team-10/venv/Lib/site-packages/transformers/models/gemma3n/modular_gemma3n.py

2658 lines
127 KiB
Python
Raw Normal View History

2025-08-02 02:00:33 +02:00
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
from collections.abc import Callable, Sequence
from typing import Any, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, SlidingWindowLayer
from ...configuration_utils import PretrainedConfig, layer_type_validation
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast
from ...modeling_rope_utils import rope_config_validation
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling, logging
from ..auto import AutoModel
from ..gemma2.configuration_gemma2 import Gemma2Config
from ..gemma2.modeling_gemma2 import (
Gemma2MLP,
Gemma2PreTrainedModel,
Gemma2RotaryEmbedding,
eager_attention_forward,
rotate_half,
)
from ..gemma3.modeling_gemma3 import (
Gemma3Attention,
Gemma3DecoderLayer,
Gemma3ForCausalLM,
Gemma3RMSNorm,
Gemma3TextModel,
Gemma3TextScaledWordEmbedding,
)
from ..paligemma.modeling_paligemma import (
PaliGemmaCausalLMOutputWithPast,
PaliGemmaForConditionalGeneration,
PaliGemmaModel,
PaligemmaModelOutputWithPast,
)
from ..timm_wrapper.configuration_timm_wrapper import TimmWrapperConfig
logger = logging.get_logger(__name__)
class Gemma3nTextConfig(Gemma2Config, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3nTextModel`]. It is used to instantiate an
Gemma3nTextModel model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Gemma 3n E4B, e.g.
[google/gemma-3n-E4B](https://huggingface.co/google/gemma-3n-E4B).
Configuration objects that inherit from [`Gemma3nTextConfig`] and can be used to control the model outputs. Read
the documentation from [`Gemma3nTextConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 262400):
Vocabulary size of the Gemma3nText model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`Gemma3nTextModel`]
vocab_size_per_layer_input (`int`, *optional*, defaults to 262144):
Vocabulary size of the per-layer text embeddings that augment the standard embeddings.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
hidden_size_per_layer_input (`int`, *optional*, defaults to 256):
Dimension of the hidden representations for per-layer emebeddings.
intermediate_size (`int` or `Sequence[int]`, *optional*, defaults to 16384):
Dimension of the MLP representations. MatFormer configurations may wish to provide a sequence of integers
to account for vairable intermediate_size values across layers. In such cases,
`len(intermediate_size) == num_hidden_layers`.
num_hidden_layers (`int`, *optional*, defaults to 35):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 2):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout this
[paper](https://arxiv.org/pdf/2305.13245.pdf). If not specified, will default to `num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to
`"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"`
activation function.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings used in gloabl attention.
NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we
recommend you to update this value accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
rope_local_base_freq (float, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings for local attention.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
sliding_window (`int`, *optional*, defaults to 512):
This is the size of the sliding window used by local attention layers.
layer_types (`Optional`, *optional*):
A sequence of strings defining the attention type for that layer as either "sliding_attention" or
"full_attention". If not provided, `layer_types` will de inferred from `num_hidden_layers` using a pattern
of four "sliding_attention" layers followed one "full_attention". The last layer in the model should always
be a "full_attention" layer.
final_logit_softcapping (`float`, *optional*, defaults to 30.0):
Scaling factor when applying tanh softcapping on the logits.
altup_active_idx (`int`, *optional*, defaults to 0):
The index of the prediction from which AltUp will compute additional predictions or correct
altup_coef_clip (`float`, *optional*, defaults to 120.0):
The maximum amplitude of an AltUp prediction or correction coeficient weight.
altup_correct_scale (`bool`, *optional*, defaults to `True`):
If True, apply the `AltUp.correct_output_scale` to the corrected prediction at `altup_active_idx`.
altup_num_inputs (`int`, *optional*, defaults to 4):
The number of predictions that AltUp should be make given the input sequence.
num_kv_shared_layers (`int`, *optional*, defaults to 15):
The number of layer that share KV cache values. During the forward pass, the last `num_kv_shared_layers`
layers in the model "share" the KV values in that each local and global layer in this range uses the KV
cache values computed for the last local or global layer, respectively, before entering this range. The
value should be `num_kv_shared_layers` should be a scalar of `sliding_window_pattern`.
laurel_rank (int, *optional*, defaults to 64):
The intermediate size for the linear projections in the Learned Augmented Residual Layer.
activation_sparsity_pattern (Sequence[float], *optional*, defaults to `(0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)`):
The sparsity factor used to extract the top-k activations for a given layer. The provided Sequence must
explicitly provide a sparsity value for each layer in the model.
```python
>>> from transformers import Gemma3nTextModel, Gemma3nTextConfig
>>> # Initializing a Gemma3nText gemma3n_text-E4B style configuration
>>> configuration = Gemma3nTextConfig()
>>> # Initializing a model from the gemma3n_text-E4B style configuration
>>> model = Gemma3nTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "gemma3n_text"
def __init__(
self,
vocab_size: int = 262_400,
vocab_size_per_layer_input: int = 262_144,
hidden_size: int = 2048,
hidden_size_per_layer_input: int = 256,
intermediate_size: Union[int, Sequence[int]] = 16_384,
num_hidden_layers: int = 35,
num_attention_heads: int = 8,
num_key_value_heads: int = 2,
head_dim: int = 256,
hidden_activation: str = "gelu_pytorch_tanh",
max_position_embeddings: int = 32_768,
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = 0,
eos_token_id: int = 1,
bos_token_id: int = 2,
rope_theta: float = 1_000_000.0,
rope_scaling: Optional[dict[str, Any]] = None,
rope_local_base_freq: float = 10_000.0,
attention_bias: bool = False,
attention_dropout: float = 0.0,
sliding_window: int = 512,
layer_types: Optional[Sequence[str]] = None,
final_logit_softcapping: float = 30.0,
altup_active_idx: int = 0,
altup_coef_clip: float = 120.0,
altup_correct_scale: bool = True,
altup_num_inputs: int = 4,
num_kv_shared_layers: int = 15,
laurel_rank: int = 64,
activation_sparsity_pattern: Optional[Union[float, Sequence[float]]] = (0.95,) * 10 + (0.0,) * 25,
**kwargs,
):
PretrainedConfig.__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
if isinstance(intermediate_size, Sequence) and (intsize_len := len(intermediate_size)) != num_hidden_layers:
raise ValueError(
"intermediate_size must have an explicit intermediate size for every layer or one for all layers. "
f"Expected {num_hidden_layers} values but got {intsize_len}."
)
elif not isinstance(intermediate_size, Sequence):
intermediate_size = [intermediate_size] * num_hidden_layers
self.vocab_size = vocab_size
self.vocab_size_per_layer_input = vocab_size_per_layer_input
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.layer_types = layer_types
self.rope_local_base_freq = rope_local_base_freq
self.rope_scaling = rope_scaling
rope_config_validation(self)
if layer_types is None:
self.layer_types = [
"full_attention" if (i + 1) % 5 == 0 else "sliding_attention" for i in range(self.num_hidden_layers)
]
else:
self.layer_types = layer_types
layer_type_validation(self.layer_types)
self.hidden_size_per_layer_input = hidden_size_per_layer_input
self.num_kv_shared_layers = num_kv_shared_layers
self.altup_active_idx = altup_active_idx
self.altup_coef_clip = altup_coef_clip
self.altup_correct_scale = altup_correct_scale
self.altup_num_inputs = altup_num_inputs
self.laurel_rank = laurel_rank
if activation_sparsity_pattern is None:
activation_sparsity_pattern = [0.0] * num_hidden_layers
if (len_asp := len(activation_sparsity_pattern)) != num_hidden_layers:
raise ValueError(
"activation_sparsity_pattern must have an explicit activation sparsity value for every layer."
f"Expected {num_hidden_layers} values but got {len_asp}."
)
self.activation_sparsity_pattern = activation_sparsity_pattern
class Gemma3nAudioConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3nAudioEncoder`]. It is used to instantiate
an `Gemma3nAudioEncoder` model according to the specified arguments, defining the model architecture. Instantiating
a configuration with the defaults will yield a similar configuration to that of the Gemma 3n E4B, e.g.,
[google/gemma-3n-E4B](https://huggingface.co/google/gemma-3n-E4B).
Configuration objects that inherit from [`Gemma3nAudioConfig`] and can be used to control the model outputs. Read
the documentation from [`Gemma3nAudioConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 128):
Vocabulary size of the additional hard-token embeddings for audio model. These augment the embeddings
included in the `Gemma3nTextModel` to provide, e.g., the end of audio and audio soft token placeholder
tokens when converting `input_ids` to embeddings in the `Gemma3nForConditionalGeneration` model.
vocab_offset (`int`, *optional*, defaults to 262272):
Offset between the tokenizer vocab index for the token ids embedded by `Gemma3nMultimodalEmbedder` and the
0-indexed `Gemma3nMultimodalEmbedder.embedding` table.
input_feat_size (`int`, *optional*, defaults to 128):
The number of channels in each mel-spectrogram frame.
hidden_size (`int`, *optional*, defaults to 1536):
Dimension of the hidden representations.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
gradient_clipping (`float`, *optional*, defaults to 10000000000.0):
Clipping value used to stablize extremely large gradient values.
conf_attention_chunk_size (`int`, *optional*, defaults to 12):
The sub-sequence size for local attention processing inside the Conformer ("conf") section of the
Universal Speech Model.
conf_attention_context_left (`int`, *optional*, defaults to 13):
The left context size of the local attention inside the Conformer ("conf") section of the
Universal Speech Model.
conf_attention_context_right (`int`, *optional*, defaults to 0):
The right context size of the local attention inside the Conformer ("conf") section of the
Universal Speech Model.
conf_attention_logit_cap (`float`, *optional*, defaults to 50.0):
Logit cap applied during local attention inside the Conformer ("conf") section of the
Universal Speech Model.
conf_num_attention_heads (`int`, *optional*, defaults to 8):
The number of attention heads in local attention inside the Conformer ("conf") section of the
Universal Speech Model.
conf_num_hidden_layers (`int`, *optional*, defaults to 12):
The number of layers that use local attention inside the Conformer ("conf") section of the
Universal Speech Model.
conf_conv_kernel_size (`int`, *optional*, defaults to 5):
Convolution kernel size for the conformer block inside the Conformer ("conf") section of the
Universal Speech Model.
conf_reduction_factor (`int`, *optional*, defaults to 4):
Reduction factor used in the conformer block inside the Conformer ("conf") section of the
Universal Speech Model.
conf_residual_weight (`float`, *optional*, defaults to 0.5):
Residual connection weight inside the Conformer ("conf") section of the
Universal Speech Model.
sscp_conv_channel_size (`tuple(int, int)`, *optional*, defaults to `(128, 32)`):
The channel sizes for the first and second convolutional layers in the Sub-sample Convolution Projection
("sscp") section of the Universal Speech Model.
sscp_conv_group_norm_eps (`float`, *optional*, defaults to 0.001):
Epsilon used in group normalization in the subsample convolution projection in the Sub-sample Convolution
Projection ("sscp") section of the Universal Speech Model.
sscp_conv_kernel_size (`tuple(tuple(int, int), tuple(int, int))`, *optional*, defaults to `((3, 3), (3, 3))`):
Kernel sizes of the two convolutional layers in the subsample convolution projection in the Sub-sample
Convolution Projection ("sscp") section of the Universal Speech Model. The kernel sizes are specified as a
tuple of height and width for each layer, where the height corresponds to the time dimension and the width
corresponds to the frequency dimension.
sscp_conv_stride_size (`tuple(tuple(int, int), tuple(int, int))`, *optional*, defaults to `((2, 2), (2, 2))`):
Stride sizes of the two convolutional layers in the subsample convolution projection in the Sub-sample
Convolution Projection ("sscp") section of the Universal Speech Model. The stride sizes are specified as a
tuple of height and width for each layer, where the height corresponds to the time dimension and the width
corresponds to the frequency dimension.
