team-10/venv/Lib/site-packages/transformers/__init__.py

1000 lines
32 KiB
Python
Raw Normal View History

2025-08-02 02:00:33 +02:00
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and
# once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are
# only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
# in the namespace without actually importing anything (and especially none of the backends).
__version__ = "4.54.1"
from pathlib import Path
from typing import TYPE_CHECKING
# Check the dependencies satisfy the minimal versions required.
from . import dependency_versions_check
from .utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_bitsandbytes_available,
is_essentia_available,
is_flax_available,
is_g2p_en_available,
is_keras_nlp_available,
is_librosa_available,
is_mistral_common_available,
is_pretty_midi_available,
is_scipy_available,
is_sentencepiece_available,
is_speech_available,
is_tensorflow_text_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torchaudio_available,
is_torchvision_available,
is_vision_available,
logging,
)
from .utils.import_utils import define_import_structure
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Base objects, independent of any specific backend
_import_structure = {
"audio_utils": [],
"commands": [],
"configuration_utils": ["PretrainedConfig"],
"convert_graph_to_onnx": [],
"convert_slow_tokenizers_checkpoints_to_fast": [],
"convert_tf_hub_seq_to_seq_bert_to_pytorch": [],
"data": [
"DataProcessor",
"InputExample",
"InputFeatures",
"SingleSentenceClassificationProcessor",
"SquadExample",
"SquadFeatures",
"SquadV1Processor",
"SquadV2Processor",
"glue_compute_metrics",
"glue_convert_examples_to_features",
"glue_output_modes",
"glue_processors",
"glue_tasks_num_labels",
"squad_convert_examples_to_features",
"xnli_compute_metrics",
"xnli_output_modes",
"xnli_processors",
"xnli_tasks_num_labels",
],
"data.data_collator": [
"DataCollator",
"DataCollatorForLanguageModeling",
"DataCollatorForMultipleChoice",
"DataCollatorForPermutationLanguageModeling",
"DataCollatorForSeq2Seq",
"DataCollatorForSOP",
"DataCollatorForTokenClassification",
"DataCollatorForWholeWordMask",
"DataCollatorWithFlattening",
"DataCollatorWithPadding",
"DefaultDataCollator",
"default_data_collator",
],
"data.metrics": [],
"data.processors": [],
"debug_utils": [],
"dependency_versions_check": [],
"dependency_versions_table": [],
"dynamic_module_utils": [],
"feature_extraction_sequence_utils": ["SequenceFeatureExtractor"],
"feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"],
"file_utils": [],
"generation": [
"AsyncTextIteratorStreamer",
"CompileConfig",
"GenerationConfig",
"TextIteratorStreamer",
"TextStreamer",
"WatermarkingConfig",
],
"hf_argparser": ["HfArgumentParser"],
"hyperparameter_search": [],
"image_transforms": [],
"integrations": [
"is_clearml_available",
"is_comet_available",
"is_dvclive_available",
"is_neptune_available",
"is_optuna_available",
"is_ray_available",
"is_ray_tune_available",
"is_sigopt_available",
"is_swanlab_available",
"is_tensorboard_available",
"is_trackio_available",
"is_wandb_available",
],
"loss": [],
"modelcard": ["ModelCard"],
# Losses
"modeling_tf_pytorch_utils": [
"convert_tf_weight_name_to_pt_weight_name",
"load_pytorch_checkpoint_in_tf2_model",
"load_pytorch_model_in_tf2_model",
"load_pytorch_weights_in_tf2_model",
"load_tf2_checkpoint_in_pytorch_model",
"load_tf2_model_in_pytorch_model",
"load_tf2_weights_in_pytorch_model",
],
# Models
"onnx": [],
"pipelines": [
"AudioClassificationPipeline",
"AutomaticSpeechRecognitionPipeline",
"CsvPipelineDataFormat",
"DepthEstimationPipeline",
"DocumentQuestionAnsweringPipeline",
"FeatureExtractionPipeline",
"FillMaskPipeline",
"ImageClassificationPipeline",
"ImageFeatureExtractionPipeline",
"ImageSegmentationPipeline",
"ImageTextToTextPipeline",
"ImageToImagePipeline",
"ImageToTextPipeline",
"JsonPipelineDataFormat",
"MaskGenerationPipeline",
