team-10/venv/Lib/site-packages/torch/_inductor/decomposition.py

1072 lines
34 KiB
Python
Raw Normal View History

2025-08-02 02:00:33 +02:00
# mypy: allow-untyped-decorators
import functools
import logging
import math
import sys
import typing
from typing import Any, Callable, Optional, TypeVar, Union
from typing_extensions import ParamSpec
import torch
import torch._decomp as decomp
import torch._prims_common as utils
import torch.ao.quantization.fx._decomposed
from torch._decomp import (
core_aten_decompositions,
get_decompositions,
remove_decompositions,
)
from torch._decomp.decompositions import (
_grid_sampler_2d as decomp_grid_sampler_2d,
_index_add,
pw_cast_for_opmath,
)
from torch._decomp.decompositions_for_rng import extra_random_decomps
from torch._dynamo.utils import counters
from torch._environment import is_fbcode
from torch._higher_order_ops.out_dtype import out_dtype
from torch._inductor.utils import pad_listlike
from torch._prims_common import (
elementwise_dtypes,
ELEMENTWISE_TYPE_PROMOTION_KIND,
type_to_dtype,
)
from torch.fx.experimental.symbolic_shapes import definitely_true, guard_size_oblivious
from . import config, inductor_prims
from .utils import (
is_gpu,
needs_fallback_due_to_atomic_add_limitations,
use_scatter_fallback,
)
_T = TypeVar("_T")
_P = ParamSpec("_P")
log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims
quantized = torch.ops.quantized
_quantized = torch.ops._quantized
quantized_decomposed = torch.ops.quantized_decomposed
inductor_decompositions = get_decompositions(
[
aten._adaptive_avg_pool2d_backward,
aten.index_select,
aten.addmv,
aten.arange,
aten.bitwise_and_,
aten.bitwise_or_,
aten.clamp_min_,
aten.dist,
aten.empty_like,
aten.flip,
aten.gelu,
aten.hardtanh,
aten.lcm,
aten.leaky_relu,
aten.linalg_vector_norm,
aten._log_softmax,
aten.max_pool2d_with_indices_backward,
aten._native_batch_norm_legit,
aten._native_batch_norm_legit_functional,
aten._native_batch_norm_legit_no_training,
aten._batch_norm_with_update,
aten._batch_norm_with_update_functional,
aten._batch_norm_no_update,
aten.batch_norm_backward,
aten.native_batch_norm,
aten.native_group_norm,
aten.native_layer_norm,
aten.nll_loss2d_backward,
aten.permute_copy,
aten.rrelu_with_noise_backward,
aten._softmax,
aten.sin_,
aten.sqrt_,
out_dtype,
aten._to_copy,
aten.tril_indices,
aten.triu_indices,
aten.unbind_copy.int,
aten.upsample_bilinear2d.vec,
quantized.linear_dynamic_fp16_unpacked_weight,
_quantized.wrapped_quantized_linear,
]
)
decompositions = {**core_aten_decompositions(), **inductor_decompositions}
# Remove unwanted decompositions included via the core ATen decompositions from
# the Inductor decomp table.
decomps_to_exclude = [
aten._unsafe_index,
aten._unsafe_masked_index,
aten._unsafe_masked_index_put_accumulate,
aten._scaled_dot_product_flash_attention_for_cpu.default, # See comments in torch/_decomp/decompositions.py
aten._softmax_backward_data,
aten.clamp_max,
aten.clamp_min,
aten.index_add, # we conditionally call this decomp
aten.glu, # inductor lowers this directly
aten.select_scatter, # need to be in the ATen graph in order for it to work with the re-inplacing pass
aten.slice_scatter, # need to be in the ATen graph in order for it to work with the re-inplacing pass
aten.split.Tensor, # inductor lowers this directly
aten.squeeze, # inductor lowers this directly
aten.sum, # inductor lowers this directly
aten.unbind, # inductor lowers this directly
aten.baddbmm, # upcasts to fp32, perf issue
]
remove_decompositions(decompositions, decomps_to_exclude)
def register_decomposition(
ops: list[Union[torch._ops.OperatorBase, torch._ops.OpOverloadPacket]],
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
for op in [ops] if callable(ops) else ops: # type: ignore[attr-defined]
if op in decompositions:
log.warning("duplicate decomp: %s", ops)
return decomp.register_decomposition(ops, decompositions)
