
||
|
Returns:
|
||
|
`jnp.ndarray`: the sample tensor at the previous timestep.
|
||
|
"""
|
||
|
t, s0 = prev_timestep, timestep
|
||
|
m0 = model_output
|
||
|
lambda_t, lambda_s = state.lambda_t[t], state.lambda_t[s0]
|
||
|
alpha_t, alpha_s = state.alpha_t[t], state.alpha_t[s0]
|
||
|
sigma_t, sigma_s = state.sigma_t[t], state.sigma_t[s0]
|
||
|
h = lambda_t - lambda_s
|
||
|
if self.config.algorithm_type == "dpmsolver++":
|
||
|
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0
|
||
|
elif self.config.algorithm_type == "dpmsolver":
|
||
|
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0
|
||
|
return x_t
|
||
|
|
||
|
def multistep_dpm_solver_second_order_update(
|
||
|
self,
|
||
|
state: DPMSolverMultistepSchedulerState,
|
||
|
model_output_list: jnp.ndarray,
|
||
|
timestep_list: List[int],
|
||
|
prev_timestep: int,
|
||
|
sample: jnp.ndarray,
|
||
|
) -> jnp.ndarray:
|
||
|
"""
|
||
|
One step for the second-order multistep DPM-Solver.
|
||
|
|
||
|
Args:
|
||
|
model_output_list (`List[jnp.ndarray]`):
|
||
|
direct outputs from learned diffusion model at current and latter timesteps.
|
||
|
timestep (`int`): current and latter discrete timestep in the diffusion chain.
|
||
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
|
||
|
sample (`jnp.ndarray`):
|
||
|
current instance of sample being created by diffusion process.
|
||
|
|
||
|
Returns:
|
||
|
`jnp.ndarray`: the sample tensor at the previous timestep.
|
||
|
"""
|
||
|
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
|
||
|
m0, m1 = model_output_list[-1], model_output_list[-2]
|
||
|
lambda_t, lambda_s0, lambda_s1 = state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1]
|
||
|
alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
|
||
|
sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
|
||
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
||
|
r0 = h_0 / h
|
||
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
||
|
if self.config.algorithm_type == "dpmsolver++":
|
||
|
# See https://huggingface.co/papers/2211.01095 for detailed derivations
|
||
|
if self.config.solver_type == "midpoint":
|
||
|
x_t = (
|
||
|
(sigma_t / sigma_s0) * sample
|
||
|
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0
|
||
|
- 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1
|
||
|
)
|
||
|
elif self.config.solver_type == "heun":
|
||
|
x_t = (
|
||
|
(sigma_t / sigma_s0) * sample
|
||
|
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0
|
||
|
+ (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
|
||
|
)
|
||
|
elif self.config.algorithm_type == "dpmsolver":
|
||
|
# See https://huggingface.co/papers/2206.00927 for detailed derivations
|
||
|
if self.config.solver_type == "midpoint":
|
||
|
x_t = (
|
||
|
(alpha_t / alpha_s0) * sample
|
||
|
- (sigma_t * (jnp.exp(h) - 1.0)) * D0
|
||
|
- 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1
|
||
|
)
|
||
|
elif self.config.solver_type == "heun":
|
||
|
x_t = (
|
||
|
(alpha_t / alpha_s0) * sample
|
||
|
- (sigma_t * (jnp.exp(h) - 1.0)) * D0
|
||
|
- (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
|
||
|
)
|
||
|
return x_t
|
||
|
|
||
|
def multistep_dpm_solver_third_order_update(
|
||
|
self,
|
||
|
state: DPMSolverMultistepSchedulerState,
|
||
|
model_output_list: jnp.ndarray,
|
||
|
timestep_list: List[int],
|
||
|
prev_timestep: int,
|
||
|
sample: jnp.ndarray,
|
||
|
) -> jnp.ndarray:
|
||
|
"""
|
||
|
One step for the third-order multistep DPM-Solver.
