225 lines
8.6 KiB
Python
225 lines
8.6 KiB
Python
![]() |
# Copyright 2025 Zhejiang University Team and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import math
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
||
|
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||
|
|
||
|
|
||
|
class IPNDMScheduler(SchedulerMixin, ConfigMixin):
|
||
|
"""
|
||
|
A fourth-order Improved Pseudo Linear Multistep scheduler.
|
||
|
|
||
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||
|
methods the library implements for all schedulers such as loading and saving.
|
||
|
|
||
|
Args:
|
||
|
num_train_timesteps (`int`, defaults to 1000):
|
||
|
The number of diffusion steps to train the model.
|
||
|
trained_betas (`np.ndarray`, *optional*):
|
||
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||
|
"""
|
||
|
|
||
|
order = 1
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None
|
||
|
):
|
||
|
# set `betas`, `alphas`, `timesteps`
|
||
|
self.set_timesteps(num_train_timesteps)
|
||
|
|
||
|
# standard deviation of the initial noise distribution
|
||
|
self.init_noise_sigma = 1.0
|
||
|
|
||
|
# For now we only support F-PNDM, i.e. the runge-kutta method
|
||
|
# For more information on the algorithm please take a look at the paper: https://huggingface.co/papers/2202.09778
|
||
|
# mainly at formula (9), (12), (13) and the Algorithm 2.
|
||
|
self.pndm_order = 4
|
||
|
|
||
|
# running values
|
||
|
self.ets = []
|
||
|
self._step_index = None
|
||
|
self._begin_index = None
|
||
|
|
||
|
@property
|
||
|
def step_index(self):
|
||
|
"""
|
||
|
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||
|
"""
|
||
|
return self._step_index
|
||
|
|
||
|
@property
|
||
|
def begin_index(self):
|
||
|
"""
|
||
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||
|
"""
|
||
|
return self._begin_index
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||
|
def set_begin_index(self, begin_index: int = 0):
|
||
|
"""
|
||
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||
|
|
||
|
Args:
|
||
|
begin_index (`int`):
|
||
|
The begin index for the scheduler.
|
||
|
"""
|
||
|
self._begin_index = begin_index
|
||
|
|
||
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||
|
"""
|
||
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||
|
|
||
|
Args:
|
||
|
num_inference_steps (`int`):
|
||
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
||
|
device (`str` or `torch.device`, *optional*):
|
||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||
|
"""
|
||
|
self.num_inference_steps = num_inference_steps
|
||
|
steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1]
|
||
|
steps = torch.cat([steps, torch.tensor([0.0])])
|
||
|
|
||
|
if self.config.trained_betas is not None:
|
||
|
self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32)
|
||
|
else:
|
||
|
self.betas = torch.sin(steps * math.pi / 2) ** 2
|
||
|
|
||
|
self.alphas = (1.0 - self.betas**2) ** 0.5
|
||
|
|
||
|
timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1]
|
||
|
self.timesteps = timesteps.to(device)
|
||
|
|
||
|
self.ets = []
|
||
|
self._step_index = None
|
||
|
self._begin_index = None
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
||
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||
|
if schedule_timesteps is None:
|
||
|
schedule_timesteps = self.timesteps
|
||
|
|
||
|
indices = (schedule_timesteps == timestep).nonzero()
|
||
|
|
||
|
# The sigma index that is taken for the **very** first `step`
|
||
|
# is always the second index (or the last index if there is only 1)
|
||
|
# This way we can ensure we don't accidentally skip a sigma in
|
||
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||
|
pos = 1 if len(indices) > 1 else 0
|
||
|
|
||
|
return indices[pos].item()
|
||
|
|
||
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
||
|
def _init_step_index(self, timestep):
|
||
|
if self.begin_index is None:
|
||
|
if isinstance(timestep, torch.Tensor):
|
||
|
timestep = timestep.to(self.timesteps.device)
|
||
|
self._step_index = self.index_for_timestep(timestep)
|
||
|
else:
|
||
|
self._step_index = self._begin_index
|
||
|
|
||
|
def step(
|
||
|
self,
|
||
|
model_output: torch.Tensor,
|
||
|
timestep: Union[int, torch.Tensor],
|
||
|
sample: torch.Tensor,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[SchedulerOutput, Tuple]:
|
||
|
"""
|
||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
||
|
the linear multistep method. It performs one forward pass multiple times to approximate the solution.
|
||
|
|
||
|
Args:
|
||
|
model_output (`torch.Tensor`):
|
||
|
The direct output from learned diffusion model.
|
||
|
timestep (`int`):
|
||
|
The current discrete timestep in the diffusion chain.
|
||
|
sample (`torch.Tensor`):
|
||
|
A current instance of a sample created by the diffusion process.
|
||
|
return_dict (`bool`):
|
||
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
|
||
|
|
||
|
Returns:
|
||
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
||
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||
|
tuple is returned where the first element is the sample tensor.
|
||
|
"""
|
||
|
if self.num_inference_steps is None:
|
||
|
raise ValueError(
|
||
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||
|
)
|
||
|
if self.step_index is None:
|
||
|
self._init_step_index(timestep)
|
||
|
|
||
|
timestep_index = self.step_index
|
||
|
prev_timestep_index = self.step_index + 1
|
||
|
|
||
|
ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
|
||
|
self.ets.append(ets)
|
||
|
|
||
|
if len(self.ets) == 1:
|
||
|
ets = self.ets[-1]
|
||
|
elif len(self.ets) == 2:
|
||
|
ets = (3 * self.ets[-1] - self.ets[-2]) / 2
|
||
|
elif len(self.ets) == 3:
|
||
|
ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
|
||
|
else:
|
||
|
ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
|
||
|
|
||
|
prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets)
|
||
|
|
||
|
# upon completion increase step index by one
|
||
|
self._step_index += 1
|
||
|
|
||
|
if not return_dict:
|
||
|
return (prev_sample,)
|
||
|
|
||
|
return SchedulerOutput(prev_sample=prev_sample)
|
||
|
|
||
|
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
||
|
"""
|
||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||
|
current timestep.
|
||
|
|
||
|
Args:
|
||
|
sample (`torch.Tensor`):
|
||
|
The input sample.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`:
|
||
|
A scaled input sample.
|
||
|
"""
|
||
|
return sample
|
||
|
|
||
|
def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets):
|
||
|
alpha = self.alphas[timestep_index]
|
||
|
sigma = self.betas[timestep_index]
|
||
|
|
||
|
next_alpha = self.alphas[prev_timestep_index]
|
||
|
next_sigma = self.betas[prev_timestep_index]
|
||
|
|
||
|
pred = (sample - sigma * ets) / max(alpha, 1e-8)
|
||
|
prev_sample = next_alpha * pred + ets * next_sigma
|
||
|
|
||
|
return prev_sample
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.config.num_train_timesteps
|