# TODO: for now, inductor doesn't handle asserts
# because the condition is symbol -> tensor in the graph.
@register_decomposition([aten._assert_async.msg])
def assert_async_msg_decomp(tensor: torch.Tensor, msg: str) -> None:
return
# Following `assert_async_msg_decomp` and implement as non-op.
@register_decomposition([aten._functional_assert_async.msg])
def functional_assert_async_msg_decomp(tensor: torch.Tensor, msg: str) -> None:
return
@register_decomposition([aten.sym_constrain_range_for_size.default])
def sym_constrain_range_for_size(
symbol: torch.SymInt,
*,
min: Optional[torch.types.Number] = None,
max: Optional[torch.types.Number] = None,
) -> None:
return
@register_decomposition([aten.clamp])
@pw_cast_for_opmath
def clamp(
x: torch.Tensor,
min: Optional[torch.types.Number] = None,
max: Optional[torch.types.Number] = None,
) -> torch.Tensor:
if min is not None:
x = x.clamp_min(min)
if max is not None:
x = x.clamp_max(max)
return x
@register_decomposition([aten.full])
def full(
size: list[Union[int, torch.SymInt]],
fill_value: torch.types.Number,
**kwargs: Any,
) -> torch.Tensor:
dtype = kwargs.get("dtype")
if dtype is None:
kwargs["dtype"] = type_to_dtype(type(fill_value))
return torch.full(size, fill_value, **kwargs)
return NotImplemented
@register_decomposition([aten.index_add])
def index_add(
x: torch.Tensor,
dim: int,
index: torch.Tensor,
tensor: torch.Tensor,
*,
alpha: torch.types.Number = 1,
) -> torch.Tensor:
# If we are not in fbcode and dtype is bfloat16
# fallback to index_add kernel
# see https://github.com/pytorch/pytorch/issues/137425 for details
if not is_fbcode() and x.dtype == torch.bfloat16:
return NotImplemented
else:
return _index_add(x, dim, index, tensor, inplace=False, alpha=alpha)
# Not really sure how to put this into the main library. PrimTorch wants
# empty_permuted to go to the prim, and typically users don't really want
# to decompose to empty_strided (but inductor is OK with it, because we are
# cool with strides and everything goes to empty_strided)
@register_decomposition([aten.empty_permuted.default])
def empty_permuted(
size: list[Union[int, torch.SymInt]],
physical_layout: list[int],
**kwargs: Any,
) -> torch.Tensor:
perm = [0] * len(size)
for p, l in enumerate(physical_layout):
perm[l] = p
return torch.empty([size[l] for l in physical_layout], **kwargs).permute(perm)
@register_decomposition([aten.convolution_backward])
def convolution_backward(
grad_output: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
bias_sizes: list[int],
stride: Union[int, list[int]],
padding: Union[int, list[int]],
dilation: Union[int, list[int]],
transposed: bool,
output_padding: list[int],
groups: int,
output_mask: list[bool],
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
if not output_mask[2] or not is_gpu(grad_output.device.type):
return NotImplemented
grad_bias = aten.sum(grad_output, [0] + list(range(2, grad_output.dim())))
grad_inp, grad_weight, _ = aten.convolution_backward(
grad_output,
input,
weight,
bias_sizes,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
[output_mask[0], output_mask[1], False],
)
return (grad_inp, grad_weight, grad_bias)
