477 lines
21 KiB
Python
477 lines
21 KiB
Python
![]() |
# Copyright 2025 Zhejiang University Team and The HuggingFace Team. All rights reserved.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
|
|||
|
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
|
|||
|
|
|||
|
import math
|
|||
|
from typing import List, Optional, Tuple, Union
|
|||
|
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
|
|||
|
from ..configuration_utils import ConfigMixin, register_to_config
|
|||
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
|
|||
|
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
|||
|
def betas_for_alpha_bar(
|
|||
|
num_diffusion_timesteps,
|
|||
|
max_beta=0.999,
|
|||
|
alpha_transform_type="cosine",
|
|||
|
):
|
|||
|
"""
|
|||
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
|||
|
(1-beta) over time from t = [0,1].
|
|||
|
|
|||
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
|||
|
to that part of the diffusion process.
|
|||
|
|
|||
|
|
|||
|
Args:
|
|||
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
|||
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
|||
|
prevent singularities.
|
|||
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
|||
|
Choose from `cosine` or `exp`
|
|||
|
|
|||
|
Returns:
|
|||
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
|||
|
"""
|
|||
|
if alpha_transform_type == "cosine":
|
|||
|
|
|||
|
def alpha_bar_fn(t):
|
|||
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
|||
|
|
|||
|
elif alpha_transform_type == "exp":
|
|||
|
|
|||
|
def alpha_bar_fn(t):
|
|||
|
return math.exp(t * -12.0)
|
|||
|
|
|||
|
else:
|
|||
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
|||
|
|
|||
|
betas = []
|
|||
|
for i in range(num_diffusion_timesteps):
|
|||
|
t1 = i / num_diffusion_timesteps
|
|||
|
t2 = (i + 1) / num_diffusion_timesteps
|
|||
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
|||
|
return torch.tensor(betas, dtype=torch.float32)
|
|||
|
|
|||
|
|
|||
|
class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
"""
|
|||
|
`PNDMScheduler` uses pseudo numerical methods for diffusion models such as the Runge-Kutta and linear multi-step
|
|||
|
method.
|
|||
|
|
|||
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
|||
|
methods the library implements for all schedulers such as loading and saving.
|
|||
|
|
|||
|
Args:
|
|||
|
num_train_timesteps (`int`, defaults to 1000):
|
|||
|
The number of diffusion steps to train the model.
|
|||
|
beta_start (`float`, defaults to 0.0001):
|
|||
|
The starting `beta` value of inference.
|
|||
|
beta_end (`float`, defaults to 0.02):
|
|||
|
The final `beta` value.
|
|||
|
beta_schedule (`str`, defaults to `"linear"`):
|
|||
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
|||
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
|||
|
trained_betas (`np.ndarray`, *optional*):
|
|||
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
|||
|
skip_prk_steps (`bool`, defaults to `False`):
|
|||
|
Allows the scheduler to skip the Runge-Kutta steps defined in the original paper as being required before
|
|||
|
PLMS steps.
|
|||
|
set_alpha_to_one (`bool`, defaults to `False`):
|
|||
|
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
|||
|
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
|||
|
otherwise it uses the alpha value at step 0.
|
|||
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
|||
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process)
|
|||
|
or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf)
|
|||
|
paper).
|
|||
|
timestep_spacing (`str`, defaults to `"leading"`):
|
|||
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
|||
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
|||
|
steps_offset (`int`, defaults to 0):
|
|||
|
An offset added to the inference steps, as required by some model families.
|
|||
|
"""
|
|||
|
|
|||
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
|||
|
order = 1
|
|||
|
|
|||
|
@register_to_config
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
num_train_timesteps: int = 1000,
|
|||
|
beta_start: float = 0.0001,
|
|||
|
beta_end: float = 0.02,
|
|||
|
beta_schedule: str = "linear",
|
|||
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
|||
|
skip_prk_steps: bool = False,
|
|||
|
set_alpha_to_one: bool = False,
|
|||
|
prediction_type: str = "epsilon",
|
|||
|
timestep_spacing: str = "leading",
|
|||
|
steps_offset: int = 0,
|
|||
|
):
|
|||
|
if trained_betas is not None:
|
|||
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
|||
|
elif beta_schedule == "linear":
|
|||
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
|||
|
elif beta_schedule == "scaled_linear":
