277 lines
11 KiB
Python
277 lines
11 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch optimization for diffusion models."""
|
||
|
|
||
|
import math
|
||
|
from enum import Enum
|
||
|
from typing import Optional, Union
|
||
|
|
||
|
import torch
|
||
|
from torch.optim import Optimizer
|
||
|
from torch.optim.lr_scheduler import LambdaLR
|
||
|
|
||
|
from .utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class SchedulerType(Enum):
|
||
|
LINEAR = "linear"
|
||
|
COSINE = "cosine"
|
||
|
COSINE_WITH_RESTARTS = "cosine_with_restarts"
|
||
|
POLYNOMIAL = "polynomial"
|
||
|
CONSTANT = "constant"
|
||
|
CONSTANT_WITH_WARMUP = "constant_with_warmup"
|
||
|
|
||
|
|
||
|
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
|
||
|
"""
|
||
|
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
||
|
|
||
|
Args:
|
||
|
optimizer ([`~torch.optim.Optimizer`]):
|
||
|
The optimizer for which to schedule the learning rate.
|
||
|
last_epoch (`int`, *optional*, defaults to -1):
|
||
|
The index of the last epoch when resuming training.
|
||
|
|
||
|
Return:
|
||
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||
|
"""
|
||
|
return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
|
||
|
|
||
|
|
||
|
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
|
||
|
"""
|
||
|
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
|
||
|
increases linearly between 0 and the initial lr set in the optimizer.
|
||
|
|
||
|
Args:
|
||
|
optimizer ([`~torch.optim.Optimizer`]):
|
||
|
The optimizer for which to schedule the learning rate.
|
||
|
num_warmup_steps (`int`):
|
||
|
The number of steps for the warmup phase.
|
||
|
last_epoch (`int`, *optional*, defaults to -1):
|
||
|
The index of the last epoch when resuming training.
|
||
|
|
||
|
Return:
|
||
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||
|
"""
|
||
|
|
||
|
def lr_lambda(current_step: int):
|
||
|
if current_step < num_warmup_steps:
|
||
|
return float(current_step) / float(max(1.0, num_warmup_steps))
|
||
|
return 1.0
|
||
|
|
||
|
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
|
||
|
|
||
|
|
||
|
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
|
||
|
"""
|
||
|
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
|
||
|
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
|
||
|
|
||
|
Args:
|
||
|
optimizer ([`~torch.optim.Optimizer`]):
|
||
|
The optimizer for which to schedule the learning rate.
|
||
|
num_warmup_steps (`int`):
|
||
|
The number of steps for the warmup phase.
|
||
|
num_training_steps (`int`):
|
||
|
The total number of training steps.
|
||
|
last_epoch (`int`, *optional*, defaults to -1):
|
||
|
The index of the last epoch when resuming training.
|
||
|
|
||
|
Return:
|
||
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||
|
"""
|
||
|
|
||
|
def lr_lambda(current_step: int):
|
||
|
if current_step < num_warmup_steps:
|
||
|
return float(current_step) / float(max(1, num_warmup_steps))
|
||
|
return max(
|
||
|
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
|
||
|
)
|
||
|
|
||
|
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
||
|
|
||
|
|
||
|
def get_cosine_schedule_with_warmup(
|
||
|
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
|
||
|
):
|
||
|
"""
|
||
|
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
||
|
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
||
|
initial lr set in the optimizer.
|
||
|
|
||
|
Args:
|
||
|
optimizer ([`~torch.optim.Optimizer`]):
|
||
|
The optimizer for which to schedule the learning rate.
|
||
|
num_warmup_steps (`int`):
|
||
|
The number of steps for the warmup phase.
|
||
|
num_training_steps (`int`):
|
||
|
The total number of training steps.
|
||
|
num_cycles (`float`, *optional*, defaults to 0.5):
|
||
|
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
|
||
|
following a half-cosine).
|
||
|
last_epoch (`int`, *optional*, defaults to -1):
|
||
|
The index of the last epoch when resuming training.
|
||
|
|
||
|
Return:
|
||
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||
|
"""
|
||
|
|
||
|
def lr_lambda(current_step):
|
||
|
if current_step < num_warmup_steps:
|
||
|
return float(current_step) / float(max(1, num_warmup_steps))
|
||
|
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
||
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
||
|
|
||
|
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
||
|
|
||
|
|
||
|
def get_cosine_with_hard_restarts_schedule_with_warmup(
|
||
|
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
|
||
|
):
|
||
|
"""
|
||
|
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
||
|
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
|
||
|
linearly between 0 and the initial lr set in the optimizer.
|
||
|
|
||
|
Args:
|
||
|
optimizer ([`~torch.optim.Optimizer`]):
|
||
|
The optimizer for which to schedule the learning rate.
