873 lines
35 KiB
Python
873 lines
35 KiB
Python
|
from sympy.testing.pytest import XFAIL
|
||
|
from sympy.parsing.latex.lark import parse_latex_lark
|
||
|
from sympy.external import import_module
|
||
|
|
||
|
from sympy.concrete.products import Product
|
||
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.core.function import Derivative, Function
|
||
|
from sympy.core.numbers import E, oo, Rational
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.parameters import evaluate
|
||
|
from sympy.core.relational import GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.functions.combinatorial.factorials import binomial, factorial
|
||
|
from sympy.functions.elementary.complexes import Abs, conjugate
|
||
|
from sympy.functions.elementary.exponential import exp, log
|
||
|
from sympy.functions.elementary.integers import ceiling, floor
|
||
|
from sympy.functions.elementary.miscellaneous import root, sqrt, Min, Max
|
||
|
from sympy.functions.elementary.trigonometric import asin, cos, csc, sec, sin, tan
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.series.limits import Limit
|
||
|
from sympy import Matrix, MatAdd, MatMul, Transpose, Trace
|
||
|
from sympy import I
|
||
|
|
||
|
from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge
|
||
|
from sympy.physics.quantum import Bra, Ket, InnerProduct
|
||
|
from sympy.abc import x, y, z, a, b, c, d, t, k, n
|
||
|
|
||
|
from .test_latex import theta, f, _Add, _Mul, _Pow, _Sqrt, _Conjugate, _Abs, _factorial, _exp, _binomial
|
||
|
|
||
|
lark = import_module("lark")
|
||
|
|
||
|
# disable tests if lark is not present
|
||
|
disabled = lark is None
|
||
|
|
||
|
# shorthand definitions that are only needed for the Lark LaTeX parser
|
||
|
def _Min(*args):
|
||
|
return Min(*args, evaluate=False)
|
||
|
|
||
|
|
||
|
def _Max(*args):
|
||
|
return Max(*args, evaluate=False)
|
||
|
|
||
|
|
||
|
def _log(a, b=E):
|
||
|
if b == E:
|
||
|
return log(a, evaluate=False)
|
||
|
else:
|
||
|
return log(a, b, evaluate=False)
|
||
|
|
||
|
|
||
|
def _MatAdd(a, b):
|
||
|
return MatAdd(a, b, evaluate=False)
|
||
|
|
||
|
|
||
|
def _MatMul(a, b):
|
||
|
return MatMul(a, b, evaluate=False)
|
||
|
|
||
|
|
||
|
# These LaTeX strings should parse to the corresponding SymPy expression
|
||
|
SYMBOL_EXPRESSION_PAIRS = [
|
||
|
(r"x_0", Symbol('x_{0}')),
|
||
|
(r"x_{1}", Symbol('x_{1}')),
|
||
|
(r"x_a", Symbol('x_{a}')),
|
||
|
(r"x_{b}", Symbol('x_{b}')),
|
||
|
(r"h_\theta", Symbol('h_{theta}')),
|
||
|
(r"h_{\theta}", Symbol('h_{theta}')),
|
||
|
(r"y''_1", Symbol("y''_{1}")),
|
||
|
(r"y_1''", Symbol("y_{1}''")),
|
||
|
(r"\mathit{x}", Symbol('x')),
|
||
|
(r"\mathit{test}", Symbol('test')),
|
||
|
(r"\mathit{TEST}", Symbol('TEST')),
|
||
|
(r"\mathit{HELLO world}", Symbol('HELLO world')),
|
||
|
(r"a'", Symbol("a'")),
|
||
|
(r"a''", Symbol("a''")),
|
||
|
(r"\alpha'", Symbol("alpha'")),
|
||
|
(r"\alpha''", Symbol("alpha''")),
|
||
|
(r"a_b", Symbol("a_{b}")),
|
||
|
(r"a_b'", Symbol("a_{b}'")),
|
||
|
(r"a'_b", Symbol("a'_{b}")),
|
||
|
(r"a'_b'", Symbol("a'_{b}'")),
|
||
|
(r"a_{b'}", Symbol("a_{b'}")),
|
||
|
(r"a_{b'}'", Symbol("a_{b'}'")),
|
||
|
(r"a'_{b'}", Symbol("a'_{b'}")),
|
||
|
(r"a'_{b'}'", Symbol("a'_{b'}'")),
|
||
|
(r"\mathit{foo}'", Symbol("foo'")),
|
||
|
(r"\mathit{foo'}", Symbol("foo'")),
|
||
|
(r"\mathit{foo'}'", Symbol("foo''")),
|
||
|
(r"a_b''", Symbol("a_{b}''")),
|
||
|
(r"a''_b", Symbol("a''_{b}")),
|
||
|
(r"a''_b'''", Symbol("a''_{b}'''")),
|
||
|
(r"a_{b''}", Symbol("a_{b''}")),
|
||
|
(r"a_{b''}''", Symbol("a_{b''}''")),
|
||
|
(r"a''_{b''}", Symbol("a''_{b''}")),
|
||
|
(r"a''_{b''}'''", Symbol("a''_{b''}'''")),
|
||
|
(r"\mathit{foo}''", Symbol("foo''")),
|
||
|
(r"\mathit{foo''}", Symbol("foo''")),
|
||
|
(r"\mathit{foo''}'''", Symbol("foo'''''")),
|
||
|
(r"a_\alpha", Symbol("a_{alpha}")),
|
||
|
(r"a_\alpha'", Symbol("a_{alpha}'")),
|
||
|
(r"a'_\alpha", Symbol("a'_{alpha}")),
|
||
|
(r"a'_\alpha'", Symbol("a'_{alpha}'")),
|
||
|
(r"a_{\alpha'}", Symbol("a_{alpha'}")),
|
||
|
(r"a_{\alpha'}'", Symbol("a_{alpha'}'")),
|
||
|
(r"a'_{\alpha'}", Symbol("a'_{alpha'}")),
|
||
|
(r"a'_{\alpha'}'", Symbol("a'_{alpha'}'")),
|
||
|
(r"a_\alpha''", Symbol("a_{alpha}''")),
|
||
|
(r"a''_\alpha", Symbol("a''_{alpha}")),