@register_decomposition([aten.round.decimals])
def round_dec(x: torch.Tensor, decimals: int = 0) -> torch.Tensor:
ten_pow_decimals = 10.0**decimals
return aten.round(x * ten_pow_decimals) * (1.0 / ten_pow_decimals)
@register_decomposition([aten.bmm])
@pw_cast_for_opmath
def bmm(
self: torch.Tensor,
batch2: torch.Tensor,
) -> torch.Tensor:
if config.coordinate_descent_tuning and self.device.type != "cpu":
if guard_size_oblivious(self.shape[1] == 1) or guard_size_oblivious(
batch2.shape[2] == 1
):
out = (self.unsqueeze(-1) * batch2.unsqueeze(1)).sum(dim=2)
return out
if self.device.type == "cpu":
if guard_size_oblivious(self.size(1) == 1) and guard_size_oblivious(
batch2.size(-1) == 1
):
counters["inductor"]["decompose_bmm"] += 1
return torch.sum(
self.squeeze(1) * batch2.squeeze(-1), dim=1, keepdim=True
).unsqueeze(1)
return NotImplemented
@register_decomposition([aten.addmm])
@pw_cast_for_opmath
def addmm(
self: torch.Tensor,
mat1: torch.Tensor,
mat2: torch.Tensor,
beta: torch.types.Number = 1,
alpha: torch.types.Number = 1,
) -> torch.Tensor:
if self.device.type == "cpu":
if guard_size_oblivious(mat1.size(0) == 1) and guard_size_oblivious(
mat2.size(-1) == 1
):
counters["inductor"]["decompose_addmm"] += 1
out = torch.sum(
mat1.squeeze(0) * mat2.squeeze(-1), dim=0, keepdim=True
).unsqueeze(0)
return alpha * out + beta * self
if (
guard_size_oblivious(mat1.size(0) == 1)
and definitely_true(mat2.size(0) <= 16)
and definitely_true(mat2.size(1) <= 16)
):
counters["inductor"]["decompose_addmm"] += 1
out = (mat1.T * mat2).sum(dim=0, keepdim=True)
return alpha * out + beta * self
return NotImplemented
@register_decomposition([aten.mm])
@pw_cast_for_opmath
def mm(
self: torch.Tensor,
input2: torch.Tensor,
) -> torch.Tensor:
# Our matrix vector multiplies only achieve peak bandwidth with coordinate descent tuning.
# todo: Look into why and fix it (hopefully)
if config.coordinate_descent_tuning and self.device.type != "cpu":
if guard_size_oblivious(self.shape[0] == 1) or guard_size_oblivious(
input2.shape[1] == 1
):
return (self.unsqueeze(2) * input2.unsqueeze(0)).sum(dim=1)
if self.device.type == "cpu":
if (
guard_size_oblivious(self.size(-1) == 1)
and guard_size_oblivious(self.size(0) > 0)
and guard_size_oblivious(input2.size(0) == 1)
and (self.dtype == input2.dtype)
and definitely_true((torch.numel(self) + torch.numel(input2)) <= 32)
):
counters["inductor"]["decompose_mm"] += 1
return torch.cat([self[i, :] * input2 for i in range(self.size(0))])
if guard_size_oblivious(self.size(0) == 1) and guard_size_oblivious(
input2.size(-1) == 1
):
counters["inductor"]["decompose_mm"] += 1
return torch.sum(
self.squeeze(0) * input2.squeeze(-1), dim=0, keepdim=True
).unsqueeze(0)
return NotImplemented
# This pass does two things:
# - Eliminate cat when there is only one tensor input
# - Normalize cat calls, so that legacy empty 1-D tensors are removed (NB: we
# don't remove ALL empty tensors, only the naughty ones)
@register_decomposition([aten.cat.default])
def cat(
tensors: list[torch.Tensor],
dim: int = 0,
) -> torch.Tensor:
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
def non_empty_tensor(x: torch.Tensor) -> bool:
