388 lines
16 KiB
Python
388 lines
16 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2025 IBM and the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from typing import Optional, Union
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from ...cache_utils import Cache
|
||
|
from ...modeling_outputs import BaseModelOutputWithPast, MoeModelOutputWithPast
|
||
|
from ...processing_utils import Unpack
|
||
|
from ...utils import auto_docstring, can_return_tuple, logging
|
||
|
from ..bamba.configuration_bamba import BambaConfig
|
||
|
from ..bamba.modeling_bamba import BambaMixer, BambaRMSNormGated, HybridMambaAttentionDynamicCache
|
||
|
from ..granitemoeshared.modeling_granitemoeshared import (
|
||
|
GraniteFlashAttentionKwargs,
|
||
|
GraniteMoeSharedAttention,
|
||
|
GraniteMoeSharedDecoderLayer,
|
||
|
GraniteMoeSharedForCausalLM,
|
||
|
GraniteMoeSharedMLP,
|
||
|
GraniteMoeSharedModel,
|
||
|
GraniteMoeSharedPreTrainedModel,
|
||
|
)
|
||
|
from .configuration_granitemoehybrid import GraniteMoeHybridConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridAttention(GraniteMoeSharedAttention):
|
||
|
def __init__(self, config: GraniteMoeHybridConfig, layer_idx: int):
|
||
|
super().__init__(config, layer_idx)
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridMambaLayer(BambaMixer):
|
||
|
def __init__(self, config: GraniteMoeHybridConfig, layer_idx: int):
|
||
|
super().__init__(BambaConfig(config), layer_idx)
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridRMSNormGated(BambaRMSNormGated):
|
||
|
def __init__(self, hidden_size, eps=1e-6):
|
||
|
super().__init__(hidden_size, eps)
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridMLP(GraniteMoeSharedMLP):
|
||
|
def __init__(self, config: GraniteMoeHybridConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridDecoderLayer(GraniteMoeSharedDecoderLayer):
|
||
|
def __init__(self, config: GraniteMoeHybridConfig, layer_idx: int):
|
||
|
super().__init__(config, layer_idx)
|
||
|
self.shared_mlp = GraniteMoeHybridMLP(config)
|
||
|
# Either attention or mamba will be initialized, depending on the layer type.
|
||
|
self.self_attn = None
|
||
|
self.mamba = None
|
||
|
|
||
|
if config.layers_block_type[layer_idx] == "mamba":
|
||
|
self.mamba = GraniteMoeHybridMambaLayer(config, layer_idx)
|
||
|
else:
|
||
|
self.self_attn = GraniteMoeHybridAttention(config, layer_idx)
|
||
|
self.layer_type = config.layers_block_type[layer_idx]
|
||
|
|
||
|
# Accept 0 experts: skip MoE if num_local_experts == 0
|
||
|
self.has_experts = getattr(config, "num_local_experts", 0) > 0
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
output_router_logits: Optional[bool] = False,
|
||
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
||
|
**kwargs: Unpack[GraniteFlashAttentionKwargs],
|
||
|
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`, *optional*):
|
||
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
||
|
query_sequence_length, key_sequence_length)` if default attention is used.
|
||
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||
|
(see `past_key_values`).
|
||
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||
|
Indices depicting the position of the input sequence tokens in the sequence
|
||
|
output_router_logits (`bool`, *optional*):
|
||
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
||
|
should not be returned during inference.
|
||
|
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
||
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
||
|
with `head_dim` being the embedding dimension of each attention head.
|
||
|
kwargs (`dict`, *optional*):
|
||
|
Arbitrary kwargs.Can be used to provide `GraniteFlashAttentionKwargs` for
|
||
|
padding-free training and/or improve torch.compile performance.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.input_layernorm(hidden_states)
|
||
|
|
||
|
if self.mamba is not None:
|
||
|
hidden_states = self.mamba(
|
||
|
hidden_states=hidden_states,
|
||
|
cache_position=cache_position,
|
||
|
cache_params=past_key_value,
|
||
|
attention_mask=attention_mask,
|
||
|
**kwargs,
|
||
|
)
|
||
|
# No attention weights for state space layers
|
||
|
self_attn_weights = None
|
||
|
else:
|
||
|
hidden_states, self_attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
position_embeddings=position_embeddings,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
hidden_states = residual + hidden_states * self.residual_multiplier
|
||
|
|
||
|
# Fully Connected
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||
|
|
||
|
if self.has_experts:
|
||
|
moe_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
||
|
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
|
||
|
else:
|
||
|
hidden_states = self.shared_mlp(hidden_states)
|
||
|
router_logits = None
|
||
|
|
||
|
hidden_states = residual + hidden_states * self.residual_multiplier
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights,)
|
||
|
|
||
|
if output_router_logits:
|
||
|
outputs += (router_logits,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridPreTrainedModel(GraniteMoeSharedPreTrainedModel):
|
||
|
config: GraniteMoeHybridConfig
|
||
|
_no_split_modules = ["GraniteMoeHybridDecoderLayer"]
|
||
|
_is_stateful = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
super()._init_weights(module)
|
||
|
if isinstance(module, GraniteMoeHybridMambaLayer):
|
||
|
module.dt_bias.data.fill_(1.0)
|
||
|
module.A_log.data = torch.log(torch.arange(1, module.num_heads + 1))
|
||
|
module.D.data.fill_(1.0)
|
||
|
elif isinstance(module, GraniteMoeHybridRMSNormGated):
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridModel(GraniteMoeSharedModel):
|
||
|
def __init__(self, config: GraniteMoeHybridConfig):
|
||
|
super().__init__(config)
|
||
|
self.layers = nn.ModuleList(
|
||
|
[GraniteMoeHybridDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
|
||
|
@can_return_tuple
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
output_router_logits: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
**kwargs: Unpack[GraniteFlashAttentionKwargs],
|
||
|
) -> Union[tuple, BaseModelOutputWithPast]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||
|
|
||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||
|
|
||
|
inputs_embeds = inputs_embeds * self.embedding_multiplier
|
||
|
|
||
|
## overwritten because `HybridMambaAttentionDynamicCache` is needed
|
||
|
if use_cache and past_key_values is None:
|
||
|
logger.warning_once(
|
||
|
"GraniteMoeHybrid requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. "
|
||
|
"Because one was not provided, no cache will be returned."