Example:
```python
>>> from transformers import Gemma3nAudioConfig, Gemma3nAudioEncoder
>>> # Initializing a Gemma3nAudioEncoder gemma3n_audio-E4B-style configuration
>>> configuration = Gemma3nAudioConfig()
>>> # Initializing a model from the gemma3n_audio-E4B style configuration
>>> model = Gemma3nAudioEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "gemma3n_audio"
def __init__(
self,
vocab_size: int = 128,
vocab_offset: int = 262_144 + 128, # text vocab size + vision vocab size
input_feat_size: int = 128,
hidden_size: int = 1536,
rms_norm_eps: float = 1e-6,
gradient_clipping: float = 10_000_000_000.0,
conf_attention_chunk_size: int = 12,
conf_attention_context_left: int = 13,
conf_attention_context_right: int = 0,
conf_attention_logit_cap: float = 50.0,
conf_num_attention_heads: int = 8,
conf_num_hidden_layers: int = 12,
conf_conv_kernel_size: int = 5,
conf_reduction_factor: int = 4,
conf_residual_weight: float = 0.5,
sscp_conv_channel_size: tuple[int, int] = (128, 32),
sscp_conv_group_norm_eps: float = 1e-3,
sscp_conv_kernel_size: tuple[tuple[int, int], tuple[int, int]] = (
(3, 3),
(3, 3),
),
sscp_conv_stride_size: tuple[tuple[int, int], tuple[int, int]] = (
(2, 2),
(2, 2),
),
**kwargs,
):
super().__init__(**kwargs)
self.input_feat_size = input_feat_size
self.hidden_size = hidden_size
self.rms_norm_eps = rms_norm_eps
self.vocab_size = vocab_size
self.vocab_offset = vocab_offset
self.gradient_clipping = gradient_clipping
self.conf_attention_chunk_size = conf_attention_chunk_size
self.conf_attention_context_left = conf_attention_context_left
self.conf_attention_context_right = conf_attention_context_right
self.conf_attention_logit_cap = conf_attention_logit_cap
self.conf_num_attention_heads = conf_num_attention_heads
self.conf_num_hidden_layers = conf_num_hidden_layers
self.conf_conv_kernel_size = conf_conv_kernel_size
self.conf_reduction_factor = conf_reduction_factor
self.conf_residual_weight = conf_residual_weight
self.sscp_conv_channel_size = sscp_conv_channel_size
self.sscp_conv_group_norm_eps = sscp_conv_group_norm_eps
self.sscp_conv_kernel_size = sscp_conv_kernel_size
self.sscp_conv_stride_size = sscp_conv_stride_size
class Gemma3nVisionConfig(TimmWrapperConfig):
r"""
This is the configuration class to store the configuration for a timm backbone [`TimmWrapper`]. It is used to
instantiate an timm model model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma 3n E4B
vision tower, e.g. [google/gemma-3n-E4B](https://huggingface.co/google/gemma-3n-E4B).
Configuration objects inherit from [`Gemma3nVisionConfig`] and can be used to control the model outputs. Read the
documentation from [`Gemma3nVisionConfig`] for more information.
Config loads imagenet label descriptions and stores them in `id2label` attribute, `label2id` attribute for default
imagenet models is set to `None` due to occlusions in the label descriptions.
Args:
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
do_pooling (`bool`, *optional*, defaults to `False`):
Whether to do pooling for the last_hidden_state in `TimmWrapper` or not.
architecture (`str`, *optional*, defaults to `"mobilenetv5_300m_enc"`):
Determines vision architecture for TimmWrapper.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
vocab_size (`int`, *optional*, defaults to 128):
Vocabulary size of the additional hard-token embeddings for vision model.
vocab_offset (`int`, *optional*, defaults to 262144):
Offset between the tokenizer vocab index for the token ids embedded by `Gemma3nMultimodalEmbedder` and the
0-indexed `Gemma3nMultimodalEmbedder.embedding` table.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
Example:
```python
>>> from transformers import Gemma3nVisionConfig, TimmWrapper
>>> # Initializing a TimmWrapper gemma3n_vision-E4B-style configuration
>>> configuration = Gemma3nVisionConfig()
>>> # Initializing a gemma3n_vision-E4B-style TimmWrapper from the configuration
>>> model = TimmWrapper(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "gemma3n_vision"
def __init__(
self,
initializer_range: float = 0.02,
do_pooling: bool = False,
architecture: str = "mobilenetv5_300m_enc",
hidden_size: int = 2048,
vocab_size: int = 128,
vocab_offset: int = 262_144,
rms_norm_eps: float = 1e-06,
model_args: Optional[dict] = None,
**kwargs,
):
super().__init__(**kwargs)
self.architecture = architecture
self.initializer_range = initializer_range
self.do_pooling = do_pooling
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.vocab_offset = vocab_offset
self.rms_norm_eps = rms_norm_eps
class Gemma3nConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3nForConditionalGeneration`]. It is used to
instantiate a Gemma3nForConditionalGeneration according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
Gemma3n-E4B.
e.g. [google/gemma-3n-E4B](https://huggingface.co/google/gemma-3n-E4B)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[Gemma3nTextConfig, dict]`, *optional*):
The config object of the text backbone.
vision_config (`Union[AutoConfig, dict]`, *optional*):
Custom vision config or dict.
audio_config (`Union[AutoConfig, dict]`, *optional*):
Custom audio config or dict.
audio_soft_tokens_per_image (`int`, *optional*, defaults to 188):
The number of soft tokens per audio clip.
vision_soft_tokens_per_image (`int`, *optional*, defaults to 256):
The number of soft tokens per image.
boi_token_id (`int`, *optional*, defaults to 255999):
The begin-of-image token index to wrap the image prompt.
eoi_token_id (`int`, *optional*, defaults to 262144):
The end-of-image token index to wrap the image prompt.
image_token_id (`int`, *optional*, defaults to 262145):
The image token index to encode the image prompt.
boa_token_id (`int`, *optional*, defaults to 256000):
The begin-of-audio token index to wrap the audio prompt.
eoa_token_id (`int`, *optional*, defaults to 262272):
The end-of-audio token index to wrap the audio prompt.
audio_token_id (`int`, *optional*, defaults to 262273):
The audio token index to encode the audio prompt.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import Gemma3nForConditionalGeneration, Gemma3nConfig, Gemma3nTextConfig
>>> # Initializing a MobileNet vision config, which is loaded from TIMM
>>> vision_config = Gemma3nVisionConfig()
>>> # Initializing a Gemma3n Audio config
>>> audio_config = Gemma3nAudioConfig()
>>> # Initializing a Gemma3n Text config
>>> text_config = Gemma3nTextConfig()
>>> # Initializing a Gemma3n gemma-3-4b style configuration
>>> configuration = Gemma3nConfig(text_config, vision_config, audio_config)
>>> # Initializing a model from the gemma-3-4b style configuration
>>> model = Gemma3nTextConfig(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma3n"
sub_configs = {
"text_config": Gemma3nTextConfig,
"vision_config": Gemma3nVisionConfig,
"audio_config": Gemma3nAudioConfig,
}
def __init__(
self,
text_config: Optional[Union[Gemma3nTextConfig, dict[str, Any]]] = None,
vision_config: Optional[Union[Gemma3nVisionConfig, dict[str, Any]]] = None,
audio_config: Optional[Union[Gemma3nAudioConfig, dict[str, Any]]] = None,
audio_soft_tokens_per_image: int = 188,
vision_soft_tokens_per_image: int = 256,
boi_token_id: int = 255_999,
eoi_token_id: int = 262_144,
image_token_id: int = 262_145,
boa_token_id: int = 256_000,
eoa_token_id: int = 262_272,
audio_token_id: int = 262_273,
initializer_range: float = 0.02,
**kwargs,
):
super().__init__(**kwargs)
if isinstance(text_config, dict):
text_config = Gemma3nTextConfig(**text_config)
elif text_config is None:
text_config = Gemma3nTextConfig()
logger.info("text_config is None. Using default Gemma3nTextConfig.")
if isinstance(vision_config, dict):
vision_config = Gemma3nVisionConfig(**vision_config)
elif vision_config is None:
vision_config = Gemma3nVisionConfig()
logger.info("vision_config is None. Using default Gemma3nVisionConfig.")
if isinstance(audio_config, dict):
audio_config = Gemma3nAudioConfig(**audio_config)
elif audio_config is None:
audio_config = Gemma3nAudioConfig()
logger.info("audio_config is None. Using default Gemma3nAudioConfig.")
self.text_config = text_config
self.vision_config = vision_config
self.audio_config = audio_config
self.audio_soft_tokens_per_image = audio_soft_tokens_per_image
self.vision_soft_tokens_per_image = vision_soft_tokens_per_image
self.boi_token_id = boi_token_id
self.eoi_token_id = eoi_token_id
self.image_token_id = image_token_id
self.boa_token_id = boa_token_id
self.eoa_token_id = eoa_token_id
self.audio_token_id = audio_token_id
self.initializer_range = initializer_range
class Gemma3nModelOutputWithPast(PaligemmaModelOutputWithPast):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
audio_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state.
"""
audio_hidden_states: Optional[torch.FloatTensor] = None
class Gemma3nCausalLMOutputWithPast(PaliGemmaCausalLMOutputWithPast):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
audio_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state.