|
||
|
(r"a''_\alpha'''", Symbol("a''_{alpha}'''")),
|
||
|
(r"a_{\alpha''}", Symbol("a_{alpha''}")),
|
||
|
(r"a_{\alpha''}''", Symbol("a_{alpha''}''")),
|
||
|
(r"a''_{\alpha''}", Symbol("a''_{alpha''}")),
|
||
|
(r"a''_{\alpha''}'''", Symbol("a''_{alpha''}'''")),
|
||
|
(r"\alpha_b", Symbol("alpha_{b}")),
|
||
|
(r"\alpha_b'", Symbol("alpha_{b}'")),
|
||
|
(r"\alpha'_b", Symbol("alpha'_{b}")),
|
||
|
(r"\alpha'_b'", Symbol("alpha'_{b}'")),
|
||
|
(r"\alpha_{b'}", Symbol("alpha_{b'}")),
|
||
|
(r"\alpha_{b'}'", Symbol("alpha_{b'}'")),
|
||
|
(r"\alpha'_{b'}", Symbol("alpha'_{b'}")),
|
||
|
(r"\alpha'_{b'}'", Symbol("alpha'_{b'}'")),
|
||
|
(r"\alpha_b''", Symbol("alpha_{b}''")),
|
||
|
(r"\alpha''_b", Symbol("alpha''_{b}")),
|
||
|
(r"\alpha''_b'''", Symbol("alpha''_{b}'''")),
|
||
|
(r"\alpha_{b''}", Symbol("alpha_{b''}")),
|
||
|
(r"\alpha_{b''}''", Symbol("alpha_{b''}''")),
|
||
|
(r"\alpha''_{b''}", Symbol("alpha''_{b''}")),
|
||
|
(r"\alpha''_{b''}'''", Symbol("alpha''_{b''}'''")),
|
||
|
(r"\alpha_\beta", Symbol("alpha_{beta}")),
|
||
|
(r"\alpha_{\beta}", Symbol("alpha_{beta}")),
|
||
|
(r"\alpha_{\beta'}", Symbol("alpha_{beta'}")),
|
||
|
(r"\alpha_{\beta''}", Symbol("alpha_{beta''}")),
|
||
|
(r"\alpha'_\beta", Symbol("alpha'_{beta}")),
|
||
|
(r"\alpha'_{\beta}", Symbol("alpha'_{beta}")),
|
||
|
(r"\alpha'_{\beta'}", Symbol("alpha'_{beta'}")),
|
||
|
(r"\alpha'_{\beta''}", Symbol("alpha'_{beta''}")),
|
||
|
(r"\alpha''_\beta", Symbol("alpha''_{beta}")),
|
||
|
(r"\alpha''_{\beta}", Symbol("alpha''_{beta}")),
|
||
|
(r"\alpha''_{\beta'}", Symbol("alpha''_{beta'}")),
|
||
|
(r"\alpha''_{\beta''}", Symbol("alpha''_{beta''}")),
|
||
|
(r"\alpha_\beta'", Symbol("alpha_{beta}'")),
|
||
|
(r"\alpha_{\beta}'", Symbol("alpha_{beta}'")),
|
||
|
(r"\alpha_{\beta'}'", Symbol("alpha_{beta'}'")),
|
||
|
(r"\alpha_{\beta''}'", Symbol("alpha_{beta''}'")),
|
||
|
(r"\alpha'_\beta'", Symbol("alpha'_{beta}'")),
|
||
|
(r"\alpha'_{\beta}'", Symbol("alpha'_{beta}'")),
|
||
|
(r"\alpha'_{\beta'}'", Symbol("alpha'_{beta'}'")),
|
||
|
(r"\alpha'_{\beta''}'", Symbol("alpha'_{beta''}'")),
|
||
|
(r"\alpha''_\beta'", Symbol("alpha''_{beta}'")),
|
||
|
(r"\alpha''_{\beta}'", Symbol("alpha''_{beta}'")),
|
||
|
(r"\alpha''_{\beta'}'", Symbol("alpha''_{beta'}'")),
|
||
|
(r"\alpha''_{\beta''}'", Symbol("alpha''_{beta''}'")),
|
||
|
(r"\alpha_\beta''", Symbol("alpha_{beta}''")),
|
||
|
(r"\alpha_{\beta}''", Symbol("alpha_{beta}''")),
|
||
|
(r"\alpha_{\beta'}''", Symbol("alpha_{beta'}''")),
|
||
|
(r"\alpha_{\beta''}''", Symbol("alpha_{beta''}''")),
|
||
|
(r"\alpha'_\beta''", Symbol("alpha'_{beta}''")),
|
||
|
(r"\alpha'_{\beta}''", Symbol("alpha'_{beta}''")),
|
||
|
(r"\alpha'_{\beta'}''", Symbol("alpha'_{beta'}''")),
|
||
|
(r"\alpha'_{\beta''}''", Symbol("alpha'_{beta''}''")),
|
||
|
(r"\alpha''_\beta''", Symbol("alpha''_{beta}''")),
|
||
|
(r"\alpha''_{\beta}''", Symbol("alpha''_{beta}''")),
|
||
|
(r"\alpha''_{\beta'}''", Symbol("alpha''_{beta'}''")),
|
||
|
(r"\alpha''_{\beta''}''", Symbol("alpha''_{beta''}''"))
|
||
|
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_SIMPLE_EXPRESSION_PAIRS = [
|
||
|
(r"0", 0),
|
||
|
(r"1", 1),
|
||
|
(r"-3.14", -3.14),
|
||
|
(r"(-7.13)(1.5)", _Mul(-7.13, 1.5)),
|
||
|
(r"1+1", _Add(1, 1)),
|
||
|
(r"0+1", _Add(0, 1)),
|
||
|
(r"1*2", _Mul(1, 2)),
|
||
|
(r"0*1", _Mul(0, 1)),
|
||
|
(r"x", x),
|
||
|
(r"2x", 2 * x),
|
||
|
(r"3x - 1", _Add(_Mul(3, x), -1)),
|
||
|
(r"-c", -c),
|
||
|
(r"\infty", oo),
|
||
|
(r"a \cdot b", a * b),
|
||
|
(r"1 \times 2 ", _Mul(1, 2)),
|
||
|
(r"a / b", a / b),
|
||
|
(r"a \div b", a / b),
|
||
|
(r"a + b", a + b),
|
||
|
(r"a + b - a", _Add(a + b, -a)),
|
||
|
(r"(x + y) z", _Mul(_Add(x, y), z)),
|
||
|
(r"a'b+ab'", _Add(_Mul(Symbol("a'"), b), _Mul(a, Symbol("b'"))))
|
||
|
]
|
||
|
|
||
|
EVALUATED_SIMPLE_EXPRESSION_PAIRS = [
|
||
|
(r"(-7.13)(1.5)", -10.695),
|
||
|
(r"1+1", 2),
|
||
|
(r"0+1", 1),
|
||
|
(r"1*2", 2),
|
||
|
(r"0*1", 0),
|
||
|
(r"2x", 2 * x),
|
||
|
(r"3x - 1", 3 * x - 1),
|
||
|
(r"-c", -c),
|
||
|
(r"a \cdot b", a * b),
|
||
|
(r"1 \times 2 ", 2),
|
||
|
(r"a / b", a / b),
|
||
|
(r"a \div b", a / b),
|
||
|
(r"a + b", a + b),
|
||
|
(r"a + b - a", b),
|
||
|
(r"(x + y) z", (x + y) * z),