# For better or worse, this is a valid cat:
#
# torch.cat([torch.randn(2, 2, 4), torch.randn(0), torch.randn(3, 2, 4)])
#
# We'd like to eliminate naughtiness like this for downstream passes
# like split_cat. The easiest way is to just drop such inputs
# (guarding that they are non-zero).
#
# Is it permissible for this filtering to be size-oblivious? A case
# where this could matter is cat([(2, 2), (u0,)], dim=0); if u0
# happened to be zero, we would have liked to have filtered it out.
# But actually, the ONLY way this could have passed is if u0 == 0,
# so by the time we get here we have already installed a deferred
# runtime assert forcing u0 to be zero. So if this hasn't happened,
# we know that the unbacked SymInt has appropriate size and there are
# no problems.
if len(x.shape) == 1 and guard_size_oblivious(x.shape[0] == 0):
return False
if dim < len(x.shape) and guard_size_oblivious(x.shape[dim] == 0):
return False
return True
filtered_tensors = list(filter(non_empty_tensor, tensors))
if len(filtered_tensors) == 1:
return filtered_tensors[0].clone()
elif 1 < len(filtered_tensors) < len(tensors):
# on the first call, when we remove empty tensors, we redispatch recursively
return aten.cat.default(filtered_tensors, dim)
# optimization, avoid concat for single, repeated input
if len(filtered_tensors) > 1 and all(
t is filtered_tensors[0] for t in filtered_tensors
):
inp = filtered_tensors[0]
shape = list(inp.shape)
dim = dim + len(inp.shape) if dim < 0 else dim
shape.insert(dim, len(filtered_tensors))
return inp.unsqueeze(dim).expand(*shape).flatten(dim, dim + 1).clone()
# when no 'filtering' has occurred, we raise to prevent infinite recursion (no more decomposition needed)
return NotImplemented
@register_decomposition([aten.angle])
def angle(x: torch.Tensor) -> torch.Tensor:
if x.is_complex():
return torch.where(
torch.isnan(x.real), float("nan"), torch.atan2(x.imag, x.real)
)
# when x is real number
# if x >= 0, return 0
# if x < 0, return pi
# if x is nan, return nan
_, dtype = elementwise_dtypes(
x,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
pi = torch.scalar_tensor(math.pi, dtype=dtype, device=x.device)
ret = torch.where(x < 0, pi, 0.0)
return torch.where(torch.isnan(x), float("nan"), ret)
@register_decomposition([aten.add])
def add(
x: torch.Tensor,
y: torch.Tensor,
*,
alpha: Optional[torch.types.Number] = None,
) -> torch.Tensor:
# Require both x and y to be complex tensors.
x_is_complex_tensor = torch.is_tensor(x) and x.is_complex()
y_is_complex_tensor = torch.is_tensor(y) and y.is_complex()
if not x_is_complex_tensor or not y_is_complex_tensor:
return NotImplemented
z = y
if alpha is not None:
z = alpha * y
complex_type = torch.promote_types(x.dtype, y.dtype)
# For complex typed `x`, `x.view(x.real.dtype)` doubles the last dimension and can cause problem
# when broadcasting the add.
def reshape_tensor_complex(tensor: torch.Tensor) -> torch.Tensor:
"""Reshape tensor from [*initial_dims, last_dim] to *initial_dims, last_dim/2, 2]"""
