611 lines
27 KiB
Python
611 lines
27 KiB
Python
![]() |
# Copyright 2025 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
|
|||
|
import math
|
|||
|
from dataclasses import dataclass
|
|||
|
from typing import List, Optional, Tuple, Union
|
|||
|
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
|
|||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
|||
|
from ..utils import BaseOutput, is_scipy_available
|
|||
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
|||
|
|
|||
|
|
|||
|
if is_scipy_available():
|
|||
|
import scipy.stats
|
|||
|
|
|||
|
|
|||
|
@dataclass
|
|||
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->HeunDiscrete
|
|||
|
class HeunDiscreteSchedulerOutput(BaseOutput):
|
|||
|
"""
|
|||
|
Output class for the scheduler's `step` function output.
|
|||
|
|
|||
|
Args:
|
|||
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
|||
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
|||
|
denoising loop.
|
|||
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
|||
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
|||
|
`pred_original_sample` can be used to preview progress or for guidance.
|
|||
|
"""
|
|||
|
|
|||
|
prev_sample: torch.Tensor
|
|||
|
pred_original_sample: Optional[torch.Tensor] = None
|
|||
|
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
|||
|
def betas_for_alpha_bar(
|
|||
|
num_diffusion_timesteps,
|
|||
|
max_beta=0.999,
|
|||
|
alpha_transform_type="cosine",
|
|||
|
):
|
|||
|
"""
|
|||
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
|||
|
(1-beta) over time from t = [0,1].
|
|||
|
|
|||
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
|||
|
to that part of the diffusion process.
|
|||
|
|
|||
|
|
|||
|
Args:
|
|||
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
|||
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
|||
|
prevent singularities.
|
|||
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
|||
|
Choose from `cosine` or `exp`
|
|||
|
|
|||
|
Returns:
|
|||
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
|||
|
"""
|
|||
|
if alpha_transform_type == "cosine":
|
|||
|
|
|||
|
def alpha_bar_fn(t):
|
|||
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
|||
|
|
|||
|
elif alpha_transform_type == "exp":
|
|||
|
|
|||
|
def alpha_bar_fn(t):
|
|||
|
return math.exp(t * -12.0)
|
|||
|
|
|||
|
else:
|
|||
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
|||
|
|
|||
|
betas = []
|
|||
|
for i in range(num_diffusion_timesteps):
|
|||
|
t1 = i / num_diffusion_timesteps
|
|||
|
t2 = (i + 1) / num_diffusion_timesteps
|
|||
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
|||
|
return torch.tensor(betas, dtype=torch.float32)
|
|||
|
|
|||
|
|
|||
|
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
"""
|
|||
|
Scheduler with Heun steps for discrete beta schedules.
|
|||
|
|
|||
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
|||
|
methods the library implements for all schedulers such as loading and saving.
|
|||
|
|
|||
|
Args:
|
|||
|
num_train_timesteps (`int`, defaults to 1000):
|
|||
|
The number of diffusion steps to train the model.
|
|||
|
beta_start (`float`, defaults to 0.0001):
|
|||
|
The starting `beta` value of inference.
|
|||
|
beta_end (`float`, defaults to 0.02):
|
|||
|
The final `beta` value.
|
|||
|
beta_schedule (`str`, defaults to `"linear"`):
|
|||
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
|||
|
`linear` or `scaled_linear`.
|
|||
|
trained_betas (`np.ndarray`, *optional*):
|
|||
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
|||
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
|||
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
|||
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
|||
|
Video](https://imagen.research.google/video/paper.pdf) paper).
|
|||
|
clip_sample (`bool`, defaults to `True`):
|
|||
|
Clip the predicted sample for numerical stability.
|
|||
|
clip_sample_range (`float`, defaults to 1.0):
|
|||
|
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
|||
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
|||
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
|||
|
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
|||
|
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
|||
|
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
|||
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
|||
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
|||
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
|||
|
steps_offset (`int`, defaults to 0):
|
|||
|
An offset added to the inference steps, as required by some model families.