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_FRACTION_EXPRESSION_PAIRS = [
|
||
|
(r"\frac{a}{b}", a / b),
|
||
|
(r"\dfrac{a}{b}", a / b),
|
||
|
(r"\tfrac{a}{b}", a / b),
|
||
|
(r"\frac12", _Mul(1, _Pow(2, -1))),
|
||
|
(r"\frac12y", _Mul(_Mul(1, _Pow(2, -1)), y)),
|
||
|
(r"\frac1234", _Mul(_Mul(1, _Pow(2, -1)), 34)),
|
||
|
(r"\frac2{3}", _Mul(2, _Pow(3, -1))),
|
||
|
(r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))),
|
||
|
(r"\frac{7}{3}", _Mul(7, _Pow(3, -1)))
|
||
|
]
|
||
|
|
||
|
EVALUATED_FRACTION_EXPRESSION_PAIRS = [
|
||
|
(r"\frac{a}{b}", a / b),
|
||
|
(r"\dfrac{a}{b}", a / b),
|
||
|
(r"\tfrac{a}{b}", a / b),
|
||
|
(r"\frac12", Rational(1, 2)),
|
||
|
(r"\frac12y", y / 2),
|
||
|
(r"\frac1234", 17),
|
||
|
(r"\frac2{3}", Rational(2, 3)),
|
||
|
(r"\frac{a + b}{c}", (a + b) / c),
|
||
|
(r"\frac{7}{3}", Rational(7, 3))
|
||
|
]
|
||
|
|
||
|
RELATION_EXPRESSION_PAIRS = [
|
||
|
(r"x = y", Eq(x, y)),
|
||
|
(r"x \neq y", Ne(x, y)),
|
||
|
(r"x < y", Lt(x, y)),
|
||
|
(r"x > y", Gt(x, y)),
|
||
|
(r"x \leq y", Le(x, y)),
|
||
|
(r"x \geq y", Ge(x, y)),
|
||
|
(r"x \le y", Le(x, y)),
|
||
|
(r"x \ge y", Ge(x, y)),
|
||
|
(r"x < y", StrictLessThan(x, y)),
|
||
|
(r"x \leq y", LessThan(x, y)),
|
||
|
(r"x > y", StrictGreaterThan(x, y)),
|
||
|
(r"x \geq y", GreaterThan(x, y)),
|
||
|
(r"x \neq y", Unequality(x, y)), # same as 2nd one in the list
|
||
|
(r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_POWER_EXPRESSION_PAIRS = [
|
||
|
(r"x^2", x ** 2),
|
||
|
(r"x^\frac{1}{2}", _Pow(x, _Mul(1, _Pow(2, -1)))),
|
||
|
(r"x^{3 + 1}", x ** _Add(3, 1)),
|
||
|
(r"\pi^{|xy|}", Symbol('pi') ** _Abs(x * y)),
|
||
|
(r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0))))
|
||
|
]
|
||
|
|
||
|
EVALUATED_POWER_EXPRESSION_PAIRS = [
|
||
|
(r"x^2", x ** 2),
|
||
|
(r"x^\frac{1}{2}", sqrt(x)),
|
||
|
(r"x^{3 + 1}", x ** 4),
|
||
|
(r"\pi^{|xy|}", Symbol('pi') ** _Abs(x * y)),
|
||
|
(r"5^0 - 4^0", 0)
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_INTEGRAL_EXPRESSION_PAIRS = [
|
||
|
(r"\int x dx", Integral(_Mul(1, x), x)),
|
||
|
(r"\int x \, dx", Integral(_Mul(1, x), x)),
|
||
|
(r"\int x d\theta", Integral(_Mul(1, x), theta)),
|
||
|
(r"\int (x^2 - y)dx", Integral(_Mul(1, x ** 2 - y), x)),
|
||
|
(r"\int x + a dx", Integral(_Mul(1, _Add(x, a)), x)),
|
||
|
(r"\int da", Integral(_Mul(1, 1), a)),
|
||
|
(r"\int_0^7 dx", Integral(_Mul(1, 1), (x, 0, 7))),
|
||
|
(r"\int\limits_{0}^{1} x dx", Integral(_Mul(1, x), (x, 0, 1))),
|
||
|
(r"\int_a^b x dx", Integral(_Mul(1, x), (x, a, b))),
|
||
|
(r"\int^b_a x dx", Integral(_Mul(1, x), (x, a, b))),
|
||
|
(r"\int_{a}^b x dx", Integral(_Mul(1, x), (x, a, b))),
|
||
|
(r"\int^{b}_a x dx", Integral(_Mul(1, x), (x, a, b))),
|
||
|
(r"\int_{a}^{b} x dx", Integral(_Mul(1, x), (x, a, b))),
|
||
|
(r"\int^{b}_{a} x dx", Integral(_Mul(1, x), (x, a, b))),
|
||
|
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
|
||
|
(r"\int a + b + c dx", Integral(_Mul(1, _Add(_Add(a, b), c)), x)),
|
||
|
(r"\int \frac{dz}{z}", Integral(_Mul(1, _Mul(1, Pow(z, -1))), z)),
|
||
|
(r"\int \frac{3 dz}{z}", Integral(_Mul(1, _Mul(3, _Pow(z, -1))), z)),
|
||
|
(r"\int \frac{1}{x} dx", Integral(_Mul(1, _Mul(1, Pow(x, -1))), x)),
|
||
|
(r"\int \frac{1}{a} + \frac{1}{b} dx",
|
||
|
Integral(_Mul(1, _Add(_Mul(1, _Pow(a, -1)), _Mul(1, Pow(b, -1)))), x)),
|
||
|
(r"\int \frac{1}{x} + 1 dx", Integral(_Mul(1, _Add(_Mul(1, _Pow(x, -1)), 1)), x))
|
||
|
]
|
||
|
|
||
|
EVALUATED_INTEGRAL_EXPRESSION_PAIRS = [
|
||
|
(r"\int x dx", Integral(x, x)),
|
||
|
(r"\int x \, dx", Integral(x, x)),
|
||
|
(r"\int x d\theta", Integral(x, theta)),
|
||
|
(r"\int (x^2 - y)dx", Integral(x ** 2 - y, x)),
|
||
|
(r"\int x + a dx", Integral(x + a, x)),
|
||
|
(r"\int da", Integral(1, a)),
|
||
|
(r"\int_0^7 dx", Integral(1, (x, 0, 7))),
|
||
|
(r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))),
|
||
|
(r"\int_a^b x dx", Integral(x, (x, a, b))),
|
||
|
(r"\int^b_a x dx", Integral(x, (x, a, b))),
|
||
|
(r"\int_{a}^b x dx", Integral(x, (x, a, b))),
|
||
|
(r"\int^{b}_a x dx", Integral(x, (x, a, b))),
|
||
|
(r"\int_{a}^{b} x dx", Integral(x, (x, a, b))),
|
||
|
(r"\int^{b}_{a} x dx", Integral(x, (x, a, b))),
|
||
|
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
|
||
|