# Get the current shape of the tensor
*initial_dims, last_dim = tensor.shape
# Check if the last dimension is even. We should never reach here since `x.view(x.real.dtype)`
# doubles the last dimension for complex numbers.
if last_dim % 2 != 0:
raise AssertionError(
"The size of the last dimension must be even to reshape it to [..., last_dim/2, 2]"
)
# Reshape the tensor
new_shape = (*initial_dims, last_dim // 2, 2)
reshaped_tensor = tensor.view(new_shape)
return reshaped_tensor
x_reshaped = reshape_tensor_complex(x.view(x.real.dtype))
z_reshaped = reshape_tensor_complex(z.view(y.real.dtype))
result = torch.flatten(x_reshaped + z_reshaped, start_dim=-2).view(complex_type)
return result
@register_decomposition([aten.conj_physical])
def conj_physical(self: torch.Tensor) -> torch.Tensor:
assert not self.is_complex(), "TODO: implement this"
return self
@register_decomposition([aten.lift, aten.detach_])
def lift(self: torch.Tensor) -> torch.Tensor:
return self
@register_decomposition([aten.fmin, prims.fmin])
def fmin(self: torch.Tensor, other: torch.Tensor) -> torch.Tensor:
return torch.where(torch.isnan(other) | (other > self), self, other)
@register_decomposition([aten.fmax, prims.fmax])
def fmax(self: torch.Tensor, other: torch.Tensor) -> torch.Tensor:
return torch.where(torch.isnan(other) | (other < self), self, other)
@register_decomposition(aten.amax)
def amax(
self: torch.Tensor,
dim: Optional[int] = None,
keepdim: bool = False,
) -> torch.Tensor:
if self.dtype == torch.bool:
return torch.any(self, dim=dim, keepdim=keepdim)
return NotImplemented
@register_decomposition(aten.amin)
def amin(
self: torch.Tensor,
dim: Optional[int] = None,
keepdim: bool = False,
) -> torch.Tensor:
if self.dtype == torch.bool:
return torch.all(self, dim=dim, keepdim=keepdim)
return NotImplemented
@register_decomposition([aten.narrow_copy])
def narrow_copy(
self: torch.Tensor,
dim: int,
start: int,
length: int,
) -> torch.Tensor:
return torch.narrow(self, dim, start, length).clone()
@register_decomposition([aten.view_copy.default])
def view_copy_default(
self: torch.Tensor,
size: list[Union[int, torch.SymInt]],
) -> torch.Tensor:
return aten.view(self, size).clone()
@register_decomposition([aten.view_copy.dtype])
def view_copy_dtype(
self: torch.Tensor,
dtype: torch.dtype,
) -> torch.Tensor:
return self.to(dtype).clone()
def get_like_layout(
tensor: torch.Tensor,
memory_format: Optional[torch.memory_format] = None,
) -> torch.memory_format:
# TODO: _to_copy tensor to stride permutation
if memory_format is torch.preserve_format or memory_format is None:
return utils.suggest_memory_format(tensor)
else:
return memory_format
@register_decomposition(aten.rand_like)
def rand_like(
self: torch.Tensor,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return torch.rand(
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randn_like)
def randn_like(
self: torch.Tensor,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return torch.randn(
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.full_like)
def full_like(
self: torch.Tensor,
fill_value: Union[int, float],
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
memory_format: torch.memory_format = torch.preserve_format,
) -> torch.Tensor:
return torch.full(
[*self.size()],
fill_value,
dtype=dtype or self.dtype,
layout=layout or self.layout,
device=device or self.device,
requires_grad=requires_grad,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint_like.default)
def randint_like(
self: torch.Tensor,
high: int,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return aten.randint.low(
0,
high,
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint_like.low_dtype)
def randint_like_low(
self: torch.Tensor,
low: int,
high: int,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return aten.randint.low(
low,
high,
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint.default)
def randint(
high: int,
size: list[Union[int, torch.SymInt]],
**kwargs: Any,
) -> torch.Tensor:
return aten.randint.low(0, high, size, **kwargs)
@register_decomposition(quantized.linear_dynamic_fp16_unpacked_weight.default)
def linear_dynamic_fp16_unpacked_weight(
input: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
) -> torch.Tensor:
packed_weight = torch.ops._quantized.wrapped_fbgemm_pack_gemm_matrix_fp16(weight)
return torch.ops._quantized.wrapped_fbgemm_linear_fp16_weight(
input, packed_weight, bias, weight.size()[0]
)
@register_decomposition(_quantized.wrapped_quantized_linear.default)
def wrapped_quantized_linear(
input: torch.Tensor,
input_scale: torch.Tensor,
input_zero_point: torch.Tensor,
weight: torch.Tensor,
weight_scale: torch.Tensor,