|
|||
|
"""
|
|||
|
|
|||
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
|||
|
order = 2
|
|||
|
|
|||
|
@register_to_config
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
num_train_timesteps: int = 1000,
|
|||
|
beta_start: float = 0.00085, # sensible defaults
|
|||
|
beta_end: float = 0.012,
|
|||
|
beta_schedule: str = "linear",
|
|||
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
|||
|
prediction_type: str = "epsilon",
|
|||
|
use_karras_sigmas: Optional[bool] = False,
|
|||
|
use_exponential_sigmas: Optional[bool] = False,
|
|||
|
use_beta_sigmas: Optional[bool] = False,
|
|||
|
clip_sample: Optional[bool] = False,
|
|||
|
clip_sample_range: float = 1.0,
|
|||
|
timestep_spacing: str = "linspace",
|
|||
|
steps_offset: int = 0,
|
|||
|
):
|
|||
|
if self.config.use_beta_sigmas and not is_scipy_available():
|
|||
|
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
|||
|
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
|||
|
raise ValueError(
|
|||
|
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
|||
|
)
|
|||
|
if trained_betas is not None:
|
|||
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
|||
|
elif beta_schedule == "linear":
|
|||
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
|||
|
elif beta_schedule == "scaled_linear":
|
|||
|
# this schedule is very specific to the latent diffusion model.
|
|||
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
|||
|
elif beta_schedule == "squaredcos_cap_v2":
|
|||
|
# Glide cosine schedule
|
|||
|
self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
|
|||
|
elif beta_schedule == "exp":
|
|||
|
self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
|
|||
|
else:
|
|||
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
|||
|
|
|||
|
self.alphas = 1.0 - self.betas
|
|||
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
|||
|
|
|||
|
# set all values
|
|||
|
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
|
|||
|
self.use_karras_sigmas = use_karras_sigmas
|
|||
|
|
|||
|
self._step_index = None
|
|||
|
self._begin_index = None
|
|||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
|||
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
|||
|
if schedule_timesteps is None:
|
|||
|
schedule_timesteps = self.timesteps
|
|||
|
|
|||
|
indices = (schedule_timesteps == timestep).nonzero()
|
|||
|
|
|||
|
# The sigma index that is taken for the **very** first `step`
|
|||
|
# is always the second index (or the last index if there is only 1)
|
|||
|
# This way we can ensure we don't accidentally skip a sigma in
|
|||
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
|||
|
pos = 1 if len(indices) > 1 else 0
|
|||
|
|
|||
|
return indices[pos].item()
|
|||
|
|
|||
|
@property
|
|||
|
def init_noise_sigma(self):
|
|||
|
# standard deviation of the initial noise distribution
|
|||
|
if self.config.timestep_spacing in ["linspace", "trailing"]:
|
|||
|
return self.sigmas.max()
|
|||
|
|
|||
|
return (self.sigmas.max() ** 2 + 1) ** 0.5
|
|||
|
|
|||
|
@property
|
|||
|
def step_index(self):
|
|||
|
"""
|
|||
|
The index counter for current timestep. It will increase 1 after each scheduler step.
|
|||
|
"""
|
|||
|
return self._step_index
|
|||
|
|
|||
|
@property
|
|||
|
def begin_index(self):
|
|||
|
"""
|
|||
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
|||
|
"""
|
|||
|
return self._begin_index
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
|||
|
def set_begin_index(self, begin_index: int = 0):
|
|||
|
"""
|
|||
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
|||
|
|
|||
|
Args:
|
|||
|
begin_index (`int`):
|
|||
|
The begin index for the scheduler.
|
|||
|
"""
|
|||
|
self._begin_index = begin_index
|
|||
|
|
|||
|
def scale_model_input(
|
|||
|
self,
|
|||
|
sample: torch.Tensor,
|
|||
|
timestep: Union[float, torch.Tensor],
|
|||
|
) -> torch.Tensor:
|
|||
|
"""
|
|||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
|||
|
current timestep.
|
|||
|
|
|||
|
Args:
|
|||
|
sample (`torch.Tensor`):
|
|||
|
The input sample.
|
|||
|
timestep (`int`, *optional*):
|
|||
|
The current timestep in the diffusion chain.
|
|||
|
|
|||
|
Returns:
|
|||
|
`torch.Tensor`:
|
|||
|
A scaled input sample.
