1298 lines
57 KiB
Python
1298 lines
57 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch Idefics2 model."""
|
||
|
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Callable, Optional, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...cache_utils import Cache, DynamicCache
|
||
|
from ...generation import GenerationMixin
|
||
|
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
|
||
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||
|
from ...modeling_layers import GradientCheckpointingLayer
|
||
|
from ...modeling_outputs import BaseModelOutput, ModelOutput
|
||
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||
|
from ...processing_utils import Unpack
|
||
|
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
|
||
|
from ..auto import AutoModel
|
||
|
from .configuration_idefics2 import Idefics2Config, Idefics2PerceiverConfig, Idefics2VisionConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
Base class for Idefics2 model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
||
|
"""
|
||
|
)
|
||
|
class Idefics2BaseModelOutputWithPast(ModelOutput):
|
||
|
r"""
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
||
|
hidden_size)` is output.
|
||
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
||
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
||
|
encoder_sequence_length, embed_size_per_head)`.
|
||
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
||
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
||
|
input) to speed up sequential decoding.
|
||
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
||
|
sequence_length, hidden_size)`.
|
||
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
|
||
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[tuple[torch.FloatTensor]] = None
|
||
|
image_hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
Base class for Idefics2 causal language model (or autoregressive) outputs.
|
||
|
"""
|
||
|
)
|
||
|
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Idefics2
|
||
|
class Idefics2CausalLMOutputWithPast(ModelOutput):
|
||
|
r"""
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||
|
Language modeling loss (for next-token prediction).
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
||
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||
|
`past_key_values` input) to speed up sequential decoding.
|
||
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
||
|
sequence_length, hidden_size)`.
|
||
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: Optional[torch.FloatTensor] = None
|
||
|
past_key_values: Optional[list[torch.FloatTensor]] = None
|
||
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[tuple[torch.FloatTensor]] = None
|
||
|
image_hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
class Idefics2VisionEmbeddings(nn.Module):
|
||
|
"""
|
||
|
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable
|
||
|
resolution.
|
||
|
|
||
|
The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://huggingface.co/papers/2307.06304)
|
||
|
which allows treating images in their native aspect ratio and without the need to resize them to the same
|
||
|
fixed size. In particular, we start from the original pre-trained SigLIP model
|
||
|
(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: Idefics2VisionConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.image_size = config.image_size
|
||
|
self.patch_size = config.patch_size
|
||
|
|
||
|
self.patch_embedding = nn.Conv2d(
|
||
|
in_channels=config.num_channels,
|
||
|
out_channels=self.embed_dim,
|
||
|
kernel_size=self.patch_size,
|
||
|
stride=self.patch_size,
|
||
|
padding="valid",
|
||
|
)
|
||
|
|
||
|
self.num_patches_per_side = self.image_size // self.patch_size
|
||
|
self.num_patches = self.num_patches_per_side**2
|
||
|
self.num_positions = self.num_patches
|
||
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
||
|
|
||
|
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
|
||
|
batch_size, _, max_im_h, max_im_w = pixel_values.shape
|
||
|
|
||
|
patch_embeds = self.patch_embedding(pixel_values)
|
||
|
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
||
|
|
||
|
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
|
||
|
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
|
||
|
position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0)
|
||
|
|
||
|
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
||
|
nb_patches_h = p_attn_mask[:, 0].sum()
|
||
|
nb_patches_w = p_attn_mask[0].sum()
|
||
|
|
||
|
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
||
|
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
||
|
|
||
|
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
|
||
|
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
|
||
|
|
||
|
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
|
||
|
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
||
|
|
||
|
position_ids = position_ids.to(self.position_embedding.weight.device)
|
||
|
embeddings = embeddings + self.position_embedding(position_ids)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
def eager_attention_forward(
|
||
|
module: nn.Module,
|
||
|
query: torch.Tensor,
|
||
|
key: torch.Tensor,
|
||
|
value: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor],