weight_zero_point: torch.Tensor,
bias: torch.Tensor,
out_scale: torch.Tensor,
out_zero_point: torch.Tensor,
out_channel: int,
) -> torch.Tensor:
packed_weight = torch.ops._quantized._wrapped_linear_prepack(
weight, weight_scale, weight_zero_point, bias
)
return torch.ops._quantized._wrapped_quantized_linear_prepacked(
input,
input_scale,
input_zero_point,
packed_weight,
out_scale,
out_zero_point,
out_channel,
)
@register_decomposition(torch.ops.quantized.embedding_bag_byte_unpack)
def q_embedding_bag_byte_unpack_decomp(packed: torch.Tensor) -> torch.Tensor:
def bitcast_u8_to_f32(u8: torch.Tensor) -> torch.Tensor:
x, y, z, w = (u8[..., n].to(torch.int32) for n in (0, 1, 2, 3))
if sys.byteorder == "little":
return (x + (y << 8) + (z << 16) + (w << 24)).view(torch.float32)[..., None]
else:
return ((x << 24) + (y << 16) + (z << 8) + w).view(torch.float32)[..., None]
scales = bitcast_u8_to_f32(packed[..., -8:-4])
offsets = bitcast_u8_to_f32(packed[..., -4:])
return packed[..., :-8].to(torch.float32) * scales + offsets
@register_decomposition([aten.grid_sampler_2d])
@pw_cast_for_opmath
def grid_sampler_2d(
a: torch.Tensor,
grid: torch.Tensor,
interpolation_mode: int = 0,
padding_mode: int = 0,
align_corners: bool = False,
) -> torch.Tensor:
# We do not expand the grid (_expand_grid=False) on cpu for performance reasons
# Experimenting locally it was found that compiled CUDA code is accelerated by ~5x
# and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2)
# However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first.
# Thus we apply this hack to not expand the grid for this case.
_expand_grid = not (
a.device == torch.device("cpu")
and interpolation_mode == 0
and a.is_contiguous(memory_format=torch.contiguous_format)
)
output = decomp_grid_sampler_2d(
a,
grid=grid,
interpolation_mode=interpolation_mode,
padding_mode=padding_mode,
align_corners=align_corners,
_expand_grid=_expand_grid,
)
return output
@register_decomposition(aten._foreach_addcmul.Scalar)
def _foreach_addcmul_scalar(
self: list[torch.Tensor],
left_tensors: list[torch.Tensor],
right_tensors: list[torch.Tensor],
scalar: float = 1,
) -> list[torch.Tensor]:
return aten._foreach_add.List(
self, aten._foreach_mul.List(left_tensors, right_tensors), alpha=scalar
)
@register_decomposition(aten._foreach_addcdiv.Scalar)
def _foreach_addcdiv_scalar(
self: list[torch.Tensor],
left_tensors: list[torch.Tensor],
right_tensors: list[torch.Tensor],
scalar: float = 1,
) -> list[torch.Tensor]:
return aten._foreach_add.List(
self, aten._foreach_div.List(left_tensors, right_tensors), alpha=scalar
)
@register_decomposition(aten._foreach_lerp.Scalar)
def _foreach_lerp_scalar(
start_tensors: list[torch.Tensor],
end_tensors: list[torch.Tensor],
weight: torch.types.Number,
) -> list[torch.Tensor]:
return aten._foreach_add.List(
start_tensors,
aten._foreach_mul.Scalar(
aten._foreach_sub.List(end_tensors, start_tensors), weight
),
)
@register_decomposition(aten._foreach_lerp.ScalarList)
def _foreach_lerp_scalarlist(
start_tensors: list[torch.Tensor],
end_tensors: list[torch.Tensor],
scalars: list[torch.types.Number],
) -> list[torch.Tensor]:
return aten._foreach_add.List(
start_tensors,
aten._foreach_mul.ScalarList(
aten._foreach_sub.List(end_tensors, start_tensors), scalars
),
)
@aten.miopen_batch_norm.default.py_impl(torch._C.DispatchKey.Autograd)
@register_decomposition(aten.miopen_batch_norm)
def miopen_batch_norm(
input: torch.Tensor,
weight: torch.Tensor,
bias: typing.Optional[torch.Tensor],
running_mean: typing.Optional[torch.Tensor],
running_var: typing.Optional[torch.Tensor],
training: bool,
exponential_average_factor: float,
epsilon: float,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
a, b, c = aten.native_batch_norm(
input,
weight,
bias,
running_mean,
running_var,
training,
exponential_average_factor,
epsilon,
)
if training:
return (a, b, c)
return (
a,
weight.new_zeros((0,)),
weight.new_zeros((0,)),
)
@functools.lru_cache(None)
def fast_random_decomps() -> dict[Any, Callable[..., Any]]:
return {**decompositions, **extra_random_decomps}
# TODO(aakhundov): replace this (and the above) Any by more
# specific type and fix all the cascading mypy errors
def select_decomp_table() -> dict[Any, Callable[..., Any]]:
"""decomps can change based on config"""
if config.fallback_random:
return decompositions
return fast_random_decomps()
@register_decomposition(aten.masked_scatter)
def masked_scatter(
self: torch.Tensor,
mask: torch.Tensor,
source: torch.Tensor,
) -> torch.Tensor:
from .codegen.common import BackendFeature, has_backend_feature
if has_backend_feature(self.device, BackendFeature.MASKED_SCATTER_WITH_INDEX):