|
|||
|
# this schedule is very specific to the latent diffusion model.
|
|||
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
|||
|
elif beta_schedule == "squaredcos_cap_v2":
|
|||
|
# Glide cosine schedule
|
|||
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
|||
|
else:
|
|||
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
|||
|
|
|||
|
self.alphas = 1.0 - self.betas
|
|||
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
|||
|
|
|||
|
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
|||
|
|
|||
|
# standard deviation of the initial noise distribution
|
|||
|
self.init_noise_sigma = 1.0
|
|||
|
|
|||
|
# For now we only support F-PNDM, i.e. the runge-kutta method
|
|||
|
# For more information on the algorithm please take a look at the paper: https://huggingface.co/papers/2202.09778
|
|||
|
# mainly at formula (9), (12), (13) and the Algorithm 2.
|
|||
|
self.pndm_order = 4
|
|||
|
|
|||
|
# running values
|
|||
|
self.cur_model_output = 0
|
|||
|
self.counter = 0
|
|||
|
self.cur_sample = None
|
|||
|
self.ets = []
|
|||
|
|
|||
|
# setable values
|
|||
|
self.num_inference_steps = None
|
|||
|
self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
|
|||
|
self.prk_timesteps = None
|
|||
|
self.plms_timesteps = None
|
|||
|
self.timesteps = None
|
|||
|
|
|||
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
|||
|
"""
|
|||
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
|||
|
|
|||
|
Args:
|
|||
|
num_inference_steps (`int`):
|
|||
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
|||
|
device (`str` or `torch.device`, *optional*):
|
|||
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|||
|
"""
|
|||
|
|
|||
|
self.num_inference_steps = num_inference_steps
|
|||
|
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
|||
|
if self.config.timestep_spacing == "linspace":
|
|||
|
self._timesteps = (
|
|||
|
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round().astype(np.int64)
|
|||
|
)
|
|||
|
elif self.config.timestep_spacing == "leading":
|
|||
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
|||
|
# creates integer timesteps by multiplying by ratio
|
|||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|||
|
self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
|
|||
|
self._timesteps += self.config.steps_offset
|
|||
|
elif self.config.timestep_spacing == "trailing":
|
|||
|
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
|||
|
# creates integer timesteps by multiplying by ratio
|
|||
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|||
|
self._timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio))[::-1].astype(
|
|||
|
np.int64
|
|||
|
)
|
|||
|
self._timesteps -= 1
|
|||
|
else:
|
|||
|
raise ValueError(
|
|||
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
|||
|
)
|
|||
|
|
|||
|
if self.config.skip_prk_steps:
|
|||
|
# for some models like stable diffusion the prk steps can/should be skipped to
|
|||
|
# produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
|
|||
|
# is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
|
|||
|
self.prk_timesteps = np.array([])
|
|||
|
self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
|
|||
|
::-1
|
|||
|
].copy()
|
|||
|
else:
|
|||
|
prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
|
|||
|
np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
|
|||
|
)
|
|||
|
self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
|
|||
|
self.plms_timesteps = self._timesteps[:-3][
|
|||
|
::-1
|
|||
|
].copy() # we copy to avoid having negative strides which are not supported by torch.from_numpy
|
|||
|
|
|||
|
timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
|
|||
|
self.timesteps = torch.from_numpy(timesteps).to(device)
|
|||
|
|
|||
|
self.ets = []
|
|||
|
self.counter = 0
|
|||
|
self.cur_model_output = 0
|
|||
|
|
|||
|
def step(
|
|||
|
self,
|
|||
|
model_output: torch.Tensor,
|
|||
|
timestep: int,
|
|||
|
sample: torch.Tensor,
|
|||
|
return_dict: bool = True,
|
|||
|
) -> Union[SchedulerOutput, Tuple]:
|
|||
|
"""
|
|||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
|||
|
process from the learned model outputs (most often the predicted noise), and calls [`~PNDMScheduler.step_prk`]
|
|||
|
or [`~PNDMScheduler.step_plms`] depending on the internal variable `counter`.
|
|||
|
|
|||
|
Args:
|
|||
|
model_output (`torch.Tensor`):
|
|||
|
The direct output from learned diffusion model.