|
|||
|
"""
|
|||
|
if self.step_index is None:
|
|||
|
self._init_step_index(timestep)
|
|||
|
|
|||
|
sigma = self.sigmas[self.step_index]
|
|||
|
sample = sample / ((sigma**2 + 1) ** 0.5)
|
|||
|
return sample
|
|||
|
|
|||
|
def set_timesteps(
|
|||
|
self,
|
|||
|
num_inference_steps: Optional[int] = None,
|
|||
|
device: Union[str, torch.device] = None,
|
|||
|
num_train_timesteps: Optional[int] = None,
|
|||
|
timesteps: Optional[List[int]] = None,
|
|||
|
):
|
|||
|
"""
|
|||
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
|||
|
|
|||
|
Args:
|
|||
|
num_inference_steps (`int`):
|
|||
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
|||
|
device (`str` or `torch.device`, *optional*):
|
|||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|||
|
num_train_timesteps (`int`, *optional*):
|
|||
|
The number of diffusion steps used when training the model. If `None`, the default
|
|||
|
`num_train_timesteps` attribute is used.
|
|||
|
timesteps (`List[int]`, *optional*):
|
|||
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, timesteps will be
|
|||
|
generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps`
|
|||
|
must be `None`, and `timestep_spacing` attribute will be ignored.
|
|||
|
"""
|
|||
|
if num_inference_steps is None and timesteps is None:
|
|||
|
raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
|
|||
|
if num_inference_steps is not None and timesteps is not None:
|
|||
|
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
|
|||
|
if timesteps is not None and self.config.use_karras_sigmas:
|
|||
|
raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
|
|||
|
if timesteps is not None and self.config.use_exponential_sigmas:
|
|||
|
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
|
|||
|
if timesteps is not None and self.config.use_beta_sigmas:
|
|||
|
raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
|
|||
|
|
|||
|
num_inference_steps = num_inference_steps or len(timesteps)
|
|||
|
self.num_inference_steps = num_inference_steps
|
|||
|
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
|
|||
|
|
|||
|
if timesteps is not None:
|
|||
|
timesteps = np.array(timesteps, dtype=np.float32)
|
|||
|
else:
|
|||
|
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
|||
|
if self.config.timestep_spacing == "linspace":
|
|||
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
|
|||
|
elif self.config.timestep_spacing == "leading":
|
|||
|
step_ratio = num_train_timesteps // self.num_inference_steps
|
|||
|
# creates integer timesteps by multiplying by ratio
|
|||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|||
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
|
|||
|
timesteps += self.config.steps_offset
|
|||
|
elif self.config.timestep_spacing == "trailing":
|
|||
|
step_ratio = num_train_timesteps / self.num_inference_steps
|
|||
|
# creates integer timesteps by multiplying by ratio
|
|||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|||
|
timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
|
|||
|
timesteps -= 1
|
|||
|
else:
|
|||
|
raise ValueError(
|
|||
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
|||
|
)
|
|||
|
|
|||
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
|||
|
log_sigmas = np.log(sigmas)
|
|||
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
|||
|
|
|||
|
if self.config.use_karras_sigmas:
|
|||
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
|||
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
|||
|
elif self.config.use_exponential_sigmas:
|
|||
|
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
|||
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
|||
|
elif self.config.use_beta_sigmas:
|
|||
|
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
|||
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
|||
|
|
|||
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
|||
|
sigmas = torch.from_numpy(sigmas).to(device=device)
|
|||
|
self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])
|
|||
|
|
|||
|
timesteps = torch.from_numpy(timesteps)
|
|||
|
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
|
|||
|
|
|||
|
self.timesteps = timesteps.to(device=device, dtype=torch.float32)
|
|||
|
|
|||
|
# empty dt and derivative
|
|||
|
self.prev_derivative = None
|
|||
|
self.dt = None
|
|||
|
|
|||
|
self._step_index = None
|
|||
|
self._begin_index = None
|
|||
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
|||
|
def _sigma_to_t(self, sigma, log_sigmas):
|
|||
|
# get log sigma
|
|||
|
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
|||
|
|
|||
|
# get distribution
|
|||
|
dists = log_sigma - log_sigmas[:, np.newaxis]
|
|||
|
|
|||
|
# get sigmas range
|
|||
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
|||
|
high_idx = low_idx + 1
|
|||
|
|
|||
|
low = log_sigmas[low_idx]
|
|||
|
high = log_sigmas[high_idx]
|
|||
|
|
|||
|
# interpolate sigmas
|
|||
|
w = (low - log_sigma) / (low - high)
|
|||
|
w = np.clip(w, 0, 1)
|
|||
|
|
|||
|
# transform interpolation to time range
|
|||
|
t = (1 - w) * low_idx + w * high_idx
|
|||
|
t = t.reshape(sigma.shape)
|
|||
|
return t
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
|||
|
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
|||
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
|||
|
|
|||
|
# Hack to make sure that other schedulers which copy this function don't break
|
|||
|
# TODO: Add this logic to the other schedulers
|
|||
|
if hasattr(self.config, "sigma_min"):
|
|||
|
sigma_min = self.config.sigma_min
|
|||
|
else:
|
|||
|
sigma_min = None
|
|||
|
|
|||
|
if hasattr(self.config, "sigma_max"):
|
|||
|
sigma_max = self.config.sigma_max
|
|||
|
else:
|
|||
|
sigma_max = None
|
|||
|
|
|||
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
|||
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
|||
|
|
|||
|
rho = 7.0 # 7.0 is the value used in the paper
|
|||
|
ramp = np.linspace(0, 1, num_inference_steps)
|
|||
|
min_inv_rho = sigma_min ** (1 / rho)
|
|||
|
max_inv_rho = sigma_max ** (1 / rho)
|
|||
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
|||
|
return sigmas
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
|||
|
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
|||
|
"""Constructs an exponential noise schedule."""