|
||
|
scaling: float,
|
||
|
dropout: float = 0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if hasattr(module, "num_key_value_groups"):
|
||
|
key = repeat_kv(key, module.num_key_value_groups)
|
||
|
value = repeat_kv(value, module.num_key_value_groups)
|
||
|
|
||
|
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
|
||
|
if attention_mask is not None:
|
||
|
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
||
|
attn_weights = attn_weights + causal_mask
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
||
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
||
|
attn_output = torch.matmul(attn_weights, value)
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
|
||
|
return attn_output, attn_weights
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.siglip.modeling_siglip.SiglipAttention with Siglip->Idefics2Vision
|
||
|
class Idefics2VisionAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.embed_dim // self.num_heads
|
||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.dropout = config.attention_dropout
|
||
|
|
||
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
|
||
|
# Ignore copy
|
||
|
self.is_causal = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
**kwargs,
|
||
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
batch_size, seq_length, embed_dim = hidden_states.shape
|
||
|
|
||
|
queries = self.q_proj(hidden_states)
|
||
|
keys = self.k_proj(hidden_states)
|
||
|
values = self.v_proj(hidden_states)
|
||
|
|
||
|
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
attention_interface: Callable = eager_attention_forward
|
||
|
if self.config._attn_implementation != "eager":
|
||
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||
|
|
||
|
attn_output, attn_weights = attention_interface(
|
||
|
self,
|
||
|
queries,
|
||
|
keys,
|
||
|
values,
|
||
|
attention_mask,
|
||
|
is_causal=self.is_causal,
|
||
|
scaling=self.scale,
|
||
|
dropout=0.0 if not self.training else self.dropout,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.siglip.modeling_siglip.SiglipMLP with Siglip->Idefics2Vision
|
||
|
class Idefics2VisionMLP(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.activation_fn = ACT2FN[config.hidden_act]
|
||
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.fc1(hidden_states)
|
||
|
hidden_states = self.activation_fn(hidden_states)
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Idefics2MLP(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size: int,
|
||
|
intermediate_size: int,
|
||
|
output_size: int,
|
||
|
hidden_act: str,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||
|
self.down_proj = nn.Linear(intermediate_size, output_size, bias=False)
|
||
|
self.act_fn = ACT2FN[hidden_act]
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.siglip.modeling_siglip.SiglipMultiheadAttentionPoolingHead with Siglip->Idefics2
|
||
|
class Idefics2MultiheadAttentionPoolingHead(nn.Module):
|
||
|
"""Multihead Attention Pooling."""
|
||
|
|
||
|
def __init__(self, config: Idefics2VisionConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
||
|
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
# Ignore copy
|
||
|
self.mlp = Idefics2MLP(
|
||
|
hidden_size=config.hidden_size,
|
||
|
intermediate_size=config.intermediate_size,
|
||
|
hidden_act=config.hidden_act,
|
||
|
output_size=config.hidden_size,
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_state):
|
||
|
batch_size = hidden_state.shape[0]
|
||
|
probe = self.probe.repeat(batch_size, 1, 1)
|
||
|
|
||
|
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
||
|
|
||
|
residual = hidden_state
|
||
|
hidden_state = self.layernorm(hidden_state)
|
||
|
hidden_state = residual + self.mlp(hidden_state)
|
||
|
|
||
|
return hidden_state[:, 0]
|
||
|
|
||
|
|
||
|
class Idefics2EncoderLayer(GradientCheckpointingLayer):
|
||
|
def __init__(self, config: Idefics2VisionConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.self_attn = Idefics2VisionAttention(config)
|
||
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
self.mlp = Idefics2VisionMLP(config)
|
||
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> tuple[torch.FloatTensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`):
|
||
|
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
||
|
attention_mask (`torch.FloatTensor`):
|
||
|
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
||
|
output_attentions (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm1(hidden_states)
|
||
|
hidden_states, attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm2(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoder with Siglip->Idefics2
|
||
|
class Idefics2Encoder(nn.Module):
|
||
|
"""
|
||
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||
|
[`Idefics2EncoderLayer`].
|
||
|
|
||
|
Args:
|
||
|
config: Idefics2Config
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: Idefics2Config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layers = nn.ModuleList([Idefics2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Ignore copy
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, BaseModelOutput]:
|
||
|
r"""
|
||
|
Args:
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||
|
than the model's internal embedding lookup matrix.