"NerPipeline",
"ObjectDetectionPipeline",
"PipedPipelineDataFormat",
"Pipeline",
"PipelineDataFormat",
"QuestionAnsweringPipeline",
"SummarizationPipeline",
"TableQuestionAnsweringPipeline",
"Text2TextGenerationPipeline",
"TextClassificationPipeline",
"TextGenerationPipeline",
"TextToAudioPipeline",
"TokenClassificationPipeline",
"TranslationPipeline",
"VideoClassificationPipeline",
"VisualQuestionAnsweringPipeline",
"ZeroShotAudioClassificationPipeline",
"ZeroShotClassificationPipeline",
"ZeroShotImageClassificationPipeline",
"ZeroShotObjectDetectionPipeline",
"pipeline",
],
"processing_utils": ["ProcessorMixin"],
"quantizers": [],
"testing_utils": [],
"tokenization_utils": ["PreTrainedTokenizer"],
"tokenization_utils_base": [
"AddedToken",
"BatchEncoding",
"CharSpan",
"PreTrainedTokenizerBase",
"SpecialTokensMixin",
"TokenSpan",
],
"trainer_callback": [
"DefaultFlowCallback",
"EarlyStoppingCallback",
"PrinterCallback",
"ProgressCallback",
"TrainerCallback",
"TrainerControl",
"TrainerState",
],
"trainer_utils": [
"EvalPrediction",
"IntervalStrategy",
"SchedulerType",
"enable_full_determinism",
"set_seed",
],
"training_args": ["TrainingArguments"],
"training_args_seq2seq": ["Seq2SeqTrainingArguments"],
"training_args_tf": ["TFTrainingArguments"],
"utils": [
"CONFIG_NAME",
"MODEL_CARD_NAME",
"PYTORCH_PRETRAINED_BERT_CACHE",
"PYTORCH_TRANSFORMERS_CACHE",
"SPIECE_UNDERLINE",
"TF2_WEIGHTS_NAME",
"TF_WEIGHTS_NAME",
"TRANSFORMERS_CACHE",
"WEIGHTS_NAME",
"TensorType",
"add_end_docstrings",
"add_start_docstrings",
"is_apex_available",
"is_av_available",
"is_bitsandbytes_available",
"is_datasets_available",
"is_faiss_available",
"is_flax_available",
"is_keras_nlp_available",
"is_matplotlib_available",
"is_phonemizer_available",
"is_psutil_available",
"is_py3nvml_available",
"is_pyctcdecode_available",
"is_sacremoses_available",
"is_safetensors_available",
"is_scipy_available",
"is_sentencepiece_available",
"is_sklearn_available",
"is_speech_available",
"is_tensorflow_text_available",
"is_tf_available",
"is_timm_available",
"is_tokenizers_available",
"is_torch_available",
"is_torch_hpu_available",
"is_torch_mlu_available",
"is_torch_musa_available",
"is_torch_neuroncore_available",
"is_torch_npu_available",
"is_torchvision_available",
"is_torch_xla_available",
"is_torch_xpu_available",
"is_vision_available",
"logging",
],
"utils.quantization_config": [
"AqlmConfig",
"AutoRoundConfig",
"AwqConfig",
"BitNetQuantConfig",
"BitsAndBytesConfig",
"CompressedTensorsConfig",
"EetqConfig",
"FbgemmFp8Config",
"FineGrainedFP8Config",
"GPTQConfig",
"HiggsConfig",
"HqqConfig",
"QuantoConfig",
"QuarkConfig",
"FPQuantConfig",
"SpQRConfig",
"TorchAoConfig",
"VptqConfig",
],
"video_utils": [],
}
# tokenizers-backed objects
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_tokenizers_objects
_import_structure["utils.dummy_tokenizers_objects"] = [
name for name in dir(dummy_tokenizers_objects) if not name.startswith("_")
]
else:
# Fast tokenizers structure
_import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"]
try:
if not (is_sentencepiece_available() and is_tokenizers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_sentencepiece_and_tokenizers_objects
_import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [
name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_")
]
else:
_import_structure["convert_slow_tokenizer"] = [
"SLOW_TO_FAST_CONVERTERS",
"convert_slow_tokenizer",
]
try:
if not (is_mistral_common_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_mistral_common_objects
_import_structure["utils.dummy_mistral_common_objects"] = [
name for name in dir(dummy_mistral_common_objects) if not name.startswith("_")
]
else:
_import_structure["tokenization_mistral_common"] = ["MistralCommonTokenizer"]
# Vision-specific objects
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_vision_objects
_import_structure["utils.dummy_vision_objects"] = [