(r"\int a + b + c dx", Integral(a + b + c, x)),
|
||
|
(r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)),
|
||
|
(r"\int \frac{3 dz}{z}", Integral(3 * Pow(z, -1), z)),
|
||
|
(r"\int \frac{1}{x} dx", Integral(1 / x, x)),
|
||
|
(r"\int \frac{1}{a} + \frac{1}{b} dx", Integral(1 / a + 1 / b, x)),
|
||
|
(r"\int \frac{1}{a} - \frac{1}{b} dx", Integral(1 / a - 1 / b, x)),
|
||
|
(r"\int \frac{1}{x} + 1 dx", Integral(1 / x + 1, x))
|
||
|
]
|
||
|
|
||
|
DERIVATIVE_EXPRESSION_PAIRS = [
|
||
|
(r"\frac{d}{dx} x", Derivative(x, x)),
|
||
|
(r"\frac{d}{dt} x", Derivative(x, t)),
|
||
|
(r"\frac{d}{dx} ( \tan x )", Derivative(tan(x), x)),
|
||
|
(r"\frac{d f(x)}{dx}", Derivative(f(x), x)),
|
||
|
(r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x))
|
||
|
]
|
||
|
|
||
|
TRIGONOMETRIC_EXPRESSION_PAIRS = [
|
||
|
(r"\sin \theta", sin(theta)),
|
||
|
(r"\sin(\theta)", sin(theta)),
|
||
|
(r"\sin^{-1} a", asin(a)),
|
||
|
(r"\sin a \cos b", _Mul(sin(a), cos(b))),
|
||
|
(r"\sin \cos \theta", sin(cos(theta))),
|
||
|
(r"\sin(\cos \theta)", sin(cos(theta))),
|
||
|
(r"(\csc x)(\sec y)", csc(x) * sec(y)),
|
||
|
(r"\frac{\sin{x}}2", _Mul(sin(x), _Pow(2, -1)))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_LIMIT_EXPRESSION_PAIRS = [
|
||
|
(r"\lim_{x \to 3} a", Limit(a, x, 3, dir="+-")),
|
||
|
(r"\lim_{x \rightarrow 3} a", Limit(a, x, 3, dir="+-")),
|
||
|
(r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3, dir="+-")),
|
||
|
(r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3, dir="+-")),
|
||
|
(r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3, dir="+-")),
|
||
|
(r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir="+")),
|
||
|
(r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir="-")),
|
||
|
(r"\lim_{x \to 3^+} a", Limit(a, x, 3, dir="+")),
|
||
|
(r"\lim_{x \to 3^-} a", Limit(a, x, 3, dir="-")),
|
||
|
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Mul(1, _Pow(x, -1)), x, oo))
|
||
|
]
|
||
|
|
||
|
EVALUATED_LIMIT_EXPRESSION_PAIRS = [
|
||
|
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(1 / x, x, oo))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_SQRT_EXPRESSION_PAIRS = [
|
||
|
(r"\sqrt{x}", sqrt(x)),
|
||
|
(r"\sqrt{x + b}", sqrt(_Add(x, b))),
|
||
|
(r"\sqrt[3]{\sin x}", _Pow(sin(x), _Pow(3, -1))),
|
||
|
# the above test needed to be handled differently than the ones below because root
|
||
|
# acts differently if its second argument is a number
|
||
|
(r"\sqrt[y]{\sin x}", root(sin(x), y)),
|
||
|
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)),
|
||
|
(r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1))))
|
||
|
]
|
||
|
|
||
|
EVALUATED_SQRT_EXPRESSION_PAIRS = [
|
||
|
(r"\sqrt{x}", sqrt(x)),
|
||
|
(r"\sqrt{x + b}", sqrt(x + b)),
|
||
|
(r"\sqrt[3]{\sin x}", root(sin(x), 3)),
|
||
|
(r"\sqrt[y]{\sin x}", root(sin(x), y)),
|
||
|
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)),
|
||
|
(r"\sqrt{\frac{12}{6}}", sqrt(2))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_FACTORIAL_EXPRESSION_PAIRS = [
|
||
|
(r"x!", _factorial(x)),
|
||
|
(r"100!", _factorial(100)),
|
||
|
(r"\theta!", _factorial(theta)),
|
||
|
(r"(x + 1)!", _factorial(_Add(x, 1))),
|
||
|
(r"(x!)!", _factorial(_factorial(x))),
|
||
|
(r"x!!!", _factorial(_factorial(_factorial(x)))),
|
||
|
(r"5!7!", _Mul(_factorial(5), _factorial(7)))
|
||
|
]
|
||
|
|
||
|
EVALUATED_FACTORIAL_EXPRESSION_PAIRS = [
|
||
|
(r"x!", factorial(x)),
|
||
|
(r"100!", factorial(100)),
|
||
|
(r"\theta!", factorial(theta)),
|
||
|
(r"(x + 1)!", factorial(x + 1)),
|
||
|
(r"(x!)!", factorial(factorial(x))),
|
||
|
(r"x!!!", factorial(factorial(factorial(x)))),
|
||
|
(r"5!7!", factorial(5) * factorial(7)),
|
||
|
(r"24! \times 24!", factorial(24) * factorial(24))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_SUM_EXPRESSION_PAIRS = [
|
||
|
(r"\sum_{k = 1}^{3} c", Sum(_Mul(1, c), (k, 1, 3))),
|
||
|
(r"\sum_{k = 1}^3 c", Sum(_Mul(1, c), (k, 1, 3))),
|
||
|
(r"\sum^{3}_{k = 1} c", Sum(_Mul(1, c), (k, 1, 3))),
|
||
|
(r"\sum^3_{k = 1} c", Sum(_Mul(1, c), (k, 1, 3))),
|
||
|
(r"\sum_{k = 1}^{10} k^2", Sum(_Mul(1, k ** 2), (k, 1, 10))),
|
||
|
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}",
|
||
|
Sum(_Mul(1, _Mul(1, _Pow(_factorial(n), -1))), (n, 0, oo)))
|
||
|
]
|
||
|
|
||
|