|
|||
|
|
|||
|
# Hack to make sure that other schedulers which copy this function don't break
|
|||
|
# TODO: Add this logic to the other schedulers
|
|||
|
if hasattr(self.config, "sigma_min"):
|
|||
|
sigma_min = self.config.sigma_min
|
|||
|
else:
|
|||
|
sigma_min = None
|
|||
|
|
|||
|
if hasattr(self.config, "sigma_max"):
|
|||
|
sigma_max = self.config.sigma_max
|
|||
|
else:
|
|||
|
sigma_max = None
|
|||
|
|
|||
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
|||
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
|||
|
|
|||
|
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
|||
|
return sigmas
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
|||
|
def _convert_to_beta(
|
|||
|
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
|||
|
) -> torch.Tensor:
|
|||
|
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
|||
|
|
|||
|
# Hack to make sure that other schedulers which copy this function don't break
|
|||
|
# TODO: Add this logic to the other schedulers
|
|||
|
if hasattr(self.config, "sigma_min"):
|
|||
|
sigma_min = self.config.sigma_min
|
|||
|
else:
|
|||
|
sigma_min = None
|
|||
|
|
|||
|
if hasattr(self.config, "sigma_max"):
|
|||
|
sigma_max = self.config.sigma_max
|
|||
|
else:
|
|||
|
sigma_max = None
|
|||
|
|
|||
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
|||
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
|||
|
|
|||
|
sigmas = np.array(
|
|||
|
[
|
|||
|
sigma_min + (ppf * (sigma_max - sigma_min))
|
|||
|
for ppf in [
|
|||
|
scipy.stats.beta.ppf(timestep, alpha, beta)
|
|||
|
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
|||
|
]
|
|||
|
]
|
|||
|
)
|
|||
|
return sigmas
|
|||
|
|
|||
|
@property
|
|||
|
def state_in_first_order(self):
|
|||
|
return self.dt is None
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
|||
|
def _init_step_index(self, timestep):
|
|||
|
if self.begin_index is None:
|
|||
|
if isinstance(timestep, torch.Tensor):
|
|||
|
timestep = timestep.to(self.timesteps.device)
|
|||
|
self._step_index = self.index_for_timestep(timestep)
|
|||
|
else:
|
|||
|
self._step_index = self._begin_index
|
|||
|
|
|||
|
def step(
|
|||
|
self,
|
|||
|
model_output: Union[torch.Tensor, np.ndarray],
|
|||
|
timestep: Union[float, torch.Tensor],
|
|||
|
sample: Union[torch.Tensor, np.ndarray],
|
|||
|
return_dict: bool = True,
|
|||
|
) -> Union[HeunDiscreteSchedulerOutput, Tuple]:
|
|||
|
"""
|
|||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
|||
|
process from the learned model outputs (most often the predicted noise).
|
|||
|
|
|||
|
Args:
|
|||
|
model_output (`torch.Tensor`):
|
|||
|
The direct output from learned diffusion model.
|
|||
|
timestep (`float`):
|
|||
|
The current discrete timestep in the diffusion chain.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
return_dict (`bool`):
|
|||
|
Whether or not to return a [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or
|
|||
|
tuple.