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
encoder_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
for encoder_layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
@auto_docstring
|
||
|
class Idefics2PreTrainedModel(PreTrainedModel):
|
||
|
config: Idefics2Config
|
||
|
base_model_prefix = "model"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["Idefics2VisionAttention", "Idefics2MLP", "Idefics2PerceiverLayer", "Idefics2DecoderLayer"]
|
||
|
_skip_keys_device_placement = "past_key_values"
|
||
|
_supports_flash_attn = True
|
||
|
_supports_sdpa = True
|
||
|
_supports_flex_attn = True
|
||
|
|
||
|
_supports_attention_backend = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
|
||
|
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.weight.data.fill_(1.0)
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, Idefics2RMSNorm):
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, nn.MultiheadAttention):
|
||
|
module._reset_parameters() # native torch init
|
||
|
elif isinstance(module, Idefics2MultiheadAttentionPoolingHead):
|
||
|
module.probe.data.normal_()
|
||
|
elif isinstance(module, Idefics2PerceiverResampler):
|
||
|
module.latents.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
Idefics2 vision encoder model that returnss raw image embeddings.
|
||
|
"""
|
||
|
)
|
||
|
class Idefics2VisionTransformer(Idefics2PreTrainedModel):
|
||
|
config: Idefics2VisionConfig
|
||
|
_supports_sdpa = True
|
||
|
_supports_flash_attn = True
|
||
|
_supports_flex_attn = True
|
||
|
|
||
|
def __init__(self, config: Idefics2VisionConfig):
|
||
|
super().__init__(config)
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.config = config
|
||
|
self.embeddings = Idefics2VisionEmbeddings(config)
|
||
|
self.encoder = Idefics2Encoder(config)
|
||
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embeddings = value
|
||
|
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values,
|
||
|
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, BaseModelOutput]:
|
||
|
r"""
|
||
|
patch_attention_mask (`torch.BoolTensor` of shape `(batch_size, num_patches_height, num_patches_width)`, *optional*):
|
||
|
The attention mask for the patches.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
batch_size = pixel_values.size(0)
|
||
|
if patch_attention_mask is None:
|
||
|
patch_size = self.config.patch_size
|
||
|
patch_attention_mask = torch.ones(
|
||
|
(
|
||
|
batch_size,
|
||
|
pixel_values.size(2) // patch_size,
|
||
|
pixel_values.size(3) // patch_size,
|
||
|
)
|
||
|
)
|
||
|
patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device)
|
||
|
|
||
|
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
||
|
|
||
|
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
|
||
|
# The call to `_upad_input` in `_flash_attention_forward` is expensive
|
||
|
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
|
||
|
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
|
||
|
if not torch.any(~patch_attention_mask):
|
||
|
patch_attention_mask = None
|
||
|
elif not self._use_flash_attention_2:
|
||
|
patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=hidden_states,
|
||
|
attention_mask=patch_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
last_hidden_state = self.post_layernorm(last_hidden_state)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state,) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
||
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||
|
"""
|
||
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||
|
"""
|
||
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||
|
if n_rep == 1:
|
||
|
return hidden_states
|
||
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Idefics2
|
||
|
class Idefics2RMSNorm(nn.Module):
|
||
|
def __init__(self, hidden_size, eps=1e-6):
|
||
|
"""
|
||
|
Idefics2RMSNorm is equivalent to T5LayerNorm
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
|
self.variance_epsilon = eps
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
input_dtype = hidden_states.dtype
|
||
|
hidden_states = hidden_states.to(torch.float32)
|
||
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
|
return self.weight * hidden_states.to(input_dtype)
|
||
|
|
||
|
def extra_repr(self):
|
||
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
||
|
|
||
|
|
||
|
class Idefics2PerceiverAttention(nn.Module):
|
||
|
def __init__(self, config, layer_idx: Optional[int] = None) -> None:
|
||
|
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer_idx = None
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.num_heads = config.resampler_n_heads
|
||
|
self.head_dim = config.resampler_head_dim
|
||
|
self.num_key_value_heads = config.num_key_value_heads
|
||
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||
|
self.attention_dropout = config.attention_dropout
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
|
||
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
||
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||
|
|
||
|
self.is_causal = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
latents: torch.Tensor,
|
||
|
context: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||
|
"""
|
||
|
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
|
||
|
|
||
|
Args:
|
||
|
latents (`torch.Tensor`): Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
|
||
|
context (`torch.Tensor`): Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
|
||
|
attention_mask (`torch.Tensor`, *optional*): Tensor of shape [bsz, 1, seq, n_latents] representing attention mask.