"""
audio_hidden_states: Optional[torch.FloatTensor] = None
class Gemma3nRMSNorm(Gemma3RMSNorm):
def __init__(self, dim: int, eps: float = 1e-6, with_scale: bool = True):
super().__init__(dim, eps=eps)
del self.weight
self.with_scale = with_scale
if self.with_scale:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.register_buffer("weight", torch.tensor(1.0), persistent=False)
def _norm(self, x):
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = self._norm(x.float()) * self.weight.float()
return output.type_as(x)
# ==== Audio Encoder ====
class Gemma3nAudioRelativePositionEmbedding(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.num_heads = self.config.conf_num_attention_heads
self.channels = self.config.hidden_size
self.head_dim = self.channels // self.num_heads
self.max_backward = max(0, self.config.conf_attention_context_left - 1)
self.max_forward = self.config.conf_attention_context_right
self.pos_proj = nn.Linear(self.channels, self.num_heads * self.head_dim, bias=False)
min_timescale = 1.0
max_timescale = 1.0e4
num_timescales = self.channels // 2
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / max(num_timescales - 1, 1)
inv_timescales = min_timescale * torch.exp(torch.arange(num_timescales) * -log_timescale_increment)
self.register_buffer(
"inv_timescales",
inv_timescales.float().unsqueeze(0).unsqueeze(0),
persistent=False,
)
def _get_timing_signal_1d_pos(self, position: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
position = position.float().unsqueeze(-1)
scaled_time = position * self.inv_timescales.to(device=position.device, dtype=torch.float32)
timing_signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=-1)
return timing_signal.type(dtype)
def _relative_shift(
self,
term_bd_before_shift: torch.Tensor,
batch_size: int,
num_heads: int,
num_query_blocks: int,
query_block_size: int,
key_context_size: int,
max_span_plus_1: int,
) -> torch.Tensor:
"""Performs the relative shift.
Args:
term_bd_before_shift: Tensor of shape [B, N, U, W, F_span]. batch_size
(B), num_heads (N), num_query_blocks (U), query_block_size (W),
key_context_size (C = W+L+R), max_span_plus_1 (F_span = L+R+1).
Returns:
Tensor of shape [B, N, U, W, C].
"""
# term_bd_before_shift shape: [B, N, U, W, F_span]
# Target shape after shift: [B, N, U, W, C]
# Padding amount for the last dimension (F_span) to become (C + 1)
# C = key_context_size
# F_span = max_span_plus_1
pad_amount_last_dim = (key_context_size + 1) - max_span_plus_1
# PyTorch F.pad expects (pad_left, pad_right, pad_top, pad_bottom ...)
# We only pad the last dimension on the right.
padding_tuple = (0, pad_amount_last_dim)
term_bd_padded = nn.functional.pad(term_bd_before_shift, padding_tuple)
# Shape after pad: [B, N, U, W, C+1]
# Reshape for slicing (emulating JAX's behavior)
# [B, N, U, W * (C+1)]
term_bd_reshaped = term_bd_padded.reshape(
(
batch_size,
num_heads,
num_query_blocks,
query_block_size * (key_context_size + 1),
)
)
# Slice to effective [B, N, U, W * C]
term_bd_sliced = term_bd_reshaped[:, :, :, : query_block_size * key_context_size]
# Reshape back to [B, N, U, W, C]
term_bd_shifted = term_bd_sliced.reshape(
(
batch_size,
num_heads,
num_query_blocks,
query_block_size,
key_context_size,
)
)
return term_bd_shifted
def forward(self, queries: torch.Tensor, keys: torch.Tensor) -> torch.Tensor:
# queries: [B, U, W, N, H] (batch, num_query_blocks, query_block_size, num_heads, head_dim)
# keys: [B, U, C, N, H] (batch, num_query_blocks, key_context_size, num_heads, head_dim)
# C = W + L + R (key_context_size)
# F_span = L + R + 1 (max_span + 1)
batch_size, num_query_blocks, query_block_size, num_heads, head_dim = queries.shape
_, _, key_context_size, _, _ = keys.shape
# Relative positions for sinusoidal embeddings: [L, L-1, ..., -R]
# Length is L+R+1 = self.max_span + 1
pos_indices = torch.arange(self.max_backward, -self.max_forward - 1, -1, device=queries.device).unsqueeze(
0
) # Shape [1, F_span]
max_span_plus_1 = pos_indices.shape[1] # F_span
sin_emb_timing_signal = self._get_timing_signal_1d_pos(
pos_indices, dtype=queries.dtype
) # Shape [1, F_span, self.channels]
# Project sinusoidal embeddings: [1, F_span, self.channels] -> [1, F_span, N*H]
projected_sin_emb = self.pos_proj(sin_emb_timing_signal)
# Reshape to [1, F_span, N, H] then squeeze to [F_span, N, H]
sin_emb = projected_sin_emb.reshape(1, max_span_plus_1, self.num_heads, self.head_dim).squeeze(
0
) # Shape [F, N, H]
# term_ac: Query-Key content interaction
# queries: [B, U, W, N, H] -> permute to [B, N, U, W, H] for matmul
# keys: [B, U, C, N, H] -> permute to [B, N, U, H, C] for matmul
queries_p = queries.permute(0, 3, 1, 2, 4) # [B, N, U, W, H]
keys_p_t = keys.permute(0, 3, 1, 4, 2) # [B, N, U, H, C]
term_ac = torch.matmul(queries_p, keys_p_t) # [B, N, U, W, C]
# term_bd: Query-Position interaction
# Original einsum: term_bd_unshifed = torch.einsum('buwnh,fnh->bnuwf', queries, sin_emb)
# queries shape: [B, U, W, N, H]
# sin_emb shape: [F, N, H]
# Target output shape: [B, N, U, W, F]
# Permute queries to [B, N, U, W, H] for easier broadcasting with sin_emb
q_permuted = queries.permute(0, 3, 1, 2, 4)
# Permute sin_emb to [N, H, F] to prepare for matmul
# sin_emb original is [F, N, H]
s_permuted = sin_emb.permute(1, 2, 0) # Shape: [N, H, F]
# Reshape queries for matmul: [B, N, U*W, H]
q_reshaped = q_permuted.reshape(batch_size, num_heads, num_query_blocks * query_block_size, head_dim)
# Perform matmul: [B, N, U*W, H] @ [N, H, F]
# s_permuted ([N, H, F]) will be broadcast to [B, N, H, F]
# Result: [B, N, U*W, F]
term_bd_unshifed_matmul = torch.matmul(q_reshaped, s_permuted)
# Reshape to target [B, N, U, W, F]
term_bd_unshifed = term_bd_unshifed_matmul.reshape(
batch_size,
num_heads,
num_query_blocks,
query_block_size,
max_span_plus_1,
)
# Apply relative shift to term_bd_unshifed
term_bd_shifted = self._relative_shift(
term_bd_unshifed,
batch_size,
num_heads,
num_query_blocks,
query_block_size,
key_context_size,
max_span_plus_1,
) # Shape [B, N, U, W, C]
return term_ac + term_bd_shifted
class Gemma3nAudioAttention(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.num_heads = self.config.conf_num_attention_heads
self.hidden_size = self.config.hidden_size
self.head_dim = self.hidden_size // self.num_heads
self.chunk_size = self.config.conf_attention_chunk_size
self.max_future_horizon = self.config.conf_attention_context_right
self.max_past_horizon = max(0, self.config.conf_attention_context_left - 1)
self.attention_logits_soft_cap = self.config.conf_attention_logit_cap
self.context_size = self.chunk_size + self.max_past_horizon + self.max_future_horizon
self.relative_position_embedding = Gemma3nAudioRelativePositionEmbedding(config)
self.per_dim_scale = nn.Parameter(torch.zeros((self.head_dim,)))
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
q_scale = self.head_dim**-0.5
r_softplus_0 = 1.0 / torch.nn.functional.softplus(torch.tensor(0.0))
self.register_buffer("q_scale", (q_scale * r_softplus_0).clone().detach(), persistent=False)
lower_causal_mask = torch.tril(
torch.ones((self.context_size, self.chunk_size), dtype=torch.bool),
diagonal=0,
).T
upper_causal_mask = torch.tril(
torch.ones((self.chunk_size, self.context_size), dtype=torch.bool),
diagonal=self.max_past_horizon + self.max_future_horizon,
)
local_causal_valid_mask = torch.ones((self.chunk_size, self.context_size), dtype=torch.bool)
local_causal_valid_mask = local_causal_valid_mask * lower_causal_mask * upper_causal_mask
self.register_buffer("local_causal_valid_mask", local_causal_valid_mask, persistent=False)
self.register_buffer(
"softcap",
torch.tensor(self.attention_logits_soft_cap).float(),
persistent=False,
)
def _pad_dim1(self, x: torch.Tensor, pad_left: int, pad_right: int) -> torch.Tensor:
batch, _, *tail_shape = x.shape
left = x.new_zeros((batch, pad_left, *tail_shape))
right = x.new_zeros((batch, pad_right, *tail_shape))
x = torch.cat([left, x, right], dim=1)
return x
def _convert_to_block(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""Turns a sequence to non overlapping blocks.
Args:
hidden_states: a tensor of [batch, time, ...].
Returns:
A tensor of [batch, num_blocks, block_size, ...], with necessary
paddings,
where output[:, i, ...] are x[:, i*block_size:(i+1)*block_size, ...].
"""
shape = hidden_states.shape
b, t = shape[:2]
num_blocks = (t + self.chunk_size - 1) // self.chunk_size
if (padding_len := num_blocks * self.chunk_size - t) > 0:
hidden_states = self._pad_dim1(hidden_states, 0, padding_len)
permute_dims = (b, num_blocks, self.chunk_size) + shape[2:]
hidden_states = hidden_states.reshape(permute_dims).contiguous()
return hidden_states
def _extract_block_context(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""Extracts temporal context for every block.
Args:
hidden_states: a tensor of [batch, time, ...].
Returns:
A tensor of [batch, num_blocks, context_size, ...], with necessary
paddings,
where context_size = block_size + left_context + right_context,
and output[:, i, ...] are x[:, start-left_context:end+right_context,
...],
start = i * block_size, end = (i + 1) * block_size.