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
|
|||
|
If return_dict is `True`, [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] is
|
|||
|
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
|||
|
"""
|
|||
|
if self.step_index is None:
|
|||
|
self._init_step_index(timestep)
|
|||
|
|
|||
|
if self.state_in_first_order:
|
|||
|
sigma = self.sigmas[self.step_index]
|
|||
|
sigma_next = self.sigmas[self.step_index + 1]
|
|||
|
else:
|
|||
|
# 2nd order / Heun's method
|
|||
|
sigma = self.sigmas[self.step_index - 1]
|
|||
|
sigma_next = self.sigmas[self.step_index]
|
|||
|
|
|||
|
# currently only gamma=0 is supported. This usually works best anyways.
|
|||
|
# We can support gamma in the future but then need to scale the timestep before
|
|||
|
# passing it to the model which requires a change in API
|
|||
|
gamma = 0
|
|||
|
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
|
|||
|
|
|||
|
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
|||
|
if self.config.prediction_type == "epsilon":
|
|||
|
sigma_input = sigma_hat if self.state_in_first_order else sigma_next
|
|||
|
pred_original_sample = sample - sigma_input * model_output
|
|||
|
elif self.config.prediction_type == "v_prediction":
|
|||
|
sigma_input = sigma_hat if self.state_in_first_order else sigma_next
|
|||
|
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
|
|||
|
sample / (sigma_input**2 + 1)
|
|||
|
)
|
|||
|
elif self.config.prediction_type == "sample":
|
|||
|
pred_original_sample = model_output
|
|||
|
else:
|
|||
|
raise ValueError(
|
|||
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
|||
|
)
|
|||
|
|
|||
|
if self.config.clip_sample:
|
|||
|
pred_original_sample = pred_original_sample.clamp(
|
|||
|
-self.config.clip_sample_range, self.config.clip_sample_range
|
|||
|
)
|
|||
|
|
|||
|
if self.state_in_first_order:
|
|||
|
# 2. Convert to an ODE derivative for 1st order
|
|||
|
derivative = (sample - pred_original_sample) / sigma_hat
|
|||
|
# 3. delta timestep
|
|||
|
dt = sigma_next - sigma_hat
|
|||
|
|
|||
|
# store for 2nd order step
|
|||
|
self.prev_derivative = derivative
|
|||
|
self.dt = dt
|
|||
|
self.sample = sample
|
|||
|
else:
|
|||
|
# 2. 2nd order / Heun's method
|
|||
|
derivative = (sample - pred_original_sample) / sigma_next
|
|||
|
derivative = (self.prev_derivative + derivative) / 2
|
|||
|
|
|||
|
# 3. take prev timestep & sample
|
|||
|
dt = self.dt
|
|||
|
sample = self.sample
|
|||
|
|
|||
|
# free dt and derivative
|
|||
|
# Note, this puts the scheduler in "first order mode"
|
|||
|
self.prev_derivative = None
|
|||
|
self.dt = None
|
|||
|
self.sample = None
|
|||
|
|
|||
|
prev_sample = sample + derivative * dt
|
|||
|
|
|||
|
# upon completion increase step index by one
|
|||
|
self._step_index += 1
|
|||
|
|
|||
|
if not return_dict:
|
|||
|
return (
|
|||
|
prev_sample,
|
|||
|
pred_original_sample,
|
|||
|
)
|
|||
|
|
|||
|
return HeunDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
|||
|
def add_noise(
|
|||
|
self,
|
|||
|
original_samples: torch.Tensor,
|
|||
|
noise: torch.Tensor,
|
|||
|
timesteps: torch.Tensor,
|
|||
|
) -> torch.Tensor:
|
|||
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
|||
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
|||
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
|||
|
# mps does not support float64
|
|||
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
|||
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
|||
|
else:
|
|||
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
|||
|
timesteps = timesteps.to(original_samples.device)
|
|||
|
|
|||
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
|||
|
if self.begin_index is None:
|
|||
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
|||
|
elif self.step_index is not None:
|
|||
|
# add_noise is called after first denoising step (for inpainting)
|
|||
|
step_indices = [self.step_index] * timesteps.shape[0]
|
|||
|
else:
|
|||
|
# add noise is called before first denoising step to create initial latent(img2img)
|
|||
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
|||
|
|
|||
|
sigma = sigmas[step_indices].flatten()
|
|||
|
while len(sigma.shape) < len(original_samples.shape):
|
|||
|
sigma = sigma.unsqueeze(-1)
|
|||
|
|
|||
|
noisy_samples = original_samples + noise * sigma
|
|||
|
return noisy_samples
|
|||
|
|
|||
|
def __len__(self):
|
|||
|
return self.config.num_train_timesteps
|