name for name in dir(dummy_vision_objects) if not name.startswith("_")
]
else:
_import_structure["image_processing_base"] = ["ImageProcessingMixin"]
_import_structure["image_processing_utils"] = ["BaseImageProcessor"]
_import_structure["image_utils"] = ["ImageFeatureExtractionMixin"]
try:
if not is_torchvision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_torchvision_objects
_import_structure["utils.dummy_torchvision_objects"] = [
name for name in dir(dummy_torchvision_objects) if not name.startswith("_")
]
else:
_import_structure["image_processing_utils_fast"] = ["BaseImageProcessorFast"]
_import_structure["video_processing_utils"] = ["BaseVideoProcessor"]
# PyTorch-backed objects
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_pt_objects
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
else:
_import_structure["model_debugging_utils"] = [
"model_addition_debugger_context",
]
_import_structure["activations"] = []
_import_structure["cache_utils"] = [
"CacheLayerMixin",
"DynamicLayer",
"StaticLayer",
"SlidingWindowLayer",
"ChunkedSlidingLayer",
"CacheProcessor",
"OffloadedCacheProcessor",
"QuantizedCacheProcessor",
"QuantoQuantizedCacheProcessor",
"HQQQuantizedCacheProcessor",
"Cache",
"CacheConfig",
"DynamicCache",
"EncoderDecoderCache",
"HQQQuantizedCache",
"HQQQuantizedCacheProcessor",
"HybridCache",
"HybridChunkedCache",
"OffloadedCache",
"OffloadedStaticCache",
"QuantizedCache",
"QuantoQuantizedCacheProcessor",
"QuantizedCacheConfig",
"QuantoQuantizedCache",
"SinkCache",
"SlidingWindowCache",
"StaticCache",
]
_import_structure["data.datasets"] = [
"GlueDataset",
"GlueDataTrainingArguments",
"LineByLineTextDataset",
"LineByLineWithRefDataset",
"LineByLineWithSOPTextDataset",
"SquadDataset",
"SquadDataTrainingArguments",
"TextDataset",
"TextDatasetForNextSentencePrediction",
]
_import_structure["generation"].extend(
[
"AlternatingCodebooksLogitsProcessor",
"BayesianDetectorConfig",
"BayesianDetectorModel",
"BeamScorer",
"BeamSearchScorer",
"ClassifierFreeGuidanceLogitsProcessor",
"ConstrainedBeamSearchScorer",
"Constraint",
"ConstraintListState",
"DisjunctiveConstraint",
"EncoderNoRepeatNGramLogitsProcessor",
"EncoderRepetitionPenaltyLogitsProcessor",
"EosTokenCriteria",
"EpsilonLogitsWarper",
"EtaLogitsWarper",
"ExponentialDecayLengthPenalty",
"ForcedBOSTokenLogitsProcessor",
"ForcedEOSTokenLogitsProcessor",
"GenerationMixin",
"HammingDiversityLogitsProcessor",
"InfNanRemoveLogitsProcessor",
"LogitNormalization",
"LogitsProcessor",
"LogitsProcessorList",
"MaxLengthCriteria",
"MaxTimeCriteria",
"MinLengthLogitsProcessor",
"MinNewTokensLengthLogitsProcessor",
"MinPLogitsWarper",
"NoBadWordsLogitsProcessor",
"NoRepeatNGramLogitsProcessor",
"PhrasalConstraint",
"PrefixConstrainedLogitsProcessor",
"RepetitionPenaltyLogitsProcessor",
"SequenceBiasLogitsProcessor",
"StoppingCriteria",
"StoppingCriteriaList",
"StopStringCriteria",
"SuppressTokensAtBeginLogitsProcessor",
"SuppressTokensLogitsProcessor",
"SynthIDTextWatermarkDetector",
"SynthIDTextWatermarkingConfig",
"SynthIDTextWatermarkLogitsProcessor",
"TemperatureLogitsWarper",
"TopKLogitsWarper",
"TopPLogitsWarper",
"TypicalLogitsWarper",
"UnbatchedClassifierFreeGuidanceLogitsProcessor",
"WatermarkDetector",
"WatermarkLogitsProcessor",
"WhisperTimeStampLogitsProcessor",
]
)
# PyTorch domain libraries integration
_import_structure["integrations.executorch"] = [
"TorchExportableModuleWithStaticCache",
"convert_and_export_with_cache",
]
_import_structure["modeling_flash_attention_utils"] = []
_import_structure["modeling_layers"] = ["GradientCheckpointingLayer"]
_import_structure["modeling_outputs"] = []
_import_structure["modeling_rope_utils"] = ["ROPE_INIT_FUNCTIONS", "dynamic_rope_update"]
_import_structure["modeling_utils"] = ["PreTrainedModel", "AttentionInterface"]
_import_structure["masking_utils"] = ["AttentionMaskInterface"]
_import_structure["optimization"] = [
"Adafactor",
"get_constant_schedule",