EVALUATED_SUM_EXPRESSION_PAIRS = [
|
||
|
(r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))),
|
||
|
(r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))),
|
||
|
(r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))),
|
||
|
(r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))),
|
||
|
(r"\sum_{k = 1}^{10} k^2", Sum(k ** 2, (k, 1, 10))),
|
||
|
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}", Sum(1 / factorial(n), (n, 0, oo)))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_PRODUCT_EXPRESSION_PAIRS = [
|
||
|
(r"\prod_{a = b}^{c} x", Product(x, (a, b, c))),
|
||
|
(r"\prod_{a = b}^c x", Product(x, (a, b, c))),
|
||
|
(r"\prod^{c}_{a = b} x", Product(x, (a, b, c))),
|
||
|
(r"\prod^c_{a = b} x", Product(x, (a, b, c)))
|
||
|
]
|
||
|
|
||
|
APPLIED_FUNCTION_EXPRESSION_PAIRS = [
|
||
|
(r"f(x)", f(x)),
|
||
|
(r"f(x, y)", f(x, y)),
|
||
|
(r"f(x, y, z)", f(x, y, z)),
|
||
|
(r"f'_1(x)", Function("f_{1}'")(x)),
|
||
|
(r"f_{1}''(x+y)", Function("f_{1}''")(x + y)),
|
||
|
(r"h_{\theta}(x_0, x_1)",
|
||
|
Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}')))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS = [
|
||
|
(r"|x|", _Abs(x)),
|
||
|
(r"||x||", _Abs(Abs(x))),
|
||
|
(r"|x||y|", _Abs(x) * _Abs(y)),
|
||
|
(r"||x||y||", _Abs(_Abs(x) * _Abs(y))),
|
||
|
(r"\lfloor x \rfloor", floor(x)),
|
||
|
(r"\lceil x \rceil", ceiling(x)),
|
||
|
(r"\exp x", _exp(x)),
|
||
|
(r"\exp(x)", _exp(x)),
|
||
|
(r"\lg x", _log(x, 10)),
|
||
|
(r"\ln x", _log(x)),
|
||
|
(r"\ln xy", _log(x * y)),
|
||
|
(r"\log x", _log(x)),
|
||
|
(r"\log xy", _log(x * y)),
|
||
|
(r"\log_{2} x", _log(x, 2)),
|
||
|
(r"\log_{a} x", _log(x, a)),
|
||
|
(r"\log_{11} x", _log(x, 11)),
|
||
|
(r"\log_{a^2} x", _log(x, _Pow(a, 2))),
|
||
|
(r"\log_2 x", _log(x, 2)),
|
||
|
(r"\log_a x", _log(x, a)),
|
||
|
(r"\overline{z}", _Conjugate(z)),
|
||
|
(r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))),
|
||
|
(r"\overline{x + y}", _Conjugate(_Add(x, y))),
|
||
|
(r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)),
|
||
|
(r"\min(a, b)", _Min(a, b)),
|
||
|
(r"\min(a, b, c - d, xy)", _Min(a, b, c - d, x * y)),
|
||
|
(r"\max(a, b)", _Max(a, b)),
|
||
|
(r"\max(a, b, c - d, xy)", _Max(a, b, c - d, x * y)),
|
||
|
# physics things don't have an `evaluate=False` variant
|
||
|
(r"\langle x |", Bra('x')),
|
||
|
(r"| x \rangle", Ket('x')),
|
||
|
(r"\langle x | y \rangle", InnerProduct(Bra('x'), Ket('y'))),
|
||
|
]
|
||
|
|
||
|
EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS = [
|
||
|
(r"|x|", Abs(x)),
|
||
|
(r"||x||", Abs(Abs(x))),
|
||
|
(r"|x||y|", Abs(x) * Abs(y)),
|
||
|
(r"||x||y||", Abs(Abs(x) * Abs(y))),
|
||
|
(r"\lfloor x \rfloor", floor(x)),
|
||
|
(r"\lceil x \rceil", ceiling(x)),
|
||
|
(r"\exp x", exp(x)),
|
||
|
(r"\exp(x)", exp(x)),
|
||
|
(r"\lg x", log(x, 10)),
|
||
|
(r"\ln x", log(x)),
|
||
|
(r"\ln xy", log(x * y)),
|
||
|
(r"\log x", log(x)),
|
||
|
(r"\log xy", log(x * y)),
|
||
|
(r"\log_{2} x", log(x, 2)),
|
||
|
(r"\log_{a} x", log(x, a)),
|
||
|
(r"\log_{11} x", log(x, 11)),
|
||
|
(r"\log_{a^2} x", log(x, _Pow(a, 2))),
|
||
|
(r"\log_2 x", log(x, 2)),
|
||
|
(r"\log_a x", log(x, a)),
|
||
|
(r"\overline{z}", conjugate(z)),
|
||
|
(r"\overline{\overline{z}}", conjugate(conjugate(z))),
|
||
|
(r"\overline{x + y}", conjugate(x + y)),
|
||
|
(r"\overline{x} + \overline{y}", conjugate(x) + conjugate(y)),
|
||
|
(r"\min(a, b)", Min(a, b)),
|
||
|
(r"\min(a, b, c - d, xy)", Min(a, b, c - d, x * y)),
|
||
|
(r"\max(a, b)", Max(a, b)),
|
||
|
(r"\max(a, b, c - d, xy)", Max(a, b, c - d, x * y)),
|
||
|
(r"\langle x |", Bra('x')),
|
||
|
(r"| x \rangle", Ket('x')),
|
||
|
(r"\langle x | y \rangle", InnerProduct(Bra('x'), Ket('y'))),
|
||
|
]
|
||
|
|
||
|
SPACING_RELATED_EXPRESSION_PAIRS = [
|
||
|
(r"a \, b", _Mul(a, b)),
|
||
|
(r"a \thinspace b", _Mul(a, b)),
|
||
|
(r"a \: b", _Mul(a, b)),
|
||
|
(r"a \medspace b", _Mul(a, b)),
|
||
|
(r"a \; b", _Mul(a, b)),
|
||
|
(r"a \thickspace b", _Mul(a, b)),
|
||
|
(r"a \quad b", _Mul(a, b)),
|
||
|
(r"a \qquad b", _Mul(a, b)),
|
||
|
(r"a \! b", _Mul(a, b)),
|
||
|
(r"a \negthinspace b", _Mul(a, b)),
|
||
|
(r"a \negmedspace b", _Mul(a, b)),
|
||
|
(r"a \negthickspace b", _Mul(a, b))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_BINOMIAL_EXPRESSION_PAIRS = [