|
||
|
)
|
||
|
|
||
|
if cache_position is None:
|
||
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||
|
cache_position = torch.arange(
|
||
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
||
|
)
|
||
|
if position_ids is None:
|
||
|
position_ids = cache_position.unsqueeze(0)
|
||
|
|
||
|
causal_mask = self._update_causal_mask(
|
||
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||
|
)
|
||
|
mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
|
||
|
|
||
|
# embed positions
|
||
|
hidden_states = inputs_embeds
|
||
|
|
||
|
position_embeddings = None
|
||
|
# create position embeddings to be shared across the decoder layers
|
||
|
if self.rotary_emb is not None:
|
||
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
||
|
|
||
|
# decoder layers
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
all_router_logits = () if output_router_logits else None
|
||
|
|
||
|
for decoder_layer in self.layers:
|
||
|
# Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
|
||
|
layer_mask = mamba_mask if decoder_layer.layer_type == "mamba" else causal_mask
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=layer_mask,
|
||
|
past_key_value=past_key_values,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
output_router_logits=output_router_logits,
|
||
|
position_embeddings=position_embeddings,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
if layer_outputs[1] is not None:
|
||
|
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
|
||
|
all_self_attns += (layer_outputs[1],)
|
||
|
|
||
|
if output_router_logits:
|
||
|
if layer_outputs[-1] is not None:
|
||
|
# append router logits only of expert layers. Regular MLP layers return `None` as the router logits
|
||
|
all_router_logits += (layer_outputs[-1],)
|
||
|
|
||
|
hidden_states = self.norm(hidden_states)
|
||
|
|
||
|
# add hidden states from the last decoder layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
if past_key_values and not past_key_values.has_previous_state:
|
||
|
past_key_values.has_previous_state = True
|
||
|
|
||
|
return MoeModelOutputWithPast(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=past_key_values,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attns,
|
||
|
router_logits=all_router_logits,
|
||
|
)
|
||
|
|
||
|
def _update_mamba_mask(self, attention_mask, cache_position):
|
||
|
"""
|
||
|
No need for zeroing states when
|
||
|
1. Cached forward
|
||
|
2. Attending to all inputs
|
||
|
"""
|
||
|
mamba_mask = attention_mask
|
||
|
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
|
||
|
mamba_mask = None
|
||
|
return mamba_mask
|
||
|
|
||
|
|
||
|
class GraniteMoeHybridForCausalLM(GraniteMoeSharedForCausalLM):
|
||
|
_tied_weights_keys = ["lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config: GraniteMoeHybridConfig):
|
||
|
super().__init__(config)
|
||
|
self.model = GraniteMoeHybridModel(config)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids,
|
||
|
past_key_values=None,
|
||
|
attention_mask=None,
|
||
|
inputs_embeds=None,
|
||
|
cache_position=None,
|
||
|
position_ids=None,
|
||
|
use_cache=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# Overwritten -- has a unique cache type, `HybridMambaAttentionDynamicCache`
|
||
|
|
||
|
empty_past_kv = past_key_values is None
|
||
|
|
||
|
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
||
|
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
||
|
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
||
|
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
|
||
|
# (we can't check exception 3 while compiling)
|
||
|
if not empty_past_kv:
|
||
|
if (
|
||
|
inputs_embeds is not None # Exception 1
|
||
|
or cache_position[-1] >= input_ids.shape[1] # Exception 3
|
||
|
):
|
||
|
input_ids = input_ids[:, -cache_position.shape[0] :]
|
||
|
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
||
|
input_ids = input_ids[:, cache_position]
|
||
|
elif use_cache:
|
||
|
past_key_values = HybridMambaAttentionDynamicCache(
|
||
|
self.config, input_ids.shape[0], self.dtype, device=self.device
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None and position_ids is None:
|
||
|
# create position_ids on the fly for batch generation
|
||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||
|
if not empty_past_kv:
|
||
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
||
|
|
||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||
|
if inputs_embeds is not None and empty_past_kv:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"position_ids": position_ids,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": use_cache,
|
||
|
"attention_mask": attention_mask,
|
||
|
"cache_position": cache_position,
|
||
|
}
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
|
||
|
__all__ = ["GraniteMoeHybridForCausalLM", "GraniteMoeHybridModel", "GraniteMoeHybridPreTrainedModel"]
|