"get_constant_schedule_with_warmup",
"get_cosine_schedule_with_warmup",
"get_cosine_with_hard_restarts_schedule_with_warmup",
"get_inverse_sqrt_schedule",
"get_linear_schedule_with_warmup",
"get_polynomial_decay_schedule_with_warmup",
"get_scheduler",
"get_wsd_schedule",
]
_import_structure["pytorch_utils"] = [
"Conv1D",
"apply_chunking_to_forward",
"prune_layer",
]
_import_structure["sagemaker"] = []
_import_structure["time_series_utils"] = []
_import_structure["trainer"] = ["Trainer"]
_import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"]
_import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"]
# TensorFlow-backed objects
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_tf_objects
_import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")]
else:
_import_structure["activations_tf"] = []
_import_structure["generation"].extend(
[
"TFForcedBOSTokenLogitsProcessor",
"TFForcedEOSTokenLogitsProcessor",
"TFForceTokensLogitsProcessor",
"TFGenerationMixin",
"TFLogitsProcessor",
"TFLogitsProcessorList",
"TFLogitsWarper",
"TFMinLengthLogitsProcessor",
"TFNoBadWordsLogitsProcessor",
"TFNoRepeatNGramLogitsProcessor",
"TFRepetitionPenaltyLogitsProcessor",
"TFSuppressTokensAtBeginLogitsProcessor",
"TFSuppressTokensLogitsProcessor",
"TFTemperatureLogitsWarper",
"TFTopKLogitsWarper",
"TFTopPLogitsWarper",
]
)
_import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"]
_import_structure["modeling_tf_outputs"] = []
_import_structure["modeling_tf_utils"] = [
"TFPreTrainedModel",
"TFSequenceSummary",
"TFSharedEmbeddings",
"shape_list",
]
_import_structure["optimization_tf"] = [
"AdamWeightDecay",
"GradientAccumulator",
"WarmUp",
"create_optimizer",
]
_import_structure["tf_utils"] = []
# FLAX-backed objects
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_flax_objects
_import_structure["utils.dummy_flax_objects"] = [
name for name in dir(dummy_flax_objects) if not name.startswith("_")
]
else:
_import_structure["generation"].extend(
[
"FlaxForcedBOSTokenLogitsProcessor",
"FlaxForcedEOSTokenLogitsProcessor",
"FlaxForceTokensLogitsProcessor",
"FlaxGenerationMixin",
"FlaxLogitsProcessor",
"FlaxLogitsProcessorList",
"FlaxLogitsWarper",
"FlaxMinLengthLogitsProcessor",
"FlaxTemperatureLogitsWarper",
"FlaxSuppressTokensAtBeginLogitsProcessor",
"FlaxSuppressTokensLogitsProcessor",
"FlaxTopKLogitsWarper",
"FlaxTopPLogitsWarper",
"FlaxWhisperTimeStampLogitsProcessor",
]
)
_import_structure["modeling_flax_outputs"] = []
_import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"]
# Direct imports for type-checking
if TYPE_CHECKING:
# All modeling imports
from .cache_utils import (
Cache,
CacheConfig,
DynamicCache,
EncoderDecoderCache,
HQQQuantizedCache,
HybridCache,
MambaCache,
OffloadedCache,
OffloadedStaticCache,
QuantizedCache,
QuantizedCacheConfig,
QuantoQuantizedCache,
SinkCache,
SlidingWindowCache,
StaticCache,
)
from .configuration_utils import PretrainedConfig
from .convert_slow_tokenizer import (
SLOW_TO_FAST_CONVERTERS,
convert_slow_tokenizer,
)
# Data
from .data import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadV1Processor,
SquadV2Processor,
glue_compute_metrics,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_compute_metrics,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
from .data.data_collator import (
DataCollator,
DataCollatorForLanguageModeling,
DataCollatorForMultipleChoice,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeq2Seq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithFlattening,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .data.datasets import (
GlueDataset,
GlueDataTrainingArguments,
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
SquadDataset,
SquadDataTrainingArguments,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .feature_extraction_sequence_utils import SequenceFeatureExtractor
# Feature Extractor
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
# Generation
from .generation import (