|
||
|
(r"\binom{n}{k}", _binomial(n, k)),
|
||
|
(r"\tbinom{n}{k}", _binomial(n, k)),
|
||
|
(r"\dbinom{n}{k}", _binomial(n, k)),
|
||
|
(r"\binom{n}{0}", _binomial(n, 0)),
|
||
|
(r"x^\binom{n}{k}", _Pow(x, _binomial(n, k)))
|
||
|
]
|
||
|
|
||
|
EVALUATED_BINOMIAL_EXPRESSION_PAIRS = [
|
||
|
(r"\binom{n}{k}", binomial(n, k)),
|
||
|
(r"\tbinom{n}{k}", binomial(n, k)),
|
||
|
(r"\dbinom{n}{k}", binomial(n, k)),
|
||
|
(r"\binom{n}{0}", binomial(n, 0)),
|
||
|
(r"x^\binom{n}{k}", x ** binomial(n, k))
|
||
|
]
|
||
|
|
||
|
MISCELLANEOUS_EXPRESSION_PAIRS = [
|
||
|
(r"\left(x + y\right) z", _Mul(_Add(x, y), z)),
|
||
|
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
|
||
|
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_LITERAL_COMPLEX_NUMBER_EXPRESSION_PAIRS = [
|
||
|
(r"\imaginaryunit^2", _Pow(I, 2)),
|
||
|
(r"|\imaginaryunit|", _Abs(I)),
|
||
|
(r"\overline{\imaginaryunit}", _Conjugate(I)),
|
||
|
(r"\imaginaryunit+\imaginaryunit", _Add(I, I)),
|
||
|
(r"\imaginaryunit-\imaginaryunit", _Add(I, -I)),
|
||
|
(r"\imaginaryunit*\imaginaryunit", _Mul(I, I)),
|
||
|
(r"\imaginaryunit/\imaginaryunit", _Mul(I, _Pow(I, -1))),
|
||
|
(r"(1+\imaginaryunit)/|1+\imaginaryunit|", _Mul(_Add(1, I), _Pow(_Abs(_Add(1, I)), -1)))
|
||
|
]
|
||
|
|
||
|
UNEVALUATED_MATRIX_EXPRESSION_PAIRS = [
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\\\end{pmatrix}",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"\begin{bmatrix}a & b \\x & y\end{bmatrix}",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"\left(\begin{matrix}a & b \\x & y\end{matrix}\right)",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"\left[\begin{matrix}a & b \\x & y\end{matrix}\right]",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"\left[\begin{array}{cc}a & b \\x & y\end{array}\right]",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"\left(\begin{array}{cc}a & b \\x & y\end{array}\right)",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"\left( { \begin{array}{cc}a & b \\x & y\end{array} } \right)",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
(r"+\begin{pmatrix}a & b \\x & y\end{pmatrix}",
|
||
|
Matrix([[a, b], [x, y]])),
|
||
|
((r"\begin{pmatrix}x & y \\a & b\end{pmatrix}+"
|
||
|
r"\begin{pmatrix}a & b \\x & y\end{pmatrix}"),
|
||
|
_MatAdd(Matrix([[x, y], [a, b]]), Matrix([[a, b], [x, y]]))),
|
||
|
(r"-\begin{pmatrix}a & b \\x & y\end{pmatrix}",
|
||
|
_MatMul(-1, Matrix([[a, b], [x, y]]))),
|
||
|
((r"\begin{pmatrix}x & y \\a & b\end{pmatrix}-"
|
||
|
r"\begin{pmatrix}a & b \\x & y\end{pmatrix}"),
|
||
|
_MatAdd(Matrix([[x, y], [a, b]]), _MatMul(-1, Matrix([[a, b], [x, y]])))),
|
||
|
((r"\begin{pmatrix}a & b & c \\x & y & z \\a & b & c \end{pmatrix}*"
|
||
|
r"\begin{pmatrix}x & y & z \\a & b & c \\a & b & c \end{pmatrix}*"
|
||
|
r"\begin{pmatrix}a & b & c \\x & y & z \\x & y & z \end{pmatrix}"),
|
||
|
_MatMul(_MatMul(Matrix([[a, b, c], [x, y, z], [a, b, c]]),
|
||
|
Matrix([[x, y, z], [a, b, c], [a, b, c]])),
|
||
|
Matrix([[a, b, c], [x, y, z], [x, y, z]]))),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}/2",
|
||
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(2, -1))),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^2",
|
||
|
_Pow(Matrix([[a, b], [x, y]]), 2)),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^{-1}",
|
||
|
_Pow(Matrix([[a, b], [x, y]]), -1)),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^T",
|
||
|
Transpose(Matrix([[a, b], [x, y]]))),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^{T}",
|
||
|
Transpose(Matrix([[a, b], [x, y]]))),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^\mathit{T}",
|
||
|
Transpose(Matrix([[a, b], [x, y]]))),
|
||
|
(r"\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^T",
|
||
|
Transpose(Matrix([[1, 2], [3, 4]]))),
|
||
|
((r"(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}+"
|
||
|
r"\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^T)*"
|
||
|
r"\begin{bmatrix}1\\0\end{bmatrix}"),
|
||
|
_MatMul(_MatAdd(Matrix([[1, 2], [3, 4]]),
|
||
|
Transpose(Matrix([[1, 2], [3, 4]]))),
|
||
|
Matrix([[1], [0]]))),
|
||
|
((r"(\begin{pmatrix}a & b \\x & y\end{pmatrix}+"
|
||
|
r"\begin{pmatrix}x & y \\a & b\end{pmatrix})^2"),
|
||
|