# This two-step algorithm is the same as eager CUDA, for eager CPU we
# use a 1-shot serial iteration.
self, mask = aten.broadcast_tensors([self, mask])
source_idx = mask.reshape(-1).cumsum(0) - 1
self_flat, mask_flat, source_flat = (x.flatten() for x in (self, mask, source))
result = aten._unsafe_masked_index(source_flat, mask_flat, [source_idx], 0)
return torch.where(mask_flat, result, self_flat).view(self.shape)
return NotImplemented
@register_decomposition(quantized_decomposed.choose_qparams.tensor)
def choose_qparams_tensor(
input: torch.Tensor,
quant_min: int,
quant_max: int,
eps: float,
dtype: torch.dtype,
) -> tuple[torch.Tensor, torch.Tensor]:
min_val, max_val = torch.aminmax(input)
scale = (max_val - min_val) / float(quant_max - quant_min)
scale = torch.max(scale, torch.Tensor([eps]))
zero_point = quant_min - torch.round(min_val / scale).to(torch.int)
zero_point = torch.clamp(zero_point, quant_min, quant_max)
return scale.to(torch.float64), zero_point.to(torch.int64)
@register_decomposition(aten.put)
def put(
self: torch.Tensor,
index: torch.Tensor,
source: torch.Tensor,
accumulate: bool = False,
) -> torch.Tensor:
flattened = self.flatten()
flattened = torch.index_put(
flattened, [index], source.reshape(index.shape), accumulate
)
return flattened.reshape(self.shape)
@register_decomposition(aten.put_)
def put_(
self: torch.Tensor,
index: torch.Tensor,
source: torch.Tensor,
accumulate: bool = False,
) -> torch.Tensor:
out = aten.put(self, index, source, accumulate=accumulate)
return self.copy_(out)
@register_decomposition(aten._softmax_backward_data.default)
@pw_cast_for_opmath
def _softmax_backward_data(
grad_output: torch.Tensor,
output: torch.Tensor,
dim: int,
input_dtype: torch.dtype,
) -> torch.Tensor:
new_grad_output = grad_output * output
sum_new_grad = torch.sum(new_grad_output, dim=dim, keepdim=True)
# grad_input = new_grad_output - output * sum_new_grad
grad_input = inductor_prims.fma(-output, sum_new_grad, new_grad_output)
# CPU kernel doesn't respect input_dtype, but following check doesn't work for meta tensor
# if grad_output.device == torch.device("cpu"):
# return grad_input.contiguous()
if grad_output.dtype != input_dtype:
grad_input = grad_input.to(input_dtype)
return grad_input.contiguous()
@register_decomposition(aten.index_reduce)
def index_reduce(
self: torch.Tensor,
dim: int,
index: torch.Tensor,
src: torch.Tensor,
reduction_type: str,
*,
include_self: bool = True,
) -> torch.Tensor:
if reduction_type == "mean" and not needs_fallback_due_to_atomic_add_limitations(
self.dtype
):
true_division = self.dtype.is_floating_point or self.dtype.is_complex
ones = torch.ones_like(src)
if include_self:
out = self
counts = torch.ones_like(self).index_add(dim, index, ones)
else:
out = self.index_fill(dim, index, 0)
counts = torch.zeros_like(self).index_add(dim, index, ones)
counts = counts.masked_fill(counts < 1, 1)
out = out.index_add(dim, index, src)
return out / counts if true_division else out // counts
if use_scatter_fallback(
aten.scatter_reduce_.two,
reduction_type,
self.dtype,
src.dtype,
src.device.type,
True,
):
