483 lines
21 KiB
Python
483 lines
21 KiB
Python
![]() |
# Copyright 2025 Katherine Crowson and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
||
|
from ..utils import BaseOutput, logging
|
||
|
from ..utils.torch_utils import randn_tensor
|
||
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete
|
||
|
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
|
||
|
"""
|
||
|
Output class for the scheduler's `step` function output.
|
||
|
|
||
|
Args:
|
||
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
||
|
denoising loop.
|
||
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
||
|
`pred_original_sample` can be used to preview progress or for guidance.
|
||
|
"""
|
||
|
|
||
|
prev_sample: torch.Tensor
|
||
|
pred_original_sample: Optional[torch.Tensor] = None
|
||
|
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
||
|
def betas_for_alpha_bar(
|
||
|
num_diffusion_timesteps,
|
||
|
max_beta=0.999,
|
||
|
alpha_transform_type="cosine",
|
||
|
):
|
||
|
"""
|
||
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||
|
(1-beta) over time from t = [0,1].
|
||
|
|
||
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
||
|
to that part of the diffusion process.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
||
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
||
|
prevent singularities.
|
||
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
||
|
Choose from `cosine` or `exp`
|
||
|
|
||
|
Returns:
|
||
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
||
|
"""
|
||
|
if alpha_transform_type == "cosine":
|
||
|
|
||
|
def alpha_bar_fn(t):
|
||
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
||
|
|
||
|
elif alpha_transform_type == "exp":
|
||
|
|
||
|
def alpha_bar_fn(t):
|
||
|
return math.exp(t * -12.0)
|
||
|
|
||
|
else:
|
||
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
||
|
|
||
|
betas = []
|
||
|
for i in range(num_diffusion_timesteps):
|
||
|
t1 = i / num_diffusion_timesteps
|
||
|
t2 = (i + 1) / num_diffusion_timesteps
|
||
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
||
|
return torch.tensor(betas, dtype=torch.float32)
|
||
|
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
||
|
def rescale_zero_terminal_snr(betas):
|
||
|
"""
|
||
|
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
||
|
|
||
|
|
||
|
Args:
|
||
|
betas (`torch.Tensor`):
|
||
|
the betas that the scheduler is being initialized with.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: rescaled betas with zero terminal SNR
|
||
|
"""
|
||
|
# Convert betas to alphas_bar_sqrt
|
||
|
alphas = 1.0 - betas
|
||
|
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||
|
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
||
|
|
||
|
# Store old values.
|
||
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
||
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
||
|
|
||
|
# Shift so the last timestep is zero.
|
||
|
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
||
|
|
||
|
# Scale so the first timestep is back to the old value.
|
||
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
||
|
|
||
|
# Convert alphas_bar_sqrt to betas
|
||
|
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
||
|
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
||
|
alphas = torch.cat([alphas_bar[0:1], alphas])
|
||
|
betas = 1 - alphas
|
||
|
|
||
|
return betas
|
||
|
|
||
|
|
||
|
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||
|
"""
|
||
|
Ancestral sampling with Euler method steps.
|
||
|
|
||
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||
|
methods the library implements for all schedulers such as loading and saving.
|
||
|
|
||
|
Args:
|
||
|
num_train_timesteps (`int`, defaults to 1000):
|
||
|
The number of diffusion steps to train the model.
|
||
|
beta_start (`float`, defaults to 0.0001):
|
||
|
The starting `beta` value of inference.
|
||
|
beta_end (`float`, defaults to 0.02):
|
||
|
The final `beta` value.
|
||
|
beta_schedule (`str`, defaults to `"linear"`):
|
||
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||
|
`linear` or `scaled_linear`.
|
||
|
trained_betas (`np.ndarray`, *optional*):
|
||
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||
|
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
||
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||
|
steps_offset (`int`, defaults to 0):
|
||
|
An offset added to the inference steps, as required by some model families.
|
||
|
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
||
|
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
||
|
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
||
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
||
|
"""
|
||
|
|
||
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||
|
order = 1
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self,
|
||
|
num_train_timesteps: int = 1000,
|
||
|
beta_start: float = 0.0001,
|
||
|
beta_end: float = 0.02,
|
||
|
beta_schedule: str = "linear",
|
||
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||
|
prediction_type: str = "epsilon",
|
||
|
timestep_spacing: str = "linspace",
|
||
|
steps_offset: int = 0,
|
||
|
rescale_betas_zero_snr: bool = False,
|
||
|
):
|
||
|
if trained_betas is not None:
|
||
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||
|
elif beta_schedule == "linear":
|
||
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||
|
elif beta_schedule == "scaled_linear":