_Pow(_MatAdd(Matrix([[a, b], [x, y]]),
|
||
|
Matrix([[x, y], [a, b]])), 2)),
|
||
|
((r"(\begin{pmatrix}a & b \\x & y\end{pmatrix}+"
|
||
|
r"\begin{pmatrix}x & y \\a & b\end{pmatrix})^T"),
|
||
|
Transpose(_MatAdd(Matrix([[a, b], [x, y]]),
|
||
|
Matrix([[x, y], [a, b]])))),
|
||
|
(r"\overline{\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}}",
|
||
|
_Conjugate(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]]))))
|
||
|
]
|
||
|
|
||
|
EVALUATED_MATRIX_EXPRESSION_PAIRS = [
|
||
|
(r"\det\left(\left[ { \begin{array}{cc}a&b\\x&y\end{array} } \right]\right)",
|
||
|
Matrix([[a, b], [x, y]]).det()),
|
||
|
(r"\det \begin{pmatrix}1&2\\3&4\end{pmatrix}", -2),
|
||
|
(r"\det{\begin{pmatrix}1&2\\3&4\end{pmatrix}}", -2),
|
||
|
(r"\det(\begin{pmatrix}1&2\\3&4\end{pmatrix})", -2),
|
||
|
(r"\det\left(\begin{pmatrix}1&2\\3&4\end{pmatrix}\right)", -2),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}/\begin{vmatrix}a & b \\x & y\end{vmatrix}",
|
||
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(Matrix([[a, b], [x, y]]).det(), -1))),
|
||
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}/|\begin{matrix}a & b \\x & y\end{matrix}|",
|
||
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(Matrix([[a, b], [x, y]]).det(), -1))),
|
||
|
(r"\frac{\begin{pmatrix}a & b \\x & y\end{pmatrix}}{| { \begin{matrix}a & b \\x & y\end{matrix} } |}",
|
||
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(Matrix([[a, b], [x, y]]).det(), -1))),
|
||
|
(r"\overline{\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}}",
|
||
|
Matrix([[-I, 1-I], [I, 4]])),
|
||
|
(r"\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}^H",
|
||
|
Matrix([[-I, I], [1-I, 4]])),
|
||
|
(r"\trace(\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix})",
|
||
|
Trace(Matrix([[I, 1+I], [-I, 4]]))),
|
||
|
(r"\adjugate(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix})",
|
||
|
Matrix([[4, -2], [-3, 1]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\ast",
|
||
|
Matrix([[-2*I, 6], [4, 8]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast}",
|
||
|
Matrix([[-2*I, 6], [4, 8]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast}",
|
||
|
Matrix([[2*I, 4], [6, 8]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast\ast}",
|
||
|
Matrix([[-2*I, 6], [4, 8]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{*}",
|
||
|
Matrix([[-2*I, 6], [4, 8]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{**}",
|
||
|
Matrix([[2*I, 4], [6, 8]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{***}",
|
||
|
Matrix([[-2*I, 6], [4, 8]])),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\prime",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime}",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime}",
|
||
|
_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]]))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime\prime}",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'}",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{''}",
|
||
|
_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]]))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'''}",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})''",
|
||
|
_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]]))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'''",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"\det(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})",
|
||
|
(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]]))).det()),
|
||
|
(r"\trace(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})",
|
||
|
Trace(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"\adjugate(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})",
|
||
|
(Matrix([[8, -4], [-6, 2*I]]))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^T",
|
||
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]),
|
||
|
Matrix([[I, 2], [3, 4]])))),
|
||
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^H",
|
||
|
(Matrix([[-2*I, 6], [4, 8]])))
|
||
|
]
|
||
|
|
||
|
|
||
|
def test_symbol_expressions():
|
||
|
expected_failures = {6, 7}
|
||
|
for i, (latex_str, sympy_expr) in enumerate(SYMBOL_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_simple_expressions():
|
||
|
expected_failures = {20}
|
||
|
