team-10/env/Lib/site-packages/torchvision/transforms/_presets.py

217 lines
8.3 KiB
Python
Raw Normal View History

2025-08-02 07:34:44 +02:00
"""
This file is part of the private API. Please do not use directly these classes as they will be modified on
future versions without warning. The classes should be accessed only via the transforms argument of Weights.
"""
from typing import Optional, Tuple, Union
import torch
from torch import nn, Tensor
from . import functional as F, InterpolationMode
__all__ = [
"ObjectDetection",
"ImageClassification",
"VideoClassification",
"SemanticSegmentation",
"OpticalFlow",
]
class ObjectDetection(nn.Module):
def forward(self, img: Tensor) -> Tensor:
if not isinstance(img, Tensor):
img = F.pil_to_tensor(img)
return F.convert_image_dtype(img, torch.float)
def __repr__(self) -> str:
return self.__class__.__name__ + "()"
def describe(self) -> str:
return (
"Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
"The images are rescaled to ``[0.0, 1.0]``."
)
class ImageClassification(nn.Module):
def __init__(
self,
*,
crop_size: int,
resize_size: int = 256,
mean: Tuple[float, ...] = (0.485, 0.456, 0.406),
std: Tuple[float, ...] = (0.229, 0.224, 0.225),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> None:
super().__init__()
self.crop_size = [crop_size]
self.resize_size = [resize_size]
self.mean = list(mean)
self.std = list(std)
self.interpolation = interpolation
self.antialias = antialias
def forward(self, img: Tensor) -> Tensor:
img = F.resize(img, self.resize_size, interpolation=self.interpolation, antialias=self.antialias)
img = F.center_crop(img, self.crop_size)
if not isinstance(img, Tensor):
img = F.pil_to_tensor(img)
img = F.convert_image_dtype(img, torch.float)
img = F.normalize(img, mean=self.mean, std=self.std)
return img
def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
format_string += f"\n crop_size={self.crop_size}"
format_string += f"\n resize_size={self.resize_size}"
format_string += f"\n mean={self.mean}"
format_string += f"\n std={self.std}"
format_string += f"\n interpolation={self.interpolation}"
format_string += "\n)"
return format_string
def describe(self) -> str:
return (
"Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, "
f"followed by a central crop of ``crop_size={self.crop_size}``. Finally the values are first rescaled to "
f"``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and ``std={self.std}``."
)
class VideoClassification(nn.Module):
def __init__(
self,
*,
crop_size: Tuple[int, int],
resize_size: Union[Tuple[int], Tuple[int, int]],
mean: Tuple[float, ...] = (0.43216, 0.394666, 0.37645),
std: Tuple[float, ...] = (0.22803, 0.22145, 0.216989),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
) -> None:
super().__init__()
self.crop_size = list(crop_size)
self.resize_size = list(resize_size)
self.mean = list(mean)
self.std = list(std)
self.interpolation = interpolation
def forward(self, vid: Tensor) -> Tensor:
need_squeeze = False
if vid.ndim < 5:
vid = vid.unsqueeze(dim=0)
need_squeeze = True
N, T, C, H, W = vid.shape
vid = vid.view(-1, C, H, W)
# We hard-code antialias=False to preserve results after we changed
# its default from None to True (see
# https://github.com/pytorch/vision/pull/7160)
# TODO: we could re-train the video models with antialias=True?
vid = F.resize(vid, self.resize_size, interpolation=self.interpolation, antialias=False)
vid = F.center_crop(vid, self.crop_size)
vid = F.convert_image_dtype(vid, torch.float)
vid = F.normalize(vid, mean=self.mean, std=self.std)
H, W = self.crop_size
vid = vid.view(N, T, C, H, W)
vid = vid.permute(0, 2, 1, 3, 4) # (N, T, C, H, W) => (N, C, T, H, W)
if need_squeeze:
vid = vid.squeeze(dim=0)
return vid
def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
format_string += f"\n crop_size={self.crop_size}"
format_string += f"\n resize_size={self.resize_size}"
format_string += f"\n mean={self.mean}"
format_string += f"\n std={self.std}"
format_string += f"\n interpolation={self.interpolation}"
format_string += "\n)"
return format_string
def describe(self) -> str:
return (
"Accepts batched ``(B, T, C, H, W)`` and single ``(T, C, H, W)`` video frame ``torch.Tensor`` objects. "
f"The frames are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, "
f"followed by a central crop of ``crop_size={self.crop_size}``. Finally the values are first rescaled to "
f"``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and ``std={self.std}``. Finally the output "
"dimensions are permuted to ``(..., C, T, H, W)`` tensors."
)
class SemanticSegmentation(nn.Module):
def __init__(
self,
*,
resize_size: Optional[int],
mean: Tuple[float, ...] = (0.485, 0.456, 0.406),
std: Tuple[float, ...] = (0.229, 0.224, 0.225),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
antialias: Optional[bool] = True,
) -> None:
super().__init__()
self.resize_size = [resize_size] if resize_size is not None else None
self.mean = list(mean)
self.std = list(std)
self.interpolation = interpolation
self.antialias = antialias
def forward(self, img: Tensor) -> Tensor:
if isinstance(self.resize_size, list):
img = F.resize(img, self.resize_size, interpolation=self.interpolation, antialias=self.antialias)
if not isinstance(img, Tensor):
img = F.pil_to_tensor(img)
img = F.convert_image_dtype(img, torch.float)
img = F.normalize(img, mean=self.mean, std=self.std)
return img
def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
format_string += f"\n resize_size={self.resize_size}"
format_string += f"\n mean={self.mean}"
format_string += f"\n std={self.std}"
format_string += f"\n interpolation={self.interpolation}"
format_string += "\n)"
return format_string
def describe(self) -> str:
return (
"Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``. "
f"Finally the values are first rescaled to ``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and "
f"``std={self.std}``."
)
class OpticalFlow(nn.Module):
def forward(self, img1: Tensor, img2: Tensor) -> Tuple[Tensor, Tensor]:
if not isinstance(img1, Tensor):
img1 = F.pil_to_tensor(img1)
if not isinstance(img2, Tensor):
img2 = F.pil_to_tensor(img2)
img1 = F.convert_image_dtype(img1, torch.float)
img2 = F.convert_image_dtype(img2, torch.float)
# map [0, 1] into [-1, 1]
img1 = F.normalize(img1, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
img2 = F.normalize(img2, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
img1 = img1.contiguous()
img2 = img2.contiguous()
return img1, img2
def __repr__(self) -> str:
return self.__class__.__name__ + "()"
def describe(self) -> str:
return (
"Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
"The images are rescaled to ``[-1.0, 1.0]``."
)