|
||
|
# this schedule is very specific to the latent diffusion model.
|
||
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||
|
elif beta_schedule == "squaredcos_cap_v2":
|
||
|
# Glide cosine schedule
|
||
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||
|
else:
|
||
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||
|
|
||
|
if rescale_betas_zero_snr:
|
||
|
self.betas = rescale_zero_terminal_snr(self.betas)
|
||
|
|
||
|
self.alphas = 1.0 - self.betas
|
||
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||
|
|
||
|
if rescale_betas_zero_snr:
|
||
|
# Close to 0 without being 0 so first sigma is not inf
|
||
|
# FP16 smallest positive subnormal works well here
|
||
|
self.alphas_cumprod[-1] = 2**-24
|
||
|
|
||
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||
|
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
|
||
|
self.sigmas = torch.from_numpy(sigmas)
|
||
|
|
||
|
# setable values
|
||
|
self.num_inference_steps = None
|
||
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
|
||
|
self.timesteps = torch.from_numpy(timesteps)
|
||
|
self.is_scale_input_called = False
|
||
|
|
||
|
self._step_index = None
|
||
|
self._begin_index = None
|
||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||
|
|
||
|
@property
|
||
|
def init_noise_sigma(self):
|
||
|
# standard deviation of the initial noise distribution
|
||
|
if self.config.timestep_spacing in ["linspace", "trailing"]:
|
||
|
return self.sigmas.max()
|
||
|
|
||
|
return (self.sigmas.max() ** 2 + 1) ** 0.5
|
||
|
|
||
|
@property
|
||
|
def step_index(self):
|
||
|
"""
|
||
|
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||
|
"""
|
||
|
return self._step_index
|
||
|
|
||
|
@property
|
||
|
def begin_index(self):
|
||
|
"""
|
||
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||
|
"""
|
||
|
return self._begin_index
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||
|
def set_begin_index(self, begin_index: int = 0):
|
||
|
"""
|
||
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||
|
|
||
|
Args:
|
||
|
begin_index (`int`):
|
||
|
The begin index for the scheduler.
|
||
|
"""
|
||
|
self._begin_index = begin_index
|
||
|
|
||
|
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
||
|
"""
|
||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
||
|
|
||
|
Args:
|
||
|
sample (`torch.Tensor`):
|
||
|
The input sample.
|
||
|
timestep (`int`, *optional*):
|
||
|
The current timestep in the diffusion chain.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`:
|
||
|
A scaled input sample.
|
||
|
"""
|
||
|
|
||
|
if self.step_index is None:
|
||
|
self._init_step_index(timestep)
|
||
|
|
||
|
sigma = self.sigmas[self.step_index]
|
||
|
sample = sample / ((sigma**2 + 1) ** 0.5)
|
||
|
self.is_scale_input_called = True
|
||
|
return sample
|
||
|
|
||
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||
|
"""
|
||
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||
|
|
||
|
Args:
|
||
|
num_inference_steps (`int`):
|
||
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
||
|
device (`str` or `torch.device`, *optional*):
|
||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||
|
"""
|
||
|
self.num_inference_steps = num_inference_steps
|
||
|
|
||
|
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
||
|
if self.config.timestep_spacing == "linspace":
|
||
|
timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
|
||
|
::-1
|
||
|
].copy()
|
||
|
elif self.config.timestep_spacing == "leading":
|
||
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
||
|
# creates integer timesteps by multiplying by ratio
|
||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
||
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
|
||
|
timesteps += self.config.steps_offset
|
||
|
elif self.config.timestep_spacing == "trailing":
|
||
|
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
||
|
# creates integer timesteps by multiplying by ratio
|
||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
||
|
timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
|
||
|
timesteps -= 1
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
||
|
)
|
||
|
|
||
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
||
|
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
||
|
|
||
|
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
||
|
self._step_index = None
|
||
|
self._begin_index = None
|
||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
||
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||
|
if schedule_timesteps is None:
|
||
|
schedule_timesteps = self.timesteps
|
||
|
|
||
|
indices = (schedule_timesteps == timestep).nonzero()
|
||
|
|
||
|
# The sigma index that is taken for the **very** first `step`
|
||
|
# is always the second index (or the last index if there is only 1)
|
||
|
# This way we can ensure we don't accidentally skip a sigma in
|
||
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||
|
pos = 1 if len(indices) > 1 else 0
|
||
|
|
||
|
return indices[pos].item()
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
||
|
def _init_step_index(self, timestep):
|
||
|
if self.begin_index is None:
|
||
|
if isinstance(timestep, torch.Tensor):
|
||
|
timestep = timestep.to(self.timesteps.device)
|
||
|
self._step_index = self.index_for_timestep(timestep)
|
||
|
else:
|
||
|
self._step_index = self._begin_index
|
||
|
|
||
|
def step(
|
||
|
self,
|
||
|
model_output: torch.Tensor,
|
||
|
timestep: Union[float, torch.Tensor],
|
||
|
sample: torch.Tensor,
|
||
|
generator: Optional[torch.Generator] = None,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
||
|
"""
|
||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||
|
process from the learned model outputs (most often the predicted noise).