"""
pad_left = self.max_past_horizon
# The JAX equivalent padding for signal.frame with pad_mode='valid' is
# (left_context, right_context + block_size - 1) on the time dimension.
# PyTorch's _pad_dim1 applies padding symmetrically if only one value is given,
# or (pad_dim_start, pad_dim_end) if two are given.
# Our _pad_dim1(x, pad_left, pad_right) pads dim -2 (time for [B,T,N,H])
# or dim 1 (time for [B,T]).
# The current pad_right calculation matches the JAX effective padding.
pad_right = self.max_future_horizon + self.chunk_size - 1
hidden_states = self._pad_dim1(hidden_states, pad_left, pad_right)
frame_len = self.context_size
frame_step = self.chunk_size
# Directly use unfold without the subframe_factor logic
# x.unfold(dimension, size, step)
# dimension=1 (time dimension, assuming x is [B, T_padded, ...])
# size=frame_len (context_size)
# step=frame_step (chunk_size)
x_unfolded = hidden_states.unfold(dimension=1, size=frame_len, step=frame_step)
# If x was [B, T_padded], x_unfolded is [B, num_blocks, frame_len]
# If x was [B, T_padded, N, H], x_unfolded is [B, num_blocks, N, H, frame_len]
# We want to match JAX's typical output for such operations which might be
# [B, num_blocks, frame_len, N, H] if N, H are present.
# The relative_position_embedding expects keys as [B, U, C, N, H].
# If x_unfolded is [B, U, N, H, C(frame_len)], we need to move C.
if hidden_states.ndim > 2 and x_unfolded.ndim > 3: # Check if inner dimensions (like N, H) exist
# Current shape after unfold for [B, T_pad, N, H] is [B, U, N, H, C]
# Target shape for keys in RPE: [B, U, C, N, H]
x_unfolded = torch.movedim(x_unfolded, source=-1, destination=2)
return x_unfolded.contiguous()
def forward(self, hidden_states: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
# sl.Dense uses jax.numpy.einsum("...a,abcd->...bcd") and jax.numpy.select()
qkv_shape = (*hidden_states.shape[:-1], self.num_heads, self.head_dim)
query_states = self.q_proj(hidden_states).reshape(qkv_shape).contiguous()
key_states = self.k_proj(hidden_states).reshape(qkv_shape).contiguous()
value_states = self.v_proj(hidden_states).reshape(qkv_shape).contiguous()
per_dim_scale_sp = torch.nn.functional.softplus(self.per_dim_scale)
broadcast_shape = (1, 1, 1, self.head_dim)
per_dim_scale_sp_broadcast = per_dim_scale_sp.view(broadcast_shape)
query_states = query_states * self.q_scale * per_dim_scale_sp_broadcast
batch_size, q_time = query_states.shape[:2]
query_blocks = self._convert_to_block(query_states)
key_blocks = self._extract_block_context(key_states)
value_blocks = self._extract_block_context(value_states)
num_query_blocks = query_blocks.shape[1]
# 1. Create a mask indicating originally valid positions.
original_valid_mask = ~mask # True for valid, False for padded
# 2. Extract blocks from this validity mask.
extracted_valid_mask_blocks = self._extract_block_context(original_valid_mask)
# If subframe_factor was used in _extract_block_context for a [B, T] input mask,
# the shape might be [B, U, C/SF, SF]. Reshape to [B, U, C].
# batch_size and num_query_blocks are known from query_blocks.
# self.context_size is C.
if (
extracted_valid_mask_blocks.ndim == 4
and extracted_valid_mask_blocks.shape[2] * extracted_valid_mask_blocks.shape[3] == self.context_size
):
extracted_valid_mask_blocks = extracted_valid_mask_blocks.reshape(
batch_size, num_query_blocks, self.context_size
)
# After potential reshape, ensure it's [B, U, C] if it was from a [B,T] mask.
# This assertion might be too strict if _extract_block_context handles higher-rank inputs differently,
# but for the mask case, this should hold.
if extracted_valid_mask_blocks.shape != (
batch_size,
num_query_blocks,
self.context_size,
):
raise ValueError(
"Shape of extracted_valid_mask_blocks"
f" {extracted_valid_mask_blocks.shape} is not ({batch_size},"
f" {num_query_blocks}, {self.context_size}) after potential reshape."
)
# 3. Expand dimensions for broadcasting with logits and causal mask.
# Target shape for broadcasting with logits [B,N,U,W,C]
# extracted_valid_mask_blocks to [B, 1, U, 1, C]
condition_from_input_validity = extracted_valid_mask_blocks.unsqueeze(1).unsqueeze(-2)
# self.local_causal_valid_mask is [W, C], True where allowed by local window.
# Expand to [1, 1, 1, W, C]
condition_from_causality = self.local_causal_valid_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# 4. Combine the two conditions.
# final_condition will be True where a key is *both* originally valid *and* causally accessible.
# Broadcasts to [B, 1, U, W, C]
final_condition_for_where = torch.logical_and(
condition_from_input_validity,
condition_from_causality.to(condition_from_input_validity.device), # Ensure same device
)
# Embed queries and keys
logits = self.relative_position_embedding(query_blocks, key_blocks)
# Apply attention logit softcap
# Ensure softcap is on the same device as logits
softcap_val = self.softcap.to(logits.device)
logits = logits / softcap_val
logits = torch.tanh(logits)
logits = logits * softcap_val
# Apply the combined mask.
# final_condition_for_where will broadcast with logits [B,N,U,W,C]
logits = torch.where(final_condition_for_where, logits, torch.finfo(logits.dtype).min)
probabilities = torch.nn.functional.softmax(logits, dim=-1, dtype=torch.float32).to(dtype=value_blocks.dtype)
# context_vectors is adapted from jax.numpy.einsum("BNuwc,BucNH->BuwNH", ...)
b_dim, n_dim, u_dim, w_dim, c_dim = probabilities.shape
h_dim = value_blocks.shape[-1]
prob_bun = probabilities.permute(0, 2, 1, 3, 4).reshape(-1, w_dim, c_dim)
v_bun = value_blocks.permute(0, 1, 3, 2, 4).reshape(-1, c_dim, h_dim)
result_bmm = torch.bmm(prob_bun, v_bun)
context_vectors = result_bmm.reshape(b_dim, u_dim, n_dim, w_dim, h_dim).permute(0, 1, 3, 2, 4)
context_vectors = context_vectors.reshape(
(
batch_size,
num_query_blocks * self.chunk_size,
self.num_heads,
self.head_dim,
)
)
context_vectors = context_vectors[:, :q_time]
return context_vectors
class Gemma3nAudioCumulativeGroupNorm(nn.Module):
"""Applies Group Normalization cumulatively over the time dimension.
This layer normalizes the input by calculating the mean and variance
cumulatively over the time dimension (dim 1). The statistics are computed
over all feature dimensions (specified by `feature_dims` and `num_channels`)
for elements marked as valid by the optional `mask`.
If a `mask` is provided (True for valid, False for invalid/padded),
invalid time steps do not contribute to the statistics calculation, and
their corresponding output values are zeroed out.
Scale and bias, if enabled, are applied per-channel (last dimension).
This behavior is similar to JAX's `GroupNormalization` with `num_groups=1`
and `cumulative=True`.
"""
def __init__(
self,
num_channels: int, # Number of channels (size of the last dimension)
feature_dims: Sequence[int], # Sizes of non-channel feature dimensions, e.g., (H, W) for input [B,T,H,W,C]
eps: float = 1e-3,
):
super().__init__()
self.num_channels = num_channels
self.feature_dims = tuple(feature_dims)
self.eps = eps
# Scale parameter depends only on the channel dimension
self.weight = nn.Parameter(torch.ones(num_channels))
# Axes for normalization: all dimensions except Batch (0) and Time (1).
# For input [B, T, *feature_dims, C], these are dims from 2 onwards.
self.reduction_axes = tuple(range(2, 2 + len(self.feature_dims) + 1))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""Applies cumulative group norm, optionally using a mask.
Args:
hidden_states: Input tensor, shape [B, T, *feature_dims, C].
Returns:
Normalized tensor with the same shape as x.
"""
expected_input_suffix = self.feature_dims + (self.num_channels,)
if hidden_states.shape[2:] != expected_input_suffix:
raise ValueError(
f"Input tensor shape suffix {hidden_states.shape[2:]} does not match expected"
f" suffix (feature_dims + num_channels) {expected_input_suffix}"
)
input_dtype = hidden_states.dtype
# Calculations are performed in float32 for numerical stability.
calc_dtype = torch.float32
x_calc = hidden_states.to(calc_dtype)
# Prepare a broadcastable mask (`mask_calc`).
# If no mask is provided, treat all elements as valid
# (mask_calc is all ones).
# Otherwise, expand the [B, T] mask to [B, T, 1, ..., 1] for broadcasting.
mask_calc = torch.ones_like(x_calc, dtype=calc_dtype)
# Cumulative Statistics Calculation
# 1. Sum of values over reduction axes at each time step.
sum_values_at_t = torch.sum(x_calc, dim=self.reduction_axes, keepdim=True)
# 2. Cumulative sum of values over time.
cum_sum_values = torch.cumsum(sum_values_at_t, dim=1)
# 3. Count of valid elements in the normalization group at each time step.
# (A "group" here consists of all features at a given Batch, Time).
elements_in_group_at_t = torch.sum(mask_calc, dim=self.reduction_axes, keepdim=True)
# 4. Cumulative count of valid elements over time.
cum_count_elements = torch.cumsum(elements_in_group_at_t, dim=1)
# Avoid division by zero if all preceding elements were masked.
safe_cum_count_elements = torch.clamp(cum_count_elements, min=1.0)
# 5. Cumulative mean.
cum_mean = cum_sum_values / safe_cum_count_elements
# 6. Sum of squared differences from the cumulative mean.
# Only sum for valid elements: (x_calc - cum_mean)^2 * mask_calc.
# Using x_calc here for the difference, as cum_mean already accounts for masking.
squared_diff_from_mean = (x_calc - cum_mean).pow(2)
sum_sq_diff_at_t = torch.sum(squared_diff_from_mean, dim=self.reduction_axes, keepdim=True)
# 7. Cumulative sum of squared differences over time.
cum_sum_sq_diff = torch.cumsum(sum_sq_diff_at_t, dim=1)
# 8. Cumulative variance.
cum_variance = cum_sum_sq_diff / safe_cum_count_elements
# Normalize the input using the calculated cumulative statistics:
# (x - E[x]) / sqrt(Var[x] + eps)
normalized_x = (x_calc - cum_mean) * torch.rsqrt(cum_variance + self.eps)
# Apply affine transformation (scale and bias) if enabled.
# Scale and bias are applied per-channel (last dimension).
scale = self.weight.to(calc_dtype)
# Reshape for broadcasting: [C] -> [1, ..., 1, C]
scale_view_shape = [1] * (hidden_states.dim() - 1) + [self.num_channels]
normalized_x = normalized_x * scale.view(scale_view_shape)
# Zero out outputs for time steps that were originally masked (where mask_calc is 0).
# This ensures padded/invalid positions in the input result in zero output.
final_output = normalized_x * mask_calc
return final_output.to(input_dtype)
class Gemma3nAudioSSCPConvBlock(nn.Module):
"""A single convolution block for the SubSampleConvProjection.
This block consists of a 2D convolution, followed by CumulativeGroupNorm,
and a ReLU activation. It handles manual padding for the convolution.