|
||
|
|
||
|
Args:
|
||
|
model_output_list (`List[jnp.ndarray]`):
|
||
|
direct outputs from learned diffusion model at current and latter timesteps.
|
||
|
timestep (`int`): current and latter discrete timestep in the diffusion chain.
|
||
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
|
||
|
sample (`jnp.ndarray`):
|
||
|
current instance of sample being created by diffusion process.
|
||
|
|
||
|
Returns:
|
||
|
`jnp.ndarray`: the sample tensor at the previous timestep.
|
||
|
"""
|
||
|
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
|
||
|
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
|
||
|
lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
|
||
|
state.lambda_t[t],
|
||
|
state.lambda_t[s0],
|
||
|
state.lambda_t[s1],
|
||
|
state.lambda_t[s2],
|
||
|
)
|
||
|
alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
|
||
|
sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
|
||
|
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
|
||
|
r0, r1 = h_0 / h, h_1 / h
|
||
|
D0 = m0
|
||
|
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
|
||
|
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
|
||
|
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
|
||
|
if self.config.algorithm_type == "dpmsolver++":
|
||
|
# See https://huggingface.co/papers/2206.00927 for detailed derivations
|
||
|
x_t = (
|
||
|
(sigma_t / sigma_s0) * sample
|
||
|
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0
|
||
|
+ (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
|
||
|
- (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
|
||
|
)
|
||
|
elif self.config.algorithm_type == "dpmsolver":
|
||
|
# See https://huggingface.co/papers/2206.00927 for detailed derivations
|
||
|
x_t = (
|
||
|
(alpha_t / alpha_s0) * sample
|
||
|
- (sigma_t * (jnp.exp(h) - 1.0)) * D0
|
||
|
- (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
|
||
|
- (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
|
||
|
)
|
||
|
return x_t
|
||
|
|
||
|
def step(
|
||
|
self,
|
||
|
state: DPMSolverMultistepSchedulerState,
|
||
|
model_output: jnp.ndarray,
|
||
|
timestep: int,
|
||
|
sample: jnp.ndarray,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]:
|
||
|
"""
|
||
|
Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process
|
||
|
from the learned model outputs (most often the predicted noise).
|
||
|
|
||
|
Args:
|
||
|
state (`DPMSolverMultistepSchedulerState`):
|
||
|
the `FlaxDPMSolverMultistepScheduler` state data class instance.
|
||
|
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||
|
timestep (`int`): current discrete timestep in the diffusion chain.
|
||
|
sample (`jnp.ndarray`):
|
||
|
current instance of sample being created by diffusion process.
|
||
|
return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class
|
||
|
|
||
|
Returns:
|
||
|
[`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if
|
||
|
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
|
||
|
|
||
|
"""
|
||
|
if state.num_inference_steps is None:
|
||
|
raise ValueError(
|
||
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||
|
)
|
||
|
|
||
|
(step_index,) = jnp.where(state.timesteps == timestep, size=1)
|
||
|
step_index = step_index[0]
|
||
|
|
||
|
prev_timestep = jax.lax.select(step_index == len(state.timesteps) - 1, 0, state.timesteps[step_index + 1])
|
||
|
|
||
|
model_output = self.convert_model_output(state, model_output, timestep, sample)
|
||
|
|
||
|
model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0)
|
||
|
model_outputs_new = model_outputs_new.at[-1].set(model_output)
|
||
|
state = state.replace(
|
||