|
|||
|
timestep (`int`):
|
|||
|
The current discrete timestep in the diffusion chain.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
return_dict (`bool`):
|
|||
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
|||
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
|||
|
tuple is returned where the first element is the sample tensor.
|
|||
|
|
|||
|
"""
|
|||
|
if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
|
|||
|
return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
|
|||
|
else:
|
|||
|
return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
|
|||
|
|
|||
|
def step_prk(
|
|||
|
self,
|
|||
|
model_output: torch.Tensor,
|
|||
|
timestep: int,
|
|||
|
sample: torch.Tensor,
|
|||
|
return_dict: bool = True,
|
|||
|
) -> Union[SchedulerOutput, Tuple]:
|
|||
|
"""
|
|||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
|||
|
the Runge-Kutta method. It performs four forward passes to approximate the solution to the differential
|
|||
|
equation.
|
|||
|
|
|||
|
Args:
|
|||
|
model_output (`torch.Tensor`):
|
|||
|
The direct output from learned diffusion model.
|
|||
|
timestep (`int`):
|
|||
|
The current discrete timestep in the diffusion chain.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
return_dict (`bool`):
|
|||
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
|||
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
|||
|
tuple is returned where the first element is the sample tensor.
|
|||
|
|
|||
|
"""
|
|||
|
if self.num_inference_steps is None:
|
|||
|
raise ValueError(
|
|||
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
|||
|
)
|
|||
|
|
|||
|
diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
|
|||
|
prev_timestep = timestep - diff_to_prev
|
|||
|
timestep = self.prk_timesteps[self.counter // 4 * 4]
|
|||
|
|
|||
|
if self.counter % 4 == 0:
|
|||
|
self.cur_model_output += 1 / 6 * model_output
|
|||
|
self.ets.append(model_output)
|
|||
|
self.cur_sample = sample
|
|||
|
elif (self.counter - 1) % 4 == 0:
|
|||
|
self.cur_model_output += 1 / 3 * model_output
|
|||
|
elif (self.counter - 2) % 4 == 0:
|
|||
|
self.cur_model_output += 1 / 3 * model_output
|
|||
|
elif (self.counter - 3) % 4 == 0:
|
|||
|
model_output = self.cur_model_output + 1 / 6 * model_output
|
|||
|
self.cur_model_output = 0
|
|||
|
|
|||
|
# cur_sample should not be `None`
|
|||
|
cur_sample = self.cur_sample if self.cur_sample is not None else sample
|
|||
|
|
|||
|
prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
|
|||
|
self.counter += 1
|
|||
|
|
|||
|
if not return_dict:
|
|||
|
return (prev_sample,)
|
|||
|
|
|||
|
return SchedulerOutput(prev_sample=prev_sample)
|
|||
|
|
|||
|
def step_plms(
|
|||
|
self,
|
|||
|
model_output: torch.Tensor,
|
|||
|
timestep: int,
|
|||
|
sample: torch.Tensor,
|
|||
|
return_dict: bool = True,
|
|||
|
) -> Union[SchedulerOutput, Tuple]:
|
|||
|
"""
|
|||
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
|||
|
the linear multistep method. It performs one forward pass multiple times to approximate the solution.
|
|||
|
|
|||
|
Args:
|
|||
|
model_output (`torch.Tensor`):
|
|||
|
The direct output from learned diffusion model.
|
|||
|
timestep (`int`):
|
|||
|
The current discrete timestep in the diffusion chain.
|
|||
|
sample (`torch.Tensor`):
|
|||
|
A current instance of a sample created by the diffusion process.
|
|||
|
return_dict (`bool`):
|
|||
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
|
|||
|
|
|||
|
Returns:
|
|||
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
|||
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
|||
|
tuple is returned where the first element is the sample tensor.
|
|||
|
|
|||
|
"""
|
|||
|
if self.num_inference_steps is None:
|
|||
|
raise ValueError(
|
|||
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
|||
|
)
|
|||
|
|
|||
|
if not self.config.skip_prk_steps and len(self.ets) < 3:
|
|||
|
raise ValueError(
|
|||
|
f"{self.__class__} can only be run AFTER scheduler has been run "
|
|||
|
"in 'prk' mode for at least 12 iterations "
|
|||
|
"See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
|
|||
|
"for more information."