"""
def __init__(
self,
config: Gemma3nAudioConfig,
idx: int,
input_freq_dim: int, # Changed from input_spatial_dim
manual_padding: tuple[int, int, int, int] = (0, 0, 0, 0),
):
super().__init__()
self.config = config
self.manual_padding = manual_padding
# in_channels is 1 for the first block, or C_out from previous block's conv
in_channels = 1 if idx == 0 else self.config.sscp_conv_channel_size[idx - 1]
out_channels = self.config.sscp_conv_channel_size[idx]
kernel_h, kernel_w = self.config.sscp_conv_kernel_size[idx]
stride_h, stride_w = self.config.sscp_conv_stride_size[idx]
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(
kernel_h,
kernel_w,
), # Kernel (kH, kW) operates on (Time, Freq_dim)
stride=(stride_h, stride_w),
padding=(0, 0), # Manual padding is used
bias=False,
)
# Calculate output frequency dimension (f_out_conv) after this convolution.
# input_freq_dim is the unpadded width (feature dimension).
# self.manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom)
f_in_padded = input_freq_dim + self.manual_padding[0] + self.manual_padding[1]
f_out_conv = (f_in_padded - kernel_w) // stride_w + 1
self.norm = Gemma3nAudioCumulativeGroupNorm(
num_channels=out_channels, # Channels of the conv output
feature_dims=(f_out_conv,), # The frequency dimension size after conv
eps=self.config.sscp_conv_group_norm_eps,
)
self.activation = nn.ReLU()
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
# Input audio_encodings is [B, C_in, T_in, F_in] (e.g., C_in=1)
# manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom)
# F.pad applies to last two dims: F_in then T_in
audio_encodings_padded = F.pad(audio_encodings, self.manual_padding, mode="constant", value=0.0)
# Expected padded shape for F_in, k_w=3, pad_F=(1,1) -> F_padded = F_in+2
# Expected padded shape for T_in, k_h=3, pad_T=(0,2) -> T_padded = T_in+2
audio_encodings_conv = self.conv(audio_encodings_padded)
# Expected conv output shape: [B, C_out, T_out, F_out]
# Input to norm is [B, T_out, F_out, C_out]
x_for_norm = audio_encodings_conv.permute(0, 2, 3, 1).contiguous()
x_normed = self.norm(x_for_norm)
# Output of norm is [B, T_out, F_out, C_out], permute back to [B, C_out, T_out, F_out]
audio_encodings_normed = x_normed.permute(0, 3, 1, 2).contiguous()
return self.activation(audio_encodings_normed)
class Gemma3nAudioSubSampleConvProjection(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
current_f_for_block_input = config.input_feat_size # Start with original feature dim
calculated_block_padding = []
calculated_f_out_dims = [] # Tracking frequency dimension output sizes
for i in range(2): # Assuming 2 conv layers as per sscp_conv_... arrays
kernel_h, kernel_w = config.sscp_conv_kernel_size[i]
stride_h, stride_w = config.sscp_conv_stride_size[i]
# Padding for Time (Height for Conv2d) - REVERSE_CAUSAL like
# JAX 'reverse_causal' padding is (0, kernel_size - 1)
pad_t_top = 0
pad_t_bottom = kernel_h - 1
# Frequency Padding (Width for Conv2d)
# Based on JAX effective padding (1,1) for F_in=10, K_w=3, S_w=2
# and the successful test configuration.
# If kernel/stride/input_freq for frequency changes, this might need re-evaluation
# to match generic JAX 'SAME' behavior if it differs.
pad_f_left = 1
pad_f_right = 1
manual_padding_tuple = (
pad_f_left,
pad_f_right,
pad_t_top,
pad_t_bottom,
)
calculated_block_padding.append(manual_padding_tuple)
# Calculate output frequency dimension after this convolution
# This uses the actual padding applied and kernel/stride.
f_in_padded = current_f_for_block_input + pad_f_left + pad_f_right
f_out_after_conv = (f_in_padded - kernel_w) // stride_w + 1 # Assuming dilation_w = 1
calculated_f_out_dims.append(f_out_after_conv)
current_f_for_block_input = f_out_after_conv
self.conv_0 = Gemma3nAudioSSCPConvBlock(
idx=0,
input_freq_dim=config.input_feat_size, # Pass original feature dim
config=config,
manual_padding=calculated_block_padding[0],
)
self.conv_1 = Gemma3nAudioSSCPConvBlock(
idx=1,
input_freq_dim=calculated_f_out_dims[0], # Output freq dim from conv_0
config=config,
manual_padding=calculated_block_padding[1],
)
final_c_out = config.sscp_conv_channel_size[-1]
final_f_out = calculated_f_out_dims[-1] # Final frequency dimension
self.input_proj_in_features = final_c_out * final_f_out
self.input_proj_linear = nn.Linear(self.input_proj_in_features, self.config.hidden_size, bias=False)
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
# audio_encodings is [B, T, F_in]
# Reshape to [B, 1, T, F_in] (Batch, Channels=1, Height=Time, Width=F_in)
audio_encodings_reshaped = audio_encodings.unsqueeze(1)
x = self.conv_0(audio_encodings_reshaped)
x = self.conv_1(x)
# x from conv_1 is [B, C_out_1, T_out_1, F_out_1]
b, c_out, t_out, f_out = x.shape
# Permute to [B, T_out_1, F_out_1, C_out_1] then flatten F_out_1 and C_out_1
x_permuted = x.permute(0, 2, 3, 1).contiguous()
output_flattened = x_permuted.view(b, t_out, f_out * c_out)
output = self.input_proj_linear(output_flattened)
return output
class Gemma3nAudioConformerAttention(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.post_in_features = self.config.hidden_size
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False)
self.pre_attn_norm = Gemma3nRMSNorm(self.config.hidden_size)
self.attn = Gemma3nAudioAttention(config)
self.post = nn.Linear(self.post_in_features, self.config.hidden_size, bias=False)
self.post_norm = Gemma3nRMSNorm(self.config.hidden_size)
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor:
audio_encodings_input_to_attn = audio_encodings
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings_norm = self.pre_attn_norm(audio_encodings)
# Output of self.attn is [B, T, NumHeads, HeadDim]
audio_encodings_attn_out = self.attn(audio_encodings_norm, audio_mel_mask)
# Reshape from [B, T, NumHeads, HeadDim] to [B, T, NumHeads * HeadDim]
# NumHeads * HeadDim = hidden_size
b, t, num_heads, head_dim = audio_encodings_attn_out.shape
audio_encodings_reshaped = audio_encodings_attn_out.reshape(b, t, num_heads * head_dim)
audio_encodings = self.post(audio_encodings_reshaped)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
return audio_encodings_input_to_attn + self.post_norm(audio_encodings)
class Gemma3nAudioConformerFeedForward(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False)
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size)
self.ffw_layer_1 = nn.Linear(self.config.hidden_size, self.config.hidden_size * 4, bias=False)
self.ffw_layer_2 = nn.Linear(self.config.hidden_size * 4, self.config.hidden_size, bias=False)
self.post_layer_norm = Gemma3nRMSNorm(self.config.hidden_size)
self.post_layer_scale = torch.tensor(self.config.conf_residual_weight)
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
residual = audio_encodings
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings = self.pre_layer_norm(audio_encodings)
audio_encodings: torch.Tensor = self.ffw_layer_1(audio_encodings)
audio_encodings = nn.functional.silu(audio_encodings)
audio_encodings: torch.Tensor = self.ffw_layer_2(audio_encodings)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings = self.post_layer_norm(audio_encodings)
return residual + (audio_encodings * self.post_layer_scale)
class Gemma3nAudioConformerLightConv1d(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.linear_start = nn.Linear(self.config.hidden_size, self.config.hidden_size * 2, bias=False)
self.depthwise_conv1d = nn.Conv1d(
in_channels=self.config.hidden_size,
out_channels=self.config.hidden_size,
kernel_size=self.config.conf_conv_kernel_size,
stride=1,
padding=0, # Manual causal padding
groups=self.config.hidden_size, # Depthwise
bias=False,
)
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False)
self.conv_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.linear_end = nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)
self.causal_padding = self.config.conf_conv_kernel_size - 1
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
audio_encodings_residual = audio_encodings # Save for residual connection
audio_encodings = self.pre_layer_norm(audio_encodings)
audio_encodings = self.linear_start(audio_encodings)
audio_encodings = torch.nn.functional.glu(audio_encodings, dim=-1)
# Permute for Conv1d: [B, T, D] -> [B, D, T]
audio_encodings_permuted = audio_encodings.permute(0, 2, 1)
# Apply manual causal padding
audio_encodings_permuted_padded = F.pad(audio_encodings_permuted, (self.causal_padding, 0))
audio_encodings = self.depthwise_conv1d(audio_encodings_permuted_padded)
# Permute back: [B, D, T_out] -> [B, T_out, D]
audio_encodings = audio_encodings.permute(0, 2, 1)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings = self.conv_norm(audio_encodings)
audio_encodings = nn.functional.silu(audio_encodings)
audio_encodings = self.linear_end(audio_encodings)
output = audio_encodings + audio_encodings_residual
return output
class Gemma3nAudioConformerBlock(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.ffw_layer_start = Gemma3nAudioConformerFeedForward(self.config)
self.attention = Gemma3nAudioConformerAttention(self.config)
self.lconv1d = Gemma3nAudioConformerLightConv1d(self.config)
self.ffw_layer_end = Gemma3nAudioConformerFeedForward(self.config)
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False)
self.norm = Gemma3nRMSNorm(self.config.hidden_size)
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor:
audio_encodings = self.ffw_layer_start(audio_encodings)
audio_encodings = self.attention(audio_encodings, audio_mel_mask)
validity_mask_for_lconv = ~audio_mel_mask # True for valid
audio_encodings_for_lconv_input = audio_encodings * validity_mask_for_lconv.unsqueeze(-1).to(
audio_encodings.dtype
)
audio_encodings = self.lconv1d(audio_encodings_for_lconv_input)
audio_encodings = self.ffw_layer_end(audio_encodings)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
output = self.norm(audio_encodings)
return output
class Gemma3nAudioEncoder(PreTrainedModel):
"""An audio encoder based on the [Universal Speech Model](https://arxiv.org/abs/2303.01037) architecture."""
config: Gemma3nAudioConfig
main_input_name = "audio_mel"
def __init__(self, config: Gemma3nAudioConfig):
super().__init__(config)
self.config = config
self.subsample_conv_projection = Gemma3nAudioSubSampleConvProjection(config)
self.conformer = nn.ModuleList(
[Gemma3nAudioConformerBlock(config) for _ in range(config.conf_num_hidden_layers)]
)
def forward(
self, audio_mel: torch.Tensor, audio_mel_mask: torch.BoolTensor
) -> tuple[torch.Tensor, torch.BoolTensor]:
"""Encodes a batch of MELs.
Args:
audio_mel: a torch.Tensor of shape [batch, num_frames, num_channels,
mel_bins].