|
||
|
position_ids (`torch.LongTensor`, *optional*): Tensor of shape [bsz, seq] representing position indices of each input token.
|
||
|
past_key_value (`tuple[torch.Tensor]`, *optional*): Tuple of tensors containing cached key and value states.
|
||
|
output_attentions (`bool`, *optional*, defaults to `False`): Whether to return attention weights.
|
||
|
use_cache (`bool`, *optional*, defaults to `False`): Whether to use past_key_value for caching.
|
||
|
"""
|
||
|
bsz, q_len, _ = latents.size()
|
||
|
kv_seq_len = q_len + context.size()[1]
|
||
|
|
||
|
hidden_states = torch.concat([context, latents], dim=-2)
|
||
|
|
||
|
queries = self.q_proj(latents)
|
||
|
keys = self.k_proj(hidden_states)
|
||
|
values = self.v_proj(hidden_states)
|
||
|
|
||
|
queries = queries.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
keys = keys.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
values = values.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
keys, values = past_key_value.update(keys, values, self.layer_idx)
|
||
|
|
||
|
attention_interface: Callable = eager_attention_forward
|
||
|
if self.config._attn_implementation != "eager":
|
||
|
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||
|
logger.warning_once(
|
||
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
|
)
|
||
|
else:
|
||
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||
|
|
||
|
attn_output, attn_weights = attention_interface(
|
||
|
self,
|
||
|
queries,
|
||
|
keys,
|
||
|
values,
|
||
|
attention_mask,
|
||
|
is_causal=self.is_causal,
|
||
|
scaling=self.scaling,
|
||
|
dropout=0.0 if not self.training else self.attention_dropout,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
||
|
attn_output = self.o_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights, past_key_value
|
||
|
|
||
|
|
||
|
class Idefics2PerceiverLayer(nn.Module):
|
||
|
def __init__(self, config, layer_idx: int):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.n_latents = config.resampler_n_latents
|
||
|
self.depth = config.resampler_depth
|
||
|
self.rms_norm_eps = config.rms_norm_eps
|
||
|
|
||
|
self.input_latents_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
||
|
self.input_context_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
||
|
self.self_attn = Idefics2PerceiverAttention(config, layer_idx=layer_idx)
|
||
|
self.post_attention_layernorm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
||
|
self.mlp = Idefics2MLP(
|
||
|
hidden_size=config.hidden_size,
|
||
|
intermediate_size=config.hidden_size * 4,
|
||
|
output_size=config.hidden_size,
|
||
|
hidden_act=config.hidden_act,
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
latents: torch.Tensor,
|
||
|
context: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Cache] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = False,
|
||
|
**kwargs,
|
||
|
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
|
"""
|
||
|
Args:
|
||
|
latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||
|
`(batch, sequence_length)` where padding elements are indicated by 0.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||
|
(see `past_key_values`).