AlternatingCodebooksLogitsProcessor,
AsyncTextIteratorStreamer,
BayesianDetectorConfig,
BayesianDetectorModel,
BeamScorer,
BeamSearchScorer,
ClassifierFreeGuidanceLogitsProcessor,
CompileConfig,
ConstrainedBeamSearchScorer,
Constraint,
ConstraintListState,
DisjunctiveConstraint,
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
EosTokenCriteria,
EpsilonLogitsWarper,
EtaLogitsWarper,
ExponentialDecayLengthPenalty,
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxForceTokensLogitsProcessor,
FlaxGenerationMixin,
FlaxLogitsProcessor,
FlaxLogitsProcessorList,
FlaxLogitsWarper,
FlaxMinLengthLogitsProcessor,
FlaxSuppressTokensAtBeginLogitsProcessor,
FlaxSuppressTokensLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
FlaxWhisperTimeStampLogitsProcessor,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
GenerationConfig,
GenerationMixin,
HammingDiversityLogitsProcessor,
InfNanRemoveLogitsProcessor,
LogitNormalization,
LogitsProcessor,
LogitsProcessorList,
MaxLengthCriteria,
MaxTimeCriteria,
MinLengthLogitsProcessor,
MinNewTokensLengthLogitsProcessor,
MinPLogitsWarper,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PhrasalConstraint,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
SequenceBiasLogitsProcessor,
StoppingCriteria,
StoppingCriteriaList,
StopStringCriteria,
SuppressTokensAtBeginLogitsProcessor,
SuppressTokensLogitsProcessor,
SynthIDTextWatermarkDetector,
SynthIDTextWatermarkingConfig,
SynthIDTextWatermarkLogitsProcessor,
TemperatureLogitsWarper,
TextIteratorStreamer,
TextStreamer,
TFForcedBOSTokenLogitsProcessor,
TFForcedEOSTokenLogitsProcessor,
TFForceTokensLogitsProcessor,
TFGenerationMixin,
TFLogitsProcessor,
TFLogitsProcessorList,
TFLogitsWarper,
TFMinLengthLogitsProcessor,
TFNoBadWordsLogitsProcessor,
TFNoRepeatNGramLogitsProcessor,
TFRepetitionPenaltyLogitsProcessor,
TFSuppressTokensAtBeginLogitsProcessor,
TFSuppressTokensLogitsProcessor,
TFTemperatureLogitsWarper,
TFTopKLogitsWarper,
TFTopPLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
WatermarkDetector,
WatermarkingConfig,
WatermarkLogitsProcessor,
WhisperTimeStampLogitsProcessor,
)
from .hf_argparser import HfArgumentParser
from .image_processing_base import ImageProcessingMixin
from .image_processing_utils import BaseImageProcessor
from .image_processing_utils_fast import BaseImageProcessorFast
from .image_utils import ImageFeatureExtractionMixin
# Integrations
from .integrations import (
is_clearml_available,
is_comet_available,
is_dvclive_available,
is_neptune_available,
is_optuna_available,
is_ray_available,
is_ray_tune_available,
is_sigopt_available,
is_swanlab_available,
is_tensorboard_available,
is_trackio_available,
is_wandb_available,
)
from .integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)
from .keras_callbacks import KerasMetricCallback, PushToHubCallback
from .masking_utils import AttentionMaskInterface
from .model_debugging_utils import (
model_addition_debugger_context,
)
# Model Cards
from .modelcard import ModelCard
from .modeling_flax_utils import FlaxPreTrainedModel
from .modeling_layers import GradientCheckpointingLayer
from .modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
# TF 2.0 <=> PyTorch conversion utilities
from .modeling_tf_pytorch_utils import (
convert_tf_weight_name_to_pt_weight_name,
load_pytorch_checkpoint_in_tf2_model,
load_pytorch_model_in_tf2_model,
load_pytorch_weights_in_tf2_model,
load_tf2_checkpoint_in_pytorch_model,
load_tf2_model_in_pytorch_model,
load_tf2_weights_in_pytorch_model,
)
from .modeling_tf_utils import (
TFPreTrainedModel,
TFSequenceSummary,
TFSharedEmbeddings,
shape_list,
)
from .modeling_utils import AttentionInterface, PreTrainedModel
from .models import *
from .models.timm_wrapper import TimmWrapperImageProcessor
# Optimization
from .optimization import (
Adafactor,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
get_wsd_schedule,
)
# Optimization
from .optimization_tf import (