|
|||
|
)
|
|||
|
|
|||
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
|||
|
|
|||
|
if self.counter != 1:
|
|||
|
self.ets = self.ets[-3:]
|
|||
|
self.ets.append(model_output)
|
|||
|
else:
|
|||
|
prev_timestep = timestep
|
|||
|
timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps
|
|||
|
|
|||
|
if len(self.ets) == 1 and self.counter == 0:
|
|||
|
model_output = model_output
|
|||
|
self.cur_sample = sample
|
|||
|
elif len(self.ets) == 1 and self.counter == 1:
|
|||
|
model_output = (model_output + self.ets[-1]) / 2
|
|||
|
sample = self.cur_sample
|
|||
|
self.cur_sample = None
|
|||
|
elif len(self.ets) == 2:
|
|||
|
model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
|
|||
|
elif len(self.ets) == 3:
|
|||
|
model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
|
|||
|
else:
|
|||
|
model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
|
|||
|
|
|||
|
prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
|
|||
|
self.counter += 1
|
|||
|
|
|||
|
if not return_dict:
|
|||
|
return (prev_sample,)
|
|||
|
|
|||
|
return SchedulerOutput(prev_sample=prev_sample)
|
|||
|
|
|||
|
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
|||
|
"""
|
|||
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
|||
|
current timestep.
|
|||
|
|
|||
|
Args:
|
|||
|
sample (`torch.Tensor`):
|
|||
|
The input sample.
|
|||
|
|
|||
|
Returns:
|
|||
|
`torch.Tensor`:
|
|||
|
A scaled input sample.
|
|||
|
"""
|
|||
|
return sample
|
|||
|
|
|||
|
def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
|
|||
|
# See formula (9) of PNDM paper https://huggingface.co/papers/2202.09778
|
|||
|
# this function computes x_(t−δ) using the formula of (9)
|
|||
|
# Note that x_t needs to be added to both sides of the equation
|
|||
|
|
|||
|
# Notation (<variable name> -> <name in paper>
|
|||
|
# alpha_prod_t -> α_t
|
|||
|
# alpha_prod_t_prev -> α_(t−δ)
|
|||
|
# beta_prod_t -> (1 - α_t)
|
|||
|
# beta_prod_t_prev -> (1 - α_(t−δ))
|
|||
|
# sample -> x_t
|
|||
|
# model_output -> e_θ(x_t, t)
|
|||
|
# prev_sample -> x_(t−δ)
|
|||
|
alpha_prod_t = self.alphas_cumprod[timestep]
|
|||
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
|||
|
beta_prod_t = 1 - alpha_prod_t
|
|||
|
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
|||
|
|
|||
|
if self.config.prediction_type == "v_prediction":
|
|||
|
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
|||
|
elif self.config.prediction_type != "epsilon":
|
|||
|
raise ValueError(
|
|||
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
|
|||
|
)
|
|||
|
|
|||
|
# corresponds to (α_(t−δ) - α_t) divided by
|
|||
|
# denominator of x_t in formula (9) and plus 1
|
|||
|
# Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
|
|||
|
# sqrt(α_(t−δ)) / sqrt(α_t))
|
|||
|
sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)
|
|||
|
|
|||
|
# corresponds to denominator of e_θ(x_t, t) in formula (9)
|
|||
|
model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
|
|||
|
alpha_prod_t * beta_prod_t * alpha_prod_t_prev
|
|||
|
) ** (0.5)
|
|||
|
|
|||
|
# full formula (9)
|
|||
|
prev_sample = (
|
|||
|
sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
|
|||
|
)
|
|||
|
|
|||
|
return prev_sample
|
|||
|
|
|||
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
|||
|
def add_noise(
|
|||
|
self,
|
|||
|
original_samples: torch.Tensor,
|
|||
|
noise: torch.Tensor,
|
|||
|
timesteps: torch.IntTensor,
|
|||
|
) -> torch.Tensor:
|
|||
|
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
|||
|
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
|||
|
# for the subsequent add_noise calls
|
|||
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
|||
|
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
|||
|
timesteps = timesteps.to(original_samples.device)
|
|||
|
|
|||
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
|||
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
|||
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
|||
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
|||
|
|
|||
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
|||
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
|||
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
|||
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
|||
|
|
|||
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
|||
|
return noisy_samples
|
|||
|
|
|||
|
def __len__(self):
|
|||
|
return self.config.num_train_timesteps
|