|
||
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||
|
"""
|
||
|
residual = latents
|
||
|
|
||
|
latents = self.input_latents_norm(latents)
|
||
|
context = self.input_context_norm(context)
|
||
|
|
||
|
latents, self_attn_weights, present_key_value = self.self_attn(
|
||
|
latents=latents,
|
||
|
context=context,
|
||
|
attention_mask=attention_mask,
|
||
|
)
|
||
|
latents = residual + latents
|
||
|
residual = latents
|
||
|
|
||
|
latents = self.post_attention_layernorm(latents)
|
||
|
latents = self.mlp(latents)
|
||
|
latents = residual + latents
|
||
|
|
||
|
outputs = (latents,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights,)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
Idefics2 perceiver resampler model that performs `depth` blocks of cross-attention with a fixed
|
||
|
"""
|
||
|
)
|
||
|
class Idefics2PerceiverResampler(Idefics2PreTrainedModel):
|
||
|
config: Idefics2PerceiverConfig
|
||
|
_supports_sdpa = True
|
||
|
_supports_flash_attention_2 = True
|
||
|
_supports_flex_attn = True
|
||
|
|
||
|
def __init__(self, config) -> None:
|
||
|
super().__init__(config)
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.hidden_act = config.hidden_act
|
||
|
self.n_latents = config.resampler_n_latents
|
||
|
self.depth = config.resampler_depth
|
||
|
self.rms_norm_eps = config.rms_norm_eps
|
||
|
|
||
|
# Create Latents for Perceiver
|
||
|
self.latents = nn.Parameter(torch.ones(self.n_latents, self.hidden_size))
|
||
|
|
||
|
# Create Transformer Blocks
|
||
|
self.layers = nn.ModuleList([Idefics2PerceiverLayer(config, idx) for idx in range(self.depth)])
|
||
|
self.norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
||
|
|
||
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
||
|
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
context: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
) -> torch.Tensor:
|
||
|
r"""
|
||
|
context (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`):
|
||
|
Input to the layer.
|
||
|
"""
|
||
|
# seq embed -> bsz seq embed
|
||
|
latents = self.latents.unsqueeze(0).expand((context.shape[0], *self.latents.size()))
|
||
|
|
||
|
latent_attention_mask = torch.ones(
|
||
|
(attention_mask.size(0), latents.size(1)), dtype=attention_mask.dtype, device=attention_mask.device
|
||
|
)
|
||
|
attention_mask = torch.cat([attention_mask, latent_attention_mask], dim=-1)
|
||
|
attention_mask = (
|
||
|
_prepare_4d_attention_mask(attention_mask, latents.dtype, tgt_len=self.n_latents)
|
||
|
if not self._use_flash_attention_2
|
||
|
else attention_mask
|
||
|
)
|
||
|
|
||
|
compressed_context = latents
|
||
|
for perceiver_layer in self.layers:
|
||
|
layer_outputs = perceiver_layer(
|
||
|
compressed_context,
|
||
|
context,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=None,
|
||
|
past_key_value=None,
|
||
|
output_attentions=False,
|
||
|
use_cache=False,
|
||
|
)
|
||
|
|
||
|
compressed_context = layer_outputs[0]
|
||
|
|
||
|
compressed_context = self.norm(compressed_context)
|
||
|
|
||
|
return compressed_context
|
||
|
|
||
|
|
||
|
class Idefics2Connector(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.modality_projection = Idefics2MLP(
|
||
|
hidden_size=config.vision_config.hidden_size,
|
||
|
intermediate_size=config.text_config.intermediate_size,
|
||
|
output_size=config.text_config.hidden_size,
|
||
|
hidden_act=config.text_config.hidden_act,
|
||
|
)
|
||
|
self.perceiver_resampler = Idefics2PerceiverResampler._from_config(config.perceiver_config)
|
||
|
|
||
|
def forward(self, image_hidden_states, attention_mask):
|
||
|
image_hidden_states = self.modality_projection(image_hidden_states)
|
||
|
image_hidden_states = self.perceiver_resampler(context=image_hidden_states, attention_mask=attention_mask)
|
||
|
return image_hidden_states
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
Idefics2 model consisting of a SIGLIP vision encoder and Mistral language decoder
|
||
|
"""
|
||
|
)
|
||
|
class Idefics2Model(Idefics2PreTrainedModel):
|
||
|
def __init__(self, config: Idefics2Config):
|
||
|
super().__init__(config)
|
||
|
self.padding_idx = self.config.text_config.pad_token_id
|
||
|
self.vocab_size = self.config.text_config.vocab_size
|
||
|
|
||
|
self.vision_model = Idefics2VisionTransformer._from_config(config.vision_config)
|
||
|
self.connector = Idefics2Connector(config)
|
||
|
self.text_model = AutoModel.from_config(config.text_config)
|
||
|
|
||
|
self.image_seq_len = config.perceiver_config.resampler_n_latents
|
||
|
self.image_token_id = self.config.image_token_id
|
||
|
|
||
|
self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2"
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
def enable_input_require_grads(self):
|
||
|
"""
|
||
|
Enables the gradients for the input embeddings.