for i, (latex_str, sympy_expr) in enumerate(UNEVALUATED_SIMPLE_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for i, (latex_str, sympy_expr) in enumerate(EVALUATED_SIMPLE_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_fraction_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_FRACTION_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for latex_str, sympy_expr in EVALUATED_FRACTION_EXPRESSION_PAIRS:
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_relation_expressions():
|
||
|
for latex_str, sympy_expr in RELATION_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
def test_power_expressions():
|
||
|
expected_failures = {3}
|
||
|
for i, (latex_str, sympy_expr) in enumerate(UNEVALUATED_POWER_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for i, (latex_str, sympy_expr) in enumerate(EVALUATED_POWER_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_integral_expressions():
|
||
|
expected_failures = {14}
|
||
|
for i, (latex_str, sympy_expr) in enumerate(UNEVALUATED_INTEGRAL_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, i
|
||
|
|
||
|
for i, (latex_str, sympy_expr) in enumerate(EVALUATED_INTEGRAL_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_derivative_expressions():
|
||
|
expected_failures = {3, 4}
|
||
|
for i, (latex_str, sympy_expr) in enumerate(DERIVATIVE_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for i, (latex_str, sympy_expr) in enumerate(DERIVATIVE_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_trigonometric_expressions():
|
||
|
expected_failures = {3}
|
||
|
for i, (latex_str, sympy_expr) in enumerate(TRIGONOMETRIC_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_limit_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_LIMIT_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_square_root_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_SQRT_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for latex_str, sympy_expr in EVALUATED_SQRT_EXPRESSION_PAIRS:
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_factorial_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_FACTORIAL_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for latex_str, sympy_expr in EVALUATED_FACTORIAL_EXPRESSION_PAIRS:
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_sum_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_SUM_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for latex_str, sympy_expr in EVALUATED_SUM_EXPRESSION_PAIRS:
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_product_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_PRODUCT_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
@XFAIL
|
||
|
def test_applied_function_expressions():
|
||
|
expected_failures = {0, 3, 4} # 0 is ambiguous, and the others require not-yet-added features
|
||
|
# not sure why 1, and 2 are failing
|
||
|
for i, (latex_str, sympy_expr) in enumerate(APPLIED_FUNCTION_EXPRESSION_PAIRS):
|
||
|
if i in expected_failures:
|
||
|
continue
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_common_function_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for latex_str, sympy_expr in EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS:
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
# unhandled bug causing these to fail
|
||
|
@XFAIL
|
||
|
def test_spacing():
|
||
|
for latex_str, sympy_expr in SPACING_RELATED_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_binomial_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_BINOMIAL_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for latex_str, sympy_expr in EVALUATED_BINOMIAL_EXPRESSION_PAIRS:
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_miscellaneous_expressions():
|
||
|
for latex_str, sympy_expr in MISCELLANEOUS_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_literal_complex_number_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_LITERAL_COMPLEX_NUMBER_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
|
||
|
def test_matrix_expressions():
|
||
|
for latex_str, sympy_expr in UNEVALUATED_MATRIX_EXPRESSION_PAIRS:
|
||
|
with evaluate(False):
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|
||
|
|
||
|
for latex_str, sympy_expr in EVALUATED_MATRIX_EXPRESSION_PAIRS:
|
||
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str
|