AdamWeightDecay,
GradientAccumulator,
WarmUp,
create_optimizer,
)
# Pipelines
from .pipelines import (
AudioClassificationPipeline,
AutomaticSpeechRecognitionPipeline,
CsvPipelineDataFormat,
DepthEstimationPipeline,
DocumentQuestionAnsweringPipeline,
FeatureExtractionPipeline,
FillMaskPipeline,
ImageClassificationPipeline,
ImageFeatureExtractionPipeline,
ImageSegmentationPipeline,
ImageTextToTextPipeline,
ImageToImagePipeline,
ImageToTextPipeline,
JsonPipelineDataFormat,
MaskGenerationPipeline,
NerPipeline,
ObjectDetectionPipeline,
PipedPipelineDataFormat,
Pipeline,
PipelineDataFormat,
QuestionAnsweringPipeline,
SummarizationPipeline,
TableQuestionAnsweringPipeline,
Text2TextGenerationPipeline,
TextClassificationPipeline,
TextGenerationPipeline,
TextToAudioPipeline,
TokenClassificationPipeline,
TranslationPipeline,
VideoClassificationPipeline,
VisualQuestionAnsweringPipeline,
ZeroShotAudioClassificationPipeline,
ZeroShotClassificationPipeline,
ZeroShotImageClassificationPipeline,
ZeroShotObjectDetectionPipeline,
pipeline,
)
from .processing_utils import ProcessorMixin
from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer
# Tokenization
from .tokenization_utils import PreTrainedTokenizer
from .tokenization_utils_base import (
AddedToken,
BatchEncoding,
CharSpan,
PreTrainedTokenizerBase,
SpecialTokensMixin,
TokenSpan,
)
from .tokenization_utils_fast import PreTrainedTokenizerFast
# Trainer
from .trainer import Trainer
# Trainer
from .trainer_callback import (
DefaultFlowCallback,
EarlyStoppingCallback,
PrinterCallback,
ProgressCallback,
TrainerCallback,
TrainerControl,
TrainerState,
)
from .trainer_pt_utils import torch_distributed_zero_first
from .trainer_seq2seq import Seq2SeqTrainer
from .trainer_utils import (
EvalPrediction,
IntervalStrategy,
SchedulerType,
enable_full_determinism,
set_seed,
)
from .training_args import TrainingArguments
from .training_args_seq2seq import Seq2SeqTrainingArguments
from .training_args_tf import TFTrainingArguments
# Files and general utilities
from .utils import (
CONFIG_NAME,
MODEL_CARD_NAME,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
TensorType,
add_end_docstrings,
add_start_docstrings,
is_apex_available,
is_av_available,
is_bitsandbytes_available,
is_datasets_available,
is_faiss_available,
is_flax_available,
is_keras_nlp_available,
is_matplotlib_available,
is_phonemizer_available,
is_psutil_available,
is_py3nvml_available,
is_pyctcdecode_available,
is_sacremoses_available,
is_safetensors_available,
is_scipy_available,
is_sentencepiece_available,
is_sklearn_available,
is_speech_available,
is_tensorflow_text_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_hpu_available,
is_torch_mlu_available,
is_torch_musa_available,
is_torch_neuroncore_available,
is_torch_npu_available,
is_torch_xla_available,
is_torch_xpu_available,
is_torchvision_available,
is_vision_available,
logging,
)
# bitsandbytes config
from .utils.quantization_config import (
AqlmConfig,
AutoRoundConfig,
AwqConfig,
BitNetQuantConfig,
BitsAndBytesConfig,
CompressedTensorsConfig,
EetqConfig,
FbgemmFp8Config,
FineGrainedFP8Config,
FPQuantConfig,
GPTQConfig,
HiggsConfig,
HqqConfig,
QuantoConfig,
QuarkConfig,
SpQRConfig,
TorchAoConfig,
VptqConfig,
)
from .video_processing_utils import BaseVideoProcessor
else:
import sys
_import_structure = {k: set(v) for k, v in _import_structure.items()}
import_structure = define_import_structure(Path(__file__).parent / "models", prefix="models")
import_structure[frozenset({})].update(_import_structure)
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
import_structure,
module_spec=__spec__,
extra_objects={"__version__": __version__},
)
if not is_tf_available() and not is_torch_available() and not is_flax_available():
logger.warning_advice(
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. "
"Models won't be available and only tokenizers, configuration "
"and file/data utilities can be used."
)