|
||
|
|
||
|
This is useful for lora when using gradient checkpointing.
|
||
|
c.f. https://github.com/huggingface/peft/issues/1402#issuecomment-1913675032
|
||
|
|
||
|
Override to set output.requires_grad = True for both the decoder's and vision model's embeddings.
|
||
|
"""
|
||
|
|
||
|
def get_lowest_module(module):
|
||
|
if len(list(module.children())) == 0:
|
||
|
# If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.)
|
||
|
return module
|
||
|
else:
|
||
|
# Recursively call the function on each child module
|
||
|
return get_lowest_module(list(module.children())[0])
|
||
|
|
||
|
def make_inputs_require_grads(module, input, output):
|
||
|
output.requires_grad_(True)
|
||
|
|
||
|
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
|
||
|
self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook(
|
||
|
make_inputs_require_grads
|
||
|
)
|
||
|
|
||
|
def disable_input_require_grads(self):
|
||
|
self._text_require_grads_hook.remove()
|
||
|
self._vision_require_grads_hook.remove()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.text_model.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.text_model.set_input_embeddings(value)
|
||
|
|
||
|
def inputs_merger(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
inputs_embeds: Optional[torch.Tensor],
|
||
|
image_hidden_states: Optional[torch.Tensor],
|
||
|
):
|
||
|
"""
|
||
|
This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
|
||
|
The merging happens as follows:
|
||
|
- The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
|
||
|
- We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space.
|
||
|
We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
|
||
|
- The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
|
||
|
- To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
|
||
|
"""
|
||
|
if input_ids is None:
|
||
|
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
||
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
||
|
)
|
||
|
special_image_mask = special_image_mask.all(-1)
|
||
|
else:
|
||
|
special_image_mask = input_ids == self.config.image_token_id
|
||
|
|
||
|
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
||
|
image_hidden_states = image_hidden_states.to(inputs_embeds.device, inputs_embeds.dtype)
|
||
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_hidden_states)
|
||
|
return inputs_embeds
|
||
|
|
||
|
def get_image_features(self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.LongTensor = None):
|
||
|
"""
|
||
|
Encodes images into continuous embeddings that can be forwarded to the language model.
|
||
|
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
||
|
The tensors corresponding to the input images.
|
||
|
pixel_attention_mask (`torch.LongTensor`, *optional*):
|
||
|
The attention mask indicating padded regions in the image.
|
||
|
"""
|
||
|
batch_size, num_images, num_channels, height, width = pixel_values.shape
|
||
|
pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility
|
||
|
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
|
||
|
|
||
|
# Remove padding images - padding images are full 0.
|
||
|
nb_values_per_image = pixel_values.shape[1:].numel()
|
||
|
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
|
||
|
pixel_values = pixel_values[real_images_inds].contiguous()
|
||
|
|
||
|
# Handle the vision attention mask
|
||
|
if pixel_attention_mask is None:
|
||
|
pixel_attention_mask = torch.ones(
|
||
|
size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
|
||
|
dtype=torch.bool,
|
||
|
device=pixel_values.device,
|
||
|
)
|
||
|
else:
|
||
|
# Remove padding images from the mask/pP p
|
||
|
pixel_attention_mask = pixel_attention_mask.view(batch_size * num_images, *pixel_attention_mask.shape[2:])
|
||
|
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
|
||
|
|
||
|
patch_size = self.config.vision_config.patch_size
|
||
|
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
|
||
|
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
|
||
|
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) == patch_size * patch_size).bool()
|
||
|
# Get sequence from the vision encoder
|
||
|
image_hidden_states = self.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
||
|
image_hidden_states = image_hidden_states.last_hidden_state
|
||
|
|
||
|
# Modality projection & resampling
|
||
|
image_hidden_states = self.connector(
|
||
|
image_hidden_states, attention_mask=patch_attention_mask.view(pixel_values.size(0), -1)
|
||
|
)
|
||
|
image_hidden_states = image_hidden_states.view(-1, image_hidden_states.shape[-1])
|
||
|
return image_hidden_states
|
||
|
|
||
|
@can_return_tuple
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to
|
||
|
the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where
|
||
|
max_num_images is the maximum number of images among the batch_size samples in the batch.