|
||
|
num_warmup_steps (`int`):
|
||
|
The number of steps for the warmup phase.
|
||
|
num_training_steps (`int`):
|
||
|
The total number of training steps.
|
||
|
num_cycles (`int`, *optional*, defaults to 1):
|
||
|
The number of hard restarts to use.
|
||
|
last_epoch (`int`, *optional*, defaults to -1):
|
||
|
The index of the last epoch when resuming training.
|
||
|
|
||
|
Return:
|
||
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||
|
"""
|
||
|
|
||
|
def lr_lambda(current_step):
|
||
|
if current_step < num_warmup_steps:
|
||
|
return float(current_step) / float(max(1, num_warmup_steps))
|
||
|
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
||
|
if progress >= 1.0:
|
||
|
return 0.0
|
||
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
|
||
|
|
||
|
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
||
|
|
||
|
|
||
|
def get_polynomial_decay_schedule_with_warmup(
|
||
|
optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
|
||
|
):
|
||
|
"""
|
||
|
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
|
||
|
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
|
||
|
initial lr set in the optimizer.
|
||
|
|
||
|
Args:
|
||
|
optimizer ([`~torch.optim.Optimizer`]):
|
||
|
The optimizer for which to schedule the learning rate.
|
||
|
num_warmup_steps (`int`):
|
||
|
The number of steps for the warmup phase.
|
||
|
num_training_steps (`int`):
|
||
|
The total number of training steps.
|
||
|
lr_end (`float`, *optional*, defaults to 1e-7):
|
||
|
The end LR.
|
||
|
power (`float`, *optional*, defaults to 1.0):
|
||
|
Power factor.
|
||
|
last_epoch (`int`, *optional*, defaults to -1):
|
||
|
The index of the last epoch when resuming training.
|
||
|
|
||
|
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
|
||
|
implementation at
|
||
|
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
|
||
|
|
||
|
Return:
|
||
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||
|
|
||
|
"""
|
||
|
|
||
|
lr_init = optimizer.defaults["lr"]
|
||
|
if not (lr_init > lr_end):
|
||
|
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")
|
||
|
|
||
|
def lr_lambda(current_step: int):
|
||
|
if current_step < num_warmup_steps:
|
||
|
return float(current_step) / float(max(1, num_warmup_steps))
|
||
|
elif current_step > num_training_steps:
|
||
|
return lr_end / lr_init # as LambdaLR multiplies by lr_init
|
||
|
else:
|
||
|
lr_range = lr_init - lr_end
|
||
|
decay_steps = num_training_steps - num_warmup_steps
|
||
|
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
|
||
|
decay = lr_range * pct_remaining**power + lr_end
|
||
|
return decay / lr_init # as LambdaLR multiplies by lr_init
|
||
|
|
||
|
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
||
|
|
||
|
|
||
|
TYPE_TO_SCHEDULER_FUNCTION = {
|
||
|
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
|
||
|
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
|
||
|
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
|
||
|
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
|
||
|
SchedulerType.CONSTANT: get_constant_schedule,
|
||
|
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
|
||
|
}
|
||
|
|
||
|
|
||
|
def get_scheduler(
|
||
|
name: Union[str, SchedulerType],
|
||
|
optimizer: Optimizer,
|
||
|
num_warmup_steps: Optional[int] = None,
|
||
|
num_training_steps: Optional[int] = None,
|
||
|
):
|
||
|
"""
|
||
|
Unified API to get any scheduler from its name.
|
||
|
|
||
|
Args:
|
||
|
name (`str` or `SchedulerType`):
|
||
|
The name of the scheduler to use.
|
||
|
optimizer (`torch.optim.Optimizer`):
|
||
|
The optimizer that will be used during training.
|
||
|
num_warmup_steps (`int`, *optional*):
|
||
|
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
|
||
|
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
||
|
num_training_steps (`int``, *optional*):
|
||
|
The number of training steps to do. This is not required by all schedulers (hence the argument being
|
||
|
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
||
|
"""
|
||
|
name = SchedulerType(name)
|
||
|
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
|
||
|
if name == SchedulerType.CONSTANT:
|
||
|
return schedule_func(optimizer)
|
||
|
|
||
|
# All other schedulers require `num_warmup_steps`
|
||
|
if num_warmup_steps is None:
|
||
|
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
|
||
|
|
||
|
if name == SchedulerType.CONSTANT_WITH_WARMUP:
|
||
|
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
|
||
|
|
||
|
# All other schedulers require `num_training_steps`
|
||
|
if num_training_steps is None:
|
||
|
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
|
||
|
|
||
|
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)
|