Returns:
audio_encodings: a torch.Tensor of shape
`[batch_size, self.config.audio_soft_tokens_per_image,
self.config.audio_config.hidden_size]`
audio_mel_mask: a torch.BoolTensor of shape [batch, num_frames].
"""
audio_encodings = self.subsample_conv_projection(audio_mel) # audio_encodings: [B, T_sub, D]
# Subsample the input audio_mel_mask to match the time dimension of audio_encodings (T_sub)
t_sub = audio_encodings.shape[1]
time_stride_product = 1
for stride_pair_idx in range(len(self.config.sscp_conv_stride_size)):
time_stride_product *= self.config.sscp_conv_stride_size[stride_pair_idx][0]
# Create indices for gathering from the original mask.
# These indices map to original time steps corresponding to the start of each
# receptive field in the subsampled output.
indices = torch.arange(t_sub, device=audio_mel_mask.device) * time_stride_product
indices = torch.clamp(indices, max=audio_mel_mask.shape[1] - 1) # Ensure indices are valid
# Expand indices for batch compatibility if B > 1 and indices is 1D.
if audio_mel_mask.ndim > 1 and indices.ndim == 1:
indices = indices.unsqueeze(0).expand(audio_mel_mask.shape[0], -1) # [B, T_sub]
elif (
audio_mel_mask.ndim == indices.ndim
and audio_mel_mask.shape[0] == 1
and indices.shape[0] != 1
and t_sub == indices.shape[0]
):
# Handle case where B=1 but indices became [T_sub] instead of [1, T_sub]
indices = indices.unsqueeze(0)
current_mask = torch.gather(audio_mel_mask, 1, indices) # [B, T_sub]
for block in self.conformer:
audio_encodings = block(audio_encodings, current_mask) # Pass the processed mask
if self.config.conf_reduction_factor > 1:
audio_encodings = audio_encodings[:, :: self.config.conf_reduction_factor]
# Reduce the mask as well
current_mask = current_mask[:, :: self.config.conf_reduction_factor]
audio_encodings = audio_encodings.masked_fill(current_mask.unsqueeze(-1), 0.0)
return audio_encodings, current_mask
# ==== Language Model ====
class Gemma3nTextScaledWordEmbedding(Gemma3TextScaledWordEmbedding):
pass
class Gemma3nTextLaurelBlock(nn.Module):
"""Learned Augmented Residual Layer"""
def __init__(self, config: Gemma3nTextConfig):
super().__init__()
self.config = config
self.linear_left = nn.Linear(self.config.hidden_size, self.config.laurel_rank, bias=False)
self.linear_right = nn.Linear(self.config.laurel_rank, self.config.hidden_size, bias=False)
self.post_laurel_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
laurel_hidden_states: torch.Tensor = self.linear_left(hidden_states)
laurel_hidden_states: torch.Tensor = self.linear_right(laurel_hidden_states)
normed_laurel_hidden_states = self.post_laurel_norm(laurel_hidden_states)
return hidden_states + normed_laurel_hidden_states
class Gemma3nTextMLP(Gemma2MLP):
def __init__(self, config: Gemma3nTextConfig, layer_idx: int = 0):
super().__init__(config)
self.intermediate_size = config.intermediate_size[layer_idx]
self.activation_sparsity = config.activation_sparsity_pattern[layer_idx]
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate_proj = self.gate_proj(hidden_states)
if self.activation_sparsity > 0.0:
gate_proj = self._gaussian_topk(gate_proj)
activations = self.act_fn(gate_proj)
up_proj = self.up_proj(hidden_states)
down_proj = self.down_proj(activations * up_proj)
return down_proj
def _gaussian_topk(self, inputs: torch.Tensor) -> torch.Tensor:
target_sparsity_tensor = torch.tensor(self.activation_sparsity, dtype=torch.float32, device=inputs.device)
# normal_dist and std_multiplier are adapted from jax.scipy.stats.norm.ppf().
#
# References:
# * https://docs.jax.dev/en/latest/_autosummary/jax.scipy.stats.norm.ppf.html
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.normal.Normal
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.transformed_distribution.TransformedDistribution.icdf
normal_dist = torch.distributions.normal.Normal(0, 1)
std_multiplier: torch.Tensor = normal_dist.icdf(target_sparsity_tensor)
std_multiplier = std_multiplier.type(inputs.dtype)
inputs_mean = torch.mean(inputs, dim=-1, keepdim=True)
inputs_std = torch.std(inputs, dim=-1, keepdim=True, unbiased=False)
cutoff_x = inputs_mean + inputs_std * std_multiplier
return nn.functional.relu(inputs - cutoff_x)
class Gemma3nTextAltUp(nn.Module):
"""Alternating Updates (AltUp)
The AltUp module wraps transformer layers. The `predict` step modifies the
input to the transformer layer, and the `correct` step propagates the output
of the transformer layer to the sparsely updated dimensions.
See more in the research paper:
https://proceedings.neurips.cc/paper_files/paper/2023/file/f2059277ac6ce66e7e5543001afa8bb5-Paper-Conference.pdf
"""
def __init__(self, config: Gemma3nTextConfig):
super().__init__()
self.config = config
self.correct_output_scale = nn.Parameter(torch.zeros(self.config.hidden_size))
self.correction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False)
self.prediction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False)
self.modality_router = nn.Linear(self.config.hidden_size, self.config.altup_num_inputs, bias=False)
self.router_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.register_buffer("router_input_scale", torch.tensor(self.config.hidden_size**-1.0), persistent=False)
def compute_router_modalities(self, x: torch.Tensor) -> torch.Tensor:
router_inputs = self.router_norm(x) * self.router_input_scale
routed = self.modality_router(router_inputs)
return torch.tanh(routed.float()).type_as(x)
def predict(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""Predicts the output of a layer using a trainable map.
Args:
hidden_states: A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` derived by
stacking the input embeddings and preprocessing the last `num_altup_inputs - 1` matrices.
Returns:
A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` containing the predictions.
"""
modalities = self.compute_router_modalities(hidden_states[self.config.altup_active_idx])
if self.training and self.config.altup_coef_clip is not None:
self.prediction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip)
# Project and then transpose all 2D matrices contained so that mulmat gives the correct result
all_coefs: torch.Tensor = (
self.prediction_coefs(modalities)
.reshape(*modalities.shape[:-1], self.config.altup_num_inputs, self.config.altup_num_inputs)
.permute(0, 1, 3, 2)
)
# permute hidden_states to [batch_size, num_tokens, hidden_size, altup_num_inputs]
predictions = torch.matmul(hidden_states.permute(1, 2, 3, 0), all_coefs)
predictions = predictions.permute(3, 0, 1, 2) # undo the permute
predictions += hidden_states # add the original input
return predictions.contiguous().type_as(hidden_states)
def correct(self, predictions: torch.Tensor, activated: torch.Tensor) -> torch.Tensor:
"""Corrects the predictions relative to the
Args:
predictions: A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` derived by
stacking the input embeddings and preprocessing the last `num_altup_inputs - 1` matrices.
activated: A 3D tensor of shape `[batch_size, num_tokens, hidden_size]` containing the activated inputs.
Returns:
A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` correcting the original
predictions relative to the activated input embeddings.
"""
modalities = self.compute_router_modalities(activated)
innovation = activated - predictions[self.config.altup_active_idx] # (batch, num_tokens, hidden_size)
innovation = innovation.repeat(self.config.altup_num_inputs, 1, 1, 1) # Repeat on dim0 to match predictions
if self.config.altup_coef_clip is not None:
self.correction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip)
# all_coefs adapted from jax.numpy.einsum("...p,pi->...i", ...)
# Permute to (altup_num_inputs, batch_size, num_tokens) as the last dim is a scalar applied to each altup input
# and expand on dim1 for broadcastability
all_coefs: torch.Tensor = self.correction_coefs(modalities) + 1.0
all_coefs = all_coefs.permute(2, 0, 1).unsqueeze(-1)
corrected = torch.mul(innovation, all_coefs)
corrected += predictions # add the original input
return corrected.contiguous().type_as(activated)
def forward(self, corrected: torch.Tensor) -> torch.Tensor:
"""
This is only defined as the `forward` so that accelerate hooks can move correctly `correct_output_scale`
(which is a nn.Parameter, not a Module) between devices when offloading. It is otherwise only used in
`scale_corrected_output`
"""
return (corrected.type_as(self.correct_output_scale) * self.correct_output_scale).type_as(corrected)
def scale_corrected_output(self, corrected: torch.Tensor) -> torch.Tensor:
"""Scales the provided 3D tensor of shape [batch_size, num_tokens, hidden_size]."""
return self.forward(corrected)
class Gemma3nTextRotaryEmbedding(Gemma2RotaryEmbedding):
pass
def apply_rotary_pos_emb(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
unsqueeze_dim: int = 1,
):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
x (`torch.Tensor`): The tensor to embed.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
return (x * cos) + (rotate_half(x) * sin)
class Gemma3nTextAttention(Gemma3Attention):
def __init__(self, config: Gemma3nTextConfig, layer_idx: int):
super().__init__()
del self.attn_logit_softcapping
del self.scaling
self.v_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps, with_scale=False)
first_kv_shared_layer_idx = self.config.num_hidden_layers - self.config.num_kv_shared_layers
self.is_kv_shared_layer = layer_idx >= first_kv_shared_layer_idx > 0
# Find the index of the last sliding or full layer before sharing starts (or None if no sharing)
layer_type = config.layer_types[layer_idx]
self.kv_shared_layer_index = (
first_kv_shared_layer_idx - 1 - config.layer_types[first_kv_shared_layer_idx - 1 :: -1].index(layer_type)
if self.is_kv_shared_layer
else None
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: torch.Tensor,
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.config.head_dim)
cos, sin = position_embeddings
query_states = self.q_proj(hidden_states).view(hidden_shape)
query_states = self.q_norm(query_states)
query_states = apply_rotary_pos_emb(query_states, cos, sin, unsqueeze_dim=2)
query_states = query_states.transpose(1, 2)
if self.is_kv_shared_layer and self.kv_shared_layer_index is not None and past_key_value is not None:
# In this case we need special handling of the slice as the layer is of fixed small size (for full layers, we never go beyond)
layer = past_key_value.layers[self.kv_shared_layer_index]
# Device of past layer may be different from current one
indices = cache_position.to(layer.keys.device)
# Sliding window cache layers might have smaller size (for full layers, we never go beyond)
if isinstance(layer, SlidingWindowLayer):
if cache_position.shape[0] > layer.get_max_cache_shape():
indices = slice(0, layer.get_max_cache_shape())
else:
indices = indices.clamp(min=0, max=layer.get_max_cache_shape() - 1)
# Device of past layer may be different from current one
key_states = layer.keys[:, :, indices].to(query_states.device)
value_states = layer.values[:, :, indices].to(query_states.device)
else:
key_states = self.k_proj(hidden_states).view(hidden_shape)
key_states = self.k_norm(key_states)
key_states = apply_rotary_pos_emb(key_states, cos, sin, unsqueeze_dim=2)
key_states = key_states.transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape)
value_states = self.v_norm(value_states)
value_states = value_states.transpose(1, 2)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
"sliding_window": self.sliding_window,
}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=1.0,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Gemma3nTextDecoderLayer(Gemma3DecoderLayer):
def __init__(self, config: Gemma3nTextConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.mlp = Gemma3nTextMLP(config, layer_idx=layer_idx)
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
self.act_fn = ACT2FN[config.hidden_activation]
self.altup = Gemma3nTextAltUp(config)
self.laurel = Gemma3nTextLaurelBlock(config)
self.self_attn = Gemma3nTextAttention(config, layer_idx)
self.per_layer_input_gate = nn.Linear(self.hidden_size, self.hidden_size_per_layer_input, bias=False)
self.per_layer_projection = nn.Linear(self.hidden_size_per_layer_input, self.hidden_size, bias=False)
self.post_per_layer_input_norm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings_global: torch.Tensor,
position_embeddings_local: torch.Tensor,
per_layer_input: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
predictions = self.altup.predict(hidden_states)
active_prediction = predictions[self.config.altup_active_idx]
active_prediction_normed = self.input_layernorm(active_prediction)
laurel_output = self.laurel(active_prediction_normed)
# apply global RoPE to non-sliding layer only
if self.self_attn.is_sliding:
position_embeddings = position_embeddings_local
else:
position_embeddings = position_embeddings_global
attn, self_attn_weights = self.self_attn(
hidden_states=active_prediction_normed,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
attn = self.post_attention_layernorm(attn)
attn_gated = active_prediction + attn
attn_laurel = (attn_gated + laurel_output) / math.sqrt(2)
attn_norm = self.pre_feedforward_layernorm(attn_laurel)
attn_ffw = self.mlp(attn_norm)
attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw)
attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm
corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated)
first_prediction = corrected_predictions[self.config.altup_active_idx].clone()
if self.config.altup_correct_scale:
first_prediction = self.altup.scale_corrected_output(first_prediction)