return NotImplemented
repeats = self.shape[dim + 1 :].numel() * self.shape[:dim].numel()
index_shape = (index.numel(), *self.shape[dim + 1 :], *self.shape[:dim])
perm = (*range(self.ndim - dim, self.ndim), 0, *range(1, self.ndim - dim))
scatter_index = (
index.to(torch.int64)
.repeat_interleave(repeats)
.reshape(index_shape)
.permute(perm)
)
return self.scatter_reduce(
dim,
scatter_index,
src,
reduction_type,
include_self=include_self,
)
@register_decomposition(aten.max_pool2d_with_indices)
def max_pool2d_with_indices(
x: torch.Tensor,
kernel_size: list[int],
stride: Optional[Union[int, list[int]]] = None,
padding: Union[int, list[int]] = 0,
dilation: Union[int, list[int]] = 1,
ceil_mode: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
if dilation == 1:
dilation = [1, 1]
if padding == 0:
padding = [0, 0]
if not stride:
stride = kernel_size
kernel_size = pad_listlike(kernel_size, 2)
dilation = pad_listlike(dilation, 2)
padding = pad_listlike(padding, 2)
stride = pad_listlike(stride, 2)
window_size = kernel_size[0] * kernel_size[1]
# We fallback when using non-default dilation or when the window size is too large
if (
torch._inductor.lowering.should_fallback_max_pool2d_with_indices(
kernel_size, dilation
)
or window_size > torch.iinfo(torch.int8).max
):
return NotImplemented
vals, offsets = prims._low_memory_max_pool2d_with_offsets(
x,
kernel_size,
stride,
padding,
dilation,
ceil_mode,
)
indices = prims._low_memory_max_pool2d_offsets_to_indices(
offsets,
kernel_size[1],
x.size(-1),
stride,
padding,
)
return vals, indices
@register_decomposition(aten.adaptive_max_pool2d)
def adaptive_max_pool2d(
x: torch.Tensor, output_size: list[int]
) -> tuple[torch.Tensor, torch.Tensor]:
*batch, h_in, w_in = x.shape
h_out, w_out = output_size
if h_out == 0 or w_out == 0:
o_size = [*batch, h_out, w_out]
return x.new_empty(o_size), x.new_empty(o_size, dtype=torch.int64)
if h_in % h_out == 0 and w_in % w_out == 0:
kernel_size = [h_in // h_out, w_in // w_out]
return aten.max_pool2d_with_indices(x, kernel_size)
return NotImplemented
@register_decomposition(aten.searchsorted.Scalar)
def searchsorted_scalar(
sorted_sequence: torch.Tensor,
self: torch.types.Number,
*,
out_int32: bool = False,
right: bool = False,
side: Optional[str] = None,
sorter: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return aten.searchsorted(
sorted_sequence,
torch.tensor([self], device=sorted_sequence.device),
out_int32=out_int32,
right=right,
side=side,
sorter=sorter,
)[0]
@register_decomposition(aten.rrelu_with_noise_functional)
def rrelu_with_noise_functional(
self: torch.Tensor,
noise: torch.Tensor,
lower: float = 0.125,
upper: float = 0.3333333333333333,
training: bool = False,
generator: Optional[torch.Generator] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if training:
not_positive = self <= 0
r = aten.uniform(self, lower, upper, generator=generator)
output = torch.where(not_positive, self * r, self)
noise_out = torch.where(not_positive, r, 1)
return output, noise_out
else:
negative_slope = (lower + upper) / 2
return aten.leaky_relu(self, negative_slope), torch.Tensor()