|
||
|
|
||
|
Args:
|
||
|
model_output (`torch.Tensor`):
|
||
|
The direct output from learned diffusion model.
|
||
|
timestep (`float`):
|
||
|
The current discrete timestep in the diffusion chain.
|
||
|
sample (`torch.Tensor`):
|
||
|
A current instance of a sample created by the diffusion process.
|
||
|
generator (`torch.Generator`, *optional*):
|
||
|
A random number generator.
|
||
|
return_dict (`bool`):
|
||
|
Whether or not to return a
|
||
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
||
|
|
||
|
Returns:
|
||
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
||
|
If return_dict is `True`,
|
||
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
||
|
otherwise a tuple is returned where the first element is the sample tensor.
|
||
|
|
||
|
"""
|
||
|
|
||
|
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
|
||
|
raise ValueError(
|
||
|
(
|
||
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
||
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
||
|
" one of the `scheduler.timesteps` as a timestep."
|
||
|
),
|
||
|
)
|
||
|
|
||
|
if not self.is_scale_input_called:
|
||
|
logger.warning(
|
||
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
||
|
"See `StableDiffusionPipeline` for a usage example."
|
||
|
)
|
||
|
|
||
|
if self.step_index is None:
|
||
|
self._init_step_index(timestep)
|
||
|
|
||
|
sigma = self.sigmas[self.step_index]
|
||
|
|
||
|
# Upcast to avoid precision issues when computing prev_sample
|
||
|
sample = sample.to(torch.float32)
|
||
|
|
||
|
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
||
|
if self.config.prediction_type == "epsilon":
|
||
|
pred_original_sample = sample - sigma * model_output
|
||
|
elif self.config.prediction_type == "v_prediction":
|
||
|
# * c_out + input * c_skip
|
||
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
||
|
elif self.config.prediction_type == "sample":
|
||
|
raise NotImplementedError("prediction_type not implemented yet: sample")
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
||
|
)
|
||
|
|
||
|
sigma_from = self.sigmas[self.step_index]
|
||
|
sigma_to = self.sigmas[self.step_index + 1]
|
||
|
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
||
|
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
||
|
|
||
|
# 2. Convert to an ODE derivative
|
||
|
derivative = (sample - pred_original_sample) / sigma
|
||
|
|
||
|
dt = sigma_down - sigma
|
||
|
|
||
|
prev_sample = sample + derivative * dt
|
||
|
|
||
|
device = model_output.device
|
||
|
noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
||
|
|
||
|
prev_sample = prev_sample + noise * sigma_up
|
||
|
|
||
|
# Cast sample back to model compatible dtype
|
||
|
prev_sample = prev_sample.to(model_output.dtype)
|
||
|
|
||
|
# upon completion increase step index by one
|
||
|
self._step_index += 1
|
||
|
|
||
|
if not return_dict:
|
||
|
return (
|
||
|
prev_sample,
|
||
|
pred_original_sample,
|
||
|
)
|
||
|
|
||
|
return EulerAncestralDiscreteSchedulerOutput(
|
||
|
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
||
|
)
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
||
|
def add_noise(
|
||
|
self,
|
||
|
original_samples: torch.Tensor,
|
||
|
noise: torch.Tensor,
|
||
|
timesteps: torch.Tensor,
|
||
|
) -> torch.Tensor:
|
||
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||
|
# mps does not support float64
|
||
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
||
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
||
|
else:
|
||
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
||
|
timesteps = timesteps.to(original_samples.device)
|
||
|
|
||
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
||
|
if self.begin_index is None:
|
||
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
||
|
elif self.step_index is not None:
|
||
|
# add_noise is called after first denoising step (for inpainting)
|
||
|
step_indices = [self.step_index] * timesteps.shape[0]
|
||
|
else:
|
||
|
# add noise is called before first denoising step to create initial latent(img2img)
|
||
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
||
|
|
||
|
sigma = sigmas[step_indices].flatten()
|
||
|
while len(sigma.shape) < len(original_samples.shape):
|
||
|
sigma = sigma.unsqueeze(-1)
|
||
|
|
||
|
noisy_samples = original_samples + noise * sigma
|
||
|
return noisy_samples
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.config.num_train_timesteps
|