|
model_outputs=model_outputs_new,
|
||
|
prev_timestep=prev_timestep,
|
||
|
cur_sample=sample,
|
||
|
)
|
||
|
|
||
|
def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
|
||
|
return self.dpm_solver_first_order_update(
|
||
|
state,
|
||
|
state.model_outputs[-1],
|
||
|
state.timesteps[step_index],
|
||
|
state.prev_timestep,
|
||
|
state.cur_sample,
|
||
|
)
|
||
|
|
||
|
def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
|
||
|
def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
|
||
|
timestep_list = jnp.array([state.timesteps[step_index - 1], state.timesteps[step_index]])
|
||
|
return self.multistep_dpm_solver_second_order_update(
|
||
|
state,
|
||
|
state.model_outputs,
|
||
|
timestep_list,
|
||
|
state.prev_timestep,
|
||
|
state.cur_sample,
|
||
|
)
|
||
|
|
||
|
def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
|
||
|
timestep_list = jnp.array(
|
||
|
[
|
||
|
state.timesteps[step_index - 2],
|
||
|
state.timesteps[step_index - 1],
|
||
|
state.timesteps[step_index],
|
||
|
]
|
||
|
)
|
||
|
return self.multistep_dpm_solver_third_order_update(
|
||
|
state,
|
||
|
state.model_outputs,
|
||
|
timestep_list,
|
||
|
state.prev_timestep,
|
||
|
state.cur_sample,
|
||
|
)
|
||
|
|
||
|
step_2_output = step_2(state)
|
||
|
step_3_output = step_3(state)
|
||
|
|
||
|
if self.config.solver_order == 2:
|
||
|
return step_2_output
|
||
|
elif self.config.lower_order_final and len(state.timesteps) < 15:
|
||
|
return jax.lax.select(
|
||
|
state.lower_order_nums < 2,
|
||
|
step_2_output,
|
||
|
jax.lax.select(
|
||
|
step_index == len(state.timesteps) - 2,
|
||
|
step_2_output,
|
||
|
step_3_output,
|
||
|
),
|
||
|
)
|
||
|
else:
|
||
|
return jax.lax.select(
|
||
|
state.lower_order_nums < 2,
|
||
|
step_2_output,
|
||
|
step_3_output,
|
||
|
)
|
||
|
|
||
|
step_1_output = step_1(state)
|
||
|
step_23_output = step_23(state)
|
||
|
|
||
|
if self.config.solver_order == 1:
|
||
|
prev_sample = step_1_output
|
||
|
|
||
|
elif self.config.lower_order_final and len(state.timesteps) < 15:
|
||
|
prev_sample = jax.lax.select(
|
||
|
state.lower_order_nums < 1,
|
||
|
step_1_output,
|
||
|
jax.lax.select(
|
||
|
step_index == len(state.timesteps) - 1,
|
||
|
step_1_output,
|
||
|
step_23_output,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
prev_sample = jax.lax.select(
|
||
|
state.lower_order_nums < 1,
|
||
|
step_1_output,
|
||
|
step_23_output,
|
||
|
)
|
||
|
|
||
|
state = state.replace(
|
||
|
lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order),
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (prev_sample, state)
|
||
|
|
||
|
return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state)
|
||
|
|
||
|
def scale_model_input(
|
||
|
self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
|
||
|
) -> jnp.ndarray:
|
||
|
"""
|
||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||
|
current timestep.
|
||
|
|
||
|
Args:
|
||
|
state (`DPMSolverMultistepSchedulerState`):
|
||
|
the `FlaxDPMSolverMultistepScheduler` state data class instance.
|
||
|
sample (`jnp.ndarray`): input sample
|
||
|
timestep (`int`, optional): current timestep
|
||
|
|
||
|
Returns:
|
||
|
`jnp.ndarray`: scaled input sample
|
||
|
"""
|
||
|
return sample
|
||
|
|
||
|
def add_noise(
|
||
|
self,
|
||
|
state: DPMSolverMultistepSchedulerState,
|
||
|
original_samples: jnp.ndarray,
|
||
|
noise: jnp.ndarray,
|
||
|
timesteps: jnp.ndarray,
|
||
|
) -> jnp.ndarray:
|
||
|
return add_noise_common(state.common, original_samples, noise, timesteps)
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.config.num_train_timesteps
|