# per_layer_input_gate adapted from jax.numpy.einsum("btd,dp->btp", ...)
first_prediction = self.per_layer_input_gate(first_prediction)
first_prediction = self.act_fn(first_prediction)
first_prediction = torch.multiply(first_prediction, per_layer_input)
# per_layer_projection adapted from jax.numpy.einsum("btp,pd->btd", ...)
first_prediction = self.per_layer_projection(first_prediction)
first_prediction = self.post_per_layer_input_norm(first_prediction)
corrected_predictions[1:] += first_prediction
outputs = (corrected_predictions,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Gemma3nPreTrainedModel(Gemma2PreTrainedModel):
config: Gemma3nConfig
base_model_prefix = ""
_no_split_modules = ["Gemma3nTextDecoderLayer"]
def _init_weights(self, module):
Gemma2PreTrainedModel._init_weights(module)
if isinstance(module, Gemma3nAudioCumulativeGroupNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, Gemma3nAudioAttention):
module.per_dim_scale.data.zero_()
elif isinstance(module, Gemma3nTextAltUp):
module.correct_output_scale.data.zero_()
@auto_docstring(custom_intro="The base Gemma 3n language model without a language modeling head.")
class Gemma3nTextModel(Gemma3TextModel):
config: Gemma3nTextConfig
def __init__(self, config: Gemma3nTextConfig):
super().__init__(config)
self.hidden_size = config.hidden_size
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
self.embed_tokens_per_layer = Gemma3nTextScaledWordEmbedding(
config.vocab_size_per_layer_input,
config.num_hidden_layers * config.hidden_size_per_layer_input,
self.padding_idx,
embed_scale=config.hidden_size_per_layer_input**0.5,
)
self.per_layer_model_projection = nn.Linear(
self.hidden_size,
config.num_hidden_layers * config.hidden_size_per_layer_input,
bias=False,
)
self.per_layer_projection_norm = Gemma3nRMSNorm(config.hidden_size_per_layer_input, eps=config.rms_norm_eps)
self.layers = nn.ModuleList(
[Gemma3nTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma3nRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.altup_projections = nn.ModuleList(
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)]
)
self.altup_unembed_projections = nn.ModuleList(
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)]
)
self.register_buffer("per_layer_projection_scale", torch.tensor(self.hidden_size**-0.5), persistent=False)
self.register_buffer("per_layer_input_scale", torch.rsqrt(torch.tensor(2.0)), persistent=False)
self.rotary_emb = Gemma3nTextRotaryEmbedding(config=config)
# TODO (raushan): Fix this after RoPE refactor. For now we hack it by
# reassigning thetas when we want to create a local RoPE layer. Config
# defaults should hold values for global RoPE.
config = copy.deepcopy(config)
config.rope_theta = config.rope_local_base_freq
config.rope_scaling = {"rope_type": "default"}
self.rotary_emb_local = Gemma3nTextRotaryEmbedding(config=config)
def get_per_layer_inputs(self, input_ids: torch.LongTensor) -> torch.Tensor:
return self.embed_tokens_per_layer(input_ids).reshape(
*input_ids.shape,
self.config.num_hidden_layers,
self.hidden_size_per_layer_input,
)
def project_per_layer_inputs(
self,
inputs_embeds: torch.Tensor,
per_layer_inputs: Optional[torch.Tensor] = None,
) -> torch.Tensor:
per_layer_projection: torch.Tensor = self.per_layer_model_projection(inputs_embeds)
per_layer_projection *= self.per_layer_projection_scale.to(
dtype=inputs_embeds.dtype, device=per_layer_projection.device
)
per_layer_projection = per_layer_projection.reshape(
*inputs_embeds.shape[:-1],
self.config.num_hidden_layers,
self.hidden_size_per_layer_input,
)
per_layer_projection = self.per_layer_projection_norm(per_layer_projection)
if per_layer_inputs is None:
return per_layer_projection
if per_layer_projection.shape != per_layer_inputs.shape:
# per-layer inputs are sometimes padded with zeros, slice the relevant embeddings.
per_layer_inputs = per_layer_inputs[..., : self.config.num_hidden_layers, :]
return (per_layer_projection + per_layer_inputs) * self.per_layer_input_scale.to(
dtype=inputs_embeds.dtype, device=per_layer_projection.device
)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
per_layer_inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
r"""
per_layer_inputs (torch.Tensor, *optional*, defaults to None):
Pre-computed per-layer embeddings. If None, they are derived from input_ids if provided.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if input_ids is not None:
inputs_embeds = self.embed_tokens(input_ids)
per_layer_inputs = self.get_per_layer_inputs(input_ids)
per_layer_inputs = self.project_per_layer_inputs(inputs_embeds, per_layer_inputs)
if use_cache and past_key_values is None and not self.training:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. `generate`
if not isinstance(causal_mask_mapping := attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
# Create the masks
causal_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
"sliding_attention": create_sliding_window_causal_mask(**mask_kwargs),
}
# embed positions
hidden_states_0 = inputs_embeds
# Initialize RoPE embeddings
position_embeddings_global = self.rotary_emb(hidden_states_0, position_ids)
position_embeddings_local = self.rotary_emb_local(hidden_states_0, position_ids)
# Expand hidden_states to support per-layer inputs
target_magnitude = torch.mean(hidden_states_0**2, dim=-1, keepdim=True) ** 0.5
epsilon_tensor = torch.tensor(1e-5)
temp_hidden_states = [hidden_states_0]
for i in range(1, self.config.altup_num_inputs):
# altup_proj adapted from jax.numpy.einsum("btp,pd->btd", ...)
altup_proj = self.altup_projections[i - 1](hidden_states_0)
current_hidden_state = altup_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device)
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True)
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device)))
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude
temp_hidden_states.append(current_hidden_state)
hidden_states = torch.stack(temp_hidden_states, dim=0) # [num_altup_inputs, batch, seq_len, hidden_size]
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
causal_mask = causal_mask_mapping[decoder_layer.attention_type]
per_layer_input = per_layer_inputs[:, :, decoder_layer.layer_idx, :]
layer_outputs = decoder_layer(
hidden_states,
position_embeddings_global,
position_embeddings_local,
per_layer_input,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# add hidden states from the last decoder layer (but before reprojecting to stay consistent with layer output)
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Per-layer inputs to single output
target_magnitude = torch.mean(hidden_states[0] ** 2, dim=-1, keepdim=True) ** 0.5
temp_hidden_states = [hidden_states[0]]
for i in range(1, self.config.altup_num_inputs):
# altup_unembed_projections adapted from jax.numpy.einsum("btp,pd->btd", ...)
altup_unemb_proj: torch.Tensor = self.altup_unembed_projections[i - 1](hidden_states[i])
current_hidden_state = altup_unemb_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device)
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True)
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device)))
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude
temp_hidden_states.append(current_hidden_state)
hidden_states = torch.stack(temp_hidden_states)
hidden_states = torch.mean(hidden_states, dim=0)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@auto_docstring(custom_intro="The base Gemma 3n language model with a language modeling head.")
class Gemma3nForCausalLM(Gemma3ForCausalLM):
_checkpoint_conversion_mapping = {"model.language_model": "model"}
base_model_prefix = "model"
class Gemma3nMultimodalEmbedder(nn.Module):
"""Embeds token ids or soft tokens for multimodal content into language model space."""
def __init__(
self,
multimodal_config: Union[Gemma3nAudioConfig, Gemma3nVisionConfig],
text_config: Gemma3nTextConfig,
):
super().__init__()
self.multimodal_hidden_size = multimodal_config.hidden_size
self.eps = multimodal_config.rms_norm_eps
self.vocab_offset = multimodal_config.vocab_offset
self.vocab_size = multimodal_config.vocab_size
self.text_hidden_size = text_config.hidden_size
self.embedding = nn.Embedding(self.vocab_size, self.multimodal_hidden_size)
self.hard_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps)
self.soft_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps)
self.embedding_projection = nn.Linear(self.multimodal_hidden_size, self.text_hidden_size, bias=False)
self.embedding_post_projection_norm = Gemma3nRMSNorm(self.text_hidden_size, eps=self.eps, with_scale=False)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Embeds token ids or soft tokens for multimodal content into language model space.
Args:
input_ids: A torch.LongTensor containing the token ids to embed. Values should be in the range
`[vocab_offset, vocab_offset + vocab_size)`.
inputs_embeds: A torch.Tensor containing the soft tokens to embed.
Returns:
A torch.Tensor of embeddings with shape `[batch_size, seq_len, self.config.text_config.hidden_size]`.