|
||
|
|
||
|
Padding images are not needed beyond padding the pixel_values at the entrance of the model.
|
||
|
For efficiency, we only pass through the vision_model's forward the real images by
|
||
|
discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where
|
||
|
image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3.
|
||
|
"""
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Cache] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
||
|
image_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
**kwargs: Unpack[FlashAttentionKwargs],
|
||
|
) -> Union[tuple, Idefics2BaseModelOutputWithPast]:
|
||
|
r"""
|
||
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
||
|
Mask to avoid performing attention on padding pixel indices.
|
||
|
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
||
|
The hidden states of the image encoder after modality projection and perceiver resampling.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if self.training and self.text_model.gradient_checkpointing and use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
# retrieve input_ids and inputs_embeds
|
||
|
if input_ids is not None:
|
||
|
batch_size, seq_length = input_ids.shape
|
||
|
elif inputs_embeds is not None:
|
||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
||
|
if not isinstance(past_key_values, (type(None), Cache)):
|
||
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
||
|
|
||
|
if use_cache and past_key_values is None:
|
||
|
past_key_values = DynamicCache()
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.text_model.get_input_embeddings()(input_ids)
|
||
|
|
||
|
# START VISUAL INPUTS INTEGRATION
|
||
|
if pixel_values is not None and image_hidden_states is not None:
|
||
|
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
|
||
|
elif pixel_values is not None:
|
||
|
image_hidden_states = self.get_image_features(pixel_values, pixel_attention_mask)
|
||
|
elif image_hidden_states is not None:
|
||
|
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
|
||
|
|
||
|
if image_hidden_states is not None:
|
||
|
# When we generate, we don't want to replace the potential image_token_id that we generated by images
|
||
|
# that simply don't exist
|
||
|
inputs_embeds = self.inputs_merger(
|
||
|
input_ids=input_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
image_hidden_states=image_hidden_states,
|
||
|
)
|
||
|
|
||
|
outputs = self.text_model(
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
cache_position=cache_position,
|
||
|
return_dict=True,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
return Idefics2BaseModelOutputWithPast(
|
||
|
last_hidden_state=outputs.last_hidden_state,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
image_hidden_states=image_hidden_states,
|
||
|
)
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
The Idefics2 Model with a language modeling head. It is made up a SigLIP vision encoder, with a language modeling head on top.
|
||
|
"""
|
||
|
)
|
||
|
class Idefics2ForConditionalGeneration(Idefics2PreTrainedModel, GenerationMixin):
|
||
|
_tied_weights_keys = ["lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.model = Idefics2Model(config)
|
||
|
self.image_token_id = self.config.image_token_id
|
||
|
|
||
|
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
||
|
self.vocab_size = config.text_config.vocab_size
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def enable_input_require_grads(self):
|
||
|
"""
|
||
|
Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
|
||
|
the model weights fixed.
|
||
|
"""
|
||
|
|
||
|
def make_inputs_require_grads(module, input, output):
|
||
|
output.requires_grad_(True)
|
||
|
|
||
|
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
|
||
|
self._vision_require_grads_hook = self.model.vision_model.get_input_embeddings().register_forward_hook(
|
||
|
make_inputs_require_grads
|
||
|
)
|
||
|
|
||
|
def disable_input_require_grads(self):
|
||
|
self._text_require_grads_hook.remove()
|
||
|
self._vision_require_grads_hook.remove()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.model.text_model.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.model.text_model.set_input_embeddings(value)
|
||
|
|
||
|
def get_image_features(self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.LongTensor = None):
|
||
|
return self.model.get_image_features(pixel_values=pixel_values, pixel_attention_mask=pixel_attention_mask)
|
||
|
|
||
|
@can_return_tuple
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[Cache] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
||
|
image_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
||
|
**kwargs: Unpack[TransformersKwargs],
|
||
|
) -> Union[tuple, Idefics2CausalLMOutputWithPast]:
|
||
|
r"""
|
||
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
||
|
Mask to avoid performing attention on padding pixel indices.
|
||
|
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
||
|
The hidden states of the image encoder after modality projection and perceiver resampling.
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||
|
config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics2ForConditionalGeneration`).
|
||
|
Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only
|
||
|
computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> import requests
|
||
|
>>> import torch
|
||
|
>>> from PIL import Image
|
||
|
>>> from io import BytesIO
|
||
|
|
||
|
>>> from transformers import AutoProcessor, AutoModelForVision2Seq
|
||
|
>>> from transformers.image_utils import load_image
|
||
|
|
||
|
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
|
||
|
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
|
||
|
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
|
||
|
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
|
||
|
|
||
|
>>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-base")
|
||
|
>>> model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b-base", device_map="auto")
|
||
|
|
||
|
>>> BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
||
|
>>> EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]
|
||
|
|
||
|
>>> # Create inputs
|
||
|
>>> prompts = [
|
||
|
... "<image>In this image, we can see the city of New York, and more specifically the Statue of Liberty.<image>In this image,",
|
||
|
... "In which city is that bridge located?<image>",
|
||
|
... ]
|
||
|
>>> images = [[image1, image2], [image3]]
|
||
|
>>> inputs = processor(images=images, text=prompts, padding=True, return_tensors="pt").to("cuda")
|
||
|
|
||
|
>>> # Generate
|
||
|
>>> generated_ids = model.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=20)
|
||
|
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
||
|
|
||
|
>>> print(generated_texts)
|
||
|
['In this image, we can see the city of New York, and more specifically the Statue of Liberty. In this image, we can see the city of New York, and more specifically the Statue of Liberty.\n\n', 'In which city is that bridge located?\n\nThe bridge is located in the city of Pittsburgh, Pennsylvania.\n\n\nThe bridge is']
|
||
|
```"""
|
||
|
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||
|
outputs = self.model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
pixel_values=pixel_values,
|
||
|
pixel_attention_mask=pixel_attention_mask,
|
||
|
image_hidden_states=image_hidden_states,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
cache_position=cache_position,
|
||
|
return_dict=True,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
||
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
||
|
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss = self.loss_function(
|
||
|
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
|
||
|
)
|
||
|
|
||
|
return Idefics2CausalLMOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
image_hidden_states=outputs.image_hidden_states,
|
||
|
)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids,
|
||
|
past_key_values=None,
|
||
|
attention_mask=None,
|
||
|
inputs_embeds=None,
|
||
|
cache_position=None,
|
||
|
pixel_values=None,
|
||
|
pixel_attention_mask=None,
|
||
|
image_hidden_states=None,
|
||
|
logits_to_keep=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# Overwritten -- there are mutually exclusive inputs (if the logic to make `image_hidden_states` take
|
||
|
# precedence is moved to the model, we can remove this fn)
|
||
|
|
||
|
model_inputs = super().prepare_inputs_for_generation(
|
||
|
input_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
attention_mask=attention_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
cache_position=cache_position,
|
||
|
pixel_values=pixel_values,
|
||
|
pixel_attention_mask=pixel_attention_mask,
|
||
|
image_hidden_states=image_hidden_states,
|
||
|
logits_to_keep=logits_to_keep,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
if image_hidden_states is not None or cache_position[0] != 0:
|
||
|
model_inputs["pixel_values"] = None
|
||
|
model_inputs["pixel_attention_mask"] = None
|
||
|
|
||
|
return model_inputs
|
||
|
|
||
|
|
||
|
__all__ = ["Idefics2ForConditionalGeneration", "Idefics2PreTrainedModel", "Idefics2Model"]
|