"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is not None:
emb_norm = self.soft_embedding_norm(inputs_embeds)
else:
hard_emb = self.embedding(input_ids - self.vocab_offset)
emb_norm = self.hard_embedding_norm(hard_emb)
emb_norm_proj = self.embedding_projection(emb_norm)
return self.embedding_post_projection_norm(emb_norm_proj)
@auto_docstring(
custom_intro="""
The base Gemma 3n model comprising a vision backbone, an audio backbone, and a language model without a
language modeling head.
"""
)
class Gemma3nModel(PaliGemmaModel):
_checkpoint_conversion_mapping = {}
def __init__(self, config: Gemma3nConfig):
super().__init__()
del self.multi_modal_projector # Replaced by Gemma3nVisionEmbedder
self.vocab_size_per_layer_input = config.text_config.vocab_size_per_layer_input
self.audio_tower = AutoModel.from_config(config.audio_config)
self.embed_vision = Gemma3nMultimodalEmbedder(config.vision_config, config.text_config)
self.embed_audio = Gemma3nMultimodalEmbedder(config.audio_config, config.text_config)
def get_image_features(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Projects the last hidden state from the vision model into language model space.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
vision_outputs = self.vision_tower(
pixel_values=pixel_values, do_pooling=False, return_dict=True
).last_hidden_state
# Convert from (batch, channels, height, width) to (batch, height * width, channels) where:
# height == width and height * width == Gemma3nConfig.vision_soft_tokens_per_image.
vision_outputs = vision_outputs.reshape(
vision_outputs.shape[0],
self.config.vision_config.hidden_size,
self.config.vision_soft_tokens_per_image,
).permute(0, 2, 1)
# Normalize and embed the soft tokens into language model space.
vision_outputs *= self.config.vision_config.hidden_size**0.5
return self.embed_vision(inputs_embeds=vision_outputs)
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None, # text inputs
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs
input_features: Optional[torch.FloatTensor] = None, # audio inputs
attention_mask: Optional[torch.Tensor] = None,
input_features_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**lm_kwargs,
) -> Gemma3nCausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Gemma3nForConditionalGeneration
>>> model = Gemma3nForConditionalGeneration.from_pretrained("google/gemma3n2-3b-mix-224")
>>> processor = AutoProcessor.from_pretrained("google/gemma3n2-3b-mix-224")
>>> prompt = "Where is the cat standing?"
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs,)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Where is the cat standing?\nsnow"
```
"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if input_ids is not None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# Prepare per-layer inputs from inputs_ids
per_layer_inputs_mask = torch.logical_and(input_ids >= 0, input_ids < self.vocab_size_per_layer_input)
per_layer_inputs_tokens = torch.where(per_layer_inputs_mask, input_ids, torch.zeros_like(input_ids))
per_layer_inputs = self.language_model.get_per_layer_inputs(per_layer_inputs_tokens)
# Handle vision tokens (>= embed_vision.vocab_offset and < embed_audio.vocab_offset)
vision_mask = torch.logical_and(
input_ids >= self.embed_vision.vocab_offset, input_ids < self.embed_audio.vocab_offset
)
dummy_vision_token_id = self.embed_vision.vocab_offset + self.embed_vision.vocab_size - 1
vision_input_ids = torch.where(vision_mask, input_ids, dummy_vision_token_id).to(inputs_embeds.device)
vision_embeds = self.embed_vision(input_ids=vision_input_ids)
expanded_vision_mask = vision_mask.unsqueeze(-1).expand_as(inputs_embeds)
inputs_embeds = torch.where(expanded_vision_mask, vision_embeds, inputs_embeds)
# Handle audio tokens (>= embed_audio.vocab_offset)
audio_mask = input_ids >= self.embed_audio.vocab_offset
dummy_audio_token_id = self.embed_audio.vocab_offset + self.embed_audio.vocab_size - 1
audio_input_ids = torch.where(audio_mask, input_ids, dummy_audio_token_id).to(inputs_embeds.device)
audio_embeds = self.embed_audio(input_ids=audio_input_ids)
expanded_audio_mask = audio_mask.unsqueeze(-1).expand_as(inputs_embeds)
inputs_embeds = torch.where(expanded_audio_mask, audio_embeds, inputs_embeds)
else:
per_layer_inputs = None
# Merge text and images
if pixel_values is not None:
image_features = self.get_image_features(pixel_values)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
else:
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
raise ValueError(
f"Number of images does not match number of special image tokens in the input text. "
f"Got {image_tokens_in_text} image tokens in the text and "
f"{image_features.shape[0] * image_features.shape[1]} tokens from image embeddings."
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
# Merge text and audio
if input_features is not None and input_features_mask is not None:
audio_features, audio_mask = self.get_audio_features(input_features, ~input_features_mask)
# The Gemma3nProcessor expects all audio will be 30s in length and inserts 188 audio soft tokens into the
# text to account for this. However, the audio preprocessing and encoder do not gurarantee they will
# produce 188 soft tokens; they will produce at most that many tokens, but they may produce fewer tokens
# depending on the length of the longest audio input in the batch. When we encounter this situation, we pad
# the audio feature out to 188 soft tokens with the emebedding of the last token in the embed_audio vocab.
audio_padding_toks = torch.tensor([[self.vocab_size - 1]], dtype=torch.long, device=audio_features.device)
audio_padding_embs = self.embed_audio(input_ids=audio_padding_toks)
audio_features = torch.where(audio_mask.unsqueeze(-1), audio_padding_embs, audio_features)
audio_batch_size, audio_seq_len, audio_embed_dim = audio_features.shape
extra_padding_tokens = self.config.audio_soft_tokens_per_image - audio_seq_len
extra_padding_features = audio_padding_embs.expand(audio_batch_size, extra_padding_tokens, audio_embed_dim)
audio_features = torch.cat((audio_features, extra_padding_features), dim=1)
if input_ids is None:
special_audio_mask = inputs_embeds == self.embed_audio(
input_ids=torch.tensor(self.config.audio_token_id, dtype=torch.long, device=inputs_embeds.device)
)
else:
special_audio_mask = (input_ids == self.config.audio_token_id).unsqueeze(-1)
special_audio_mask = special_audio_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_audio_mask].numel() != audio_features.numel():
audio_tokens_in_text = (special_audio_mask).sum(dim=1).sum(dim=0)[0]
raise ValueError(
f"Number of audio input features does not match number of special audio tokens in the input text. "
f"Got {audio_tokens_in_text} audio tokens in the text and "
f"{audio_features.shape[0] * audio_features.shape[1]} tokens from audio embeddings."
)
audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, audio_features)
outputs = self.language_model(
input_ids=None,
per_layer_inputs=per_layer_inputs,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
cache_position=cache_position,
**lm_kwargs,
)
return Gemma3nModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values if use_cache else None,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
audio_hidden_states=audio_features if input_features is not None else None,
)
def get_audio_features(
self, input_features: torch.Tensor, input_features_mask: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Projects the last hidden state from the audio encoder into language model space.
Args:
input_features (`torch.FloatTensor]` of shape `(num_images, seq_length, num_features)`):
The tensors corresponding to the input audio.
input_features_mask (`torch.FloatTensor]` of shape `(num_images, seq_length)`):
The attention mask for the input audio.
Returns:
audio_features (`torch.Tensor`): Audio feature tensor of shape `(num_images, audio_length, embed_dim)`).
"""
audio_outputs, audio_mask = self.audio_tower(input_features, input_features_mask)
return self.embed_audio(inputs_embeds=audio_outputs), audio_mask
def _update_causal_mask(self, **super_kwargs):
raise AttributeError("We don't want to inherit it")
@auto_docstring(
custom_intro="""
The base Gemma 3n model comprising a vision backbone, an audio backbone, a language model, and a language modeling
head.
"""
)
class Gemma3nForConditionalGeneration(PaliGemmaForConditionalGeneration):
_checkpoint_conversion_mapping = {}
base_model_prefix = "model"
@property
def audio_tower(self):
return self.model.audio_tower
@property
def multi_modal_projector(self):
raise AttributeError("Use embed_vision instead of multi_modal_projector.")
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None, # text inputs
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs
input_features: Optional[torch.FloatTensor] = None, # audio inputs
attention_mask: Optional[torch.Tensor] = None,
input_features_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Gemma3nCausalLMOutputWithPast:
r"""
input_features_mask (torch.Tensor, *optional*, defaults to None):
The attention mask for the input audio.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in
`[0, ..., config.text_config.vocab_size]`.
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
>>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it")
>>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")
>>> messages = [
... {
... "role": "system",
... "content": [
... {"type": "text", "text": "You are a helpful assistant."}
... ]
... },
... {
... "role": "user", "content": [
... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
... {"type": "text", "text": "Where is the cat standing?"},
... ]
... },
... ]
>>> inputs = processor.apply_chat_template(
... messages,
... tokenizer=True,
... return_dict=True,
... return_tensors="pt",
... add_generation_prompt=True
... )
>>> # Generate
>>> generate_ids = model.generate(**inputs)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to"
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.model(
input_ids=input_ids,
pixel_values=pixel_values,
input_features=input_features,
attention_mask=attention_mask,
input_features_mask=input_features_mask,
position_ids=position_ids,
past_key_values=past_key_values,
token_type_ids=token_type_ids,
cache_position=cache_position,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
**lm_kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if (final_logit_softcapping := self.config.get_text_config().final_logit_softcapping) is not None:
logits = logits / final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * final_logit_softcapping
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
else:
shift_logits = shift_logits.contiguous()
shift_labels = shift_labels.contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
flat_labels = shift_labels.view(-1).to(shift_logits.device)
loss = loss_fct(flat_logits, flat_labels)
return Gemma3nCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=outputs.image_hidden_states,
audio_hidden_states=outputs.audio_hidden_states,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
input_features=None,
attention_mask=None,
input_features_mask=None,
token_type_ids=None,
use_cache=True,
logits_to_keep=None,
labels=None,
**kwargs,
):
# Overwritten -- custom `position_ids` and `pixel_values` handling
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# If we're in cached decoding stage, multimodal inputs should be None because input ids do not contain special
# tokens anymore. Otherwise multimodal inputs should be passed to model.
# NOTE: use_cache=False always needs pixel_values, input_features, and input_features_mask
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
model_inputs["input_features"] = input_features
model_inputs["input_features_mask"] = input_features_mask
return model_inputs
def _prepare_4d_causal_attention_mask_with_cache_position(self, **super_kwargs):
raise AttributeError("Do not inherit _prepare_4d_causal_attention_mask_with_cache_position from PaliGemma")
__all__ = [
"Gemma3nAudioConfig",
"Gemma3nAudioEncoder",
"Gemma3nConfig",
"Gemma3nForCausalLM",
"Gemma3nForConditionalGeneration",
"Gemma3nModel",
"Gemma3nPreTrainedModel", # noqa: F822
"Gemma3nTextConfig",
"Gemma3nTextModel",
"Gemma3nVisionConfig",
]