team-10/venv/Lib/site-packages/transformers/models/llama4/configuration_llama4.py

470 lines
22 KiB
Python
Raw Normal View History

2025-08-02 02:00:33 +02:00
# coding=utf-8
# Copyright 2025 The LLAMA4 and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig, layer_type_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class Llama4VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Llama4VisionModel`]. It is used to instantiate a
Llama4 vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Llama4 109B.
e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
num_hidden_layers (`int`, *optional*, defaults to 34):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
intermediate_size (`int`, *optional*, defaults to 5632):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
vision_output_dim (`int`, *optional*, defaults to 7680):
Dimensionality of the vision model output. Includes output of transformer
encoder with intermediate layers and global transformer encoder.
image_size (`int`, *optional*, defaults to 448):
The size (resolution) of each image *tile*.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
vision_feature_layer (``, *optional*, defaults to -1): TODO
vision_feature_select_strategy (`int`, *optional*, defaults to `"default"`): TODO
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
pixel_shuffle_ratio (`int`, *optional*, defaults to 0.5): TODO
projector_input_dim (`int`, *optional*, defaults to 4096): TODO
projector_output_dim (`int`, *optional*, defaults to 4096): TODO
multi_modal_projector_bias (`int`, *optional*, defaults to `False`): TODO
projector_dropout (`int`, *optional*, defaults to 0.0): TODO
attention_dropout (`int`, *optional*, defaults to 0.0): TODO
rope_theta (`int`, *optional*, defaults to 10000): TODO
"""
base_model_tp_plan = {
"model.layers.*.self_attn.q_proj": "colwise",
"model.layers.*.self_attn.k_proj": "colwise",
"model.layers.*.self_attn.v_proj": "colwise",
"model.layers.*.self_attn.o_proj": "rowwise",
"vision_adapter.mlp.fc1": "colwise",
"vision_adapter.mlp.fc2": "rowwise",
"patch_embedding.linear": "colwise_rep",
}
model_type = "llama4_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size: int = 768,
hidden_act: str = "gelu",
num_hidden_layers: int = 34,
num_attention_heads: int = 16,
num_channels: int = 3,
intermediate_size: int = 5632,
vision_output_dim: int = 7680,
image_size: int = 448,
patch_size: int = 14,
norm_eps: float = 1e-5,
vision_feature_layer=-1,
vision_feature_select_strategy="default",
initializer_range: float = 0.02,
pixel_shuffle_ratio=0.5,
projector_input_dim=4096,
projector_output_dim=4096,
multi_modal_projector_bias=False,
projector_dropout=0.0,
attention_dropout=0.0,
rope_theta=10000,
**kwargs,
):
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.num_hidden_layers = num_hidden_layers
self.num_channels = num_channels
self.intermediate_size = intermediate_size
self.image_size = image_size
self.vision_output_dim = vision_output_dim
self.patch_size = patch_size
self.norm_eps = norm_eps
self.num_attention_heads = num_attention_heads
self.initializer_range = initializer_range
self.pixel_shuffle_ratio = pixel_shuffle_ratio
self.projector_input_dim = projector_input_dim
self.projector_output_dim = projector_output_dim
self.multi_modal_projector_bias = multi_modal_projector_bias
self.projector_dropout = projector_dropout
self.attention_dropout = attention_dropout
self.vision_feature_layer = vision_feature_layer
self.vision_feature_select_strategy = vision_feature_select_strategy
self.rope_theta = rope_theta
super().__init__(**kwargs)
class Llama4TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Llama4TextModel`]. It is used to instantiate a
Llama4 text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Llama4 109B.
e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 202048):
Vocabulary size of the Llama4 text model. Defines the maximum number of different tokens that can be represented
by the `inputs_ids` passed when calling [`Llama4TextModel`].
hidden_size (`int`, *optional*, defaults to 5120):
Dimensionality of the embeddings and hidden states.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
intermediate_size_mlp (`int`, *optional*, defaults to 16384): TODO
num_hidden_layers (`int`, *optional*, defaults to 48):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 40):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
specified, will default to `num_attention_heads`.
head_dim (`int`, *optional*, defaults to 128): TODO
hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the encoder and pooler.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions.
pad_token_id (`int`, *optional*, defaults to 128004):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the beginning of sentence token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the end of sentence token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to `500000.0`):
The base period of the RoPE embeddings.
attention_dropout (`int`, *optional*, defaults to 0.0): TODO
num_experts_per_tok (`int`, *optional*, defaults to 1): TODO
num_local_experts (`int`, *optional*, defaults to 16): TODO
moe_layers (`int`, *optional*): TODO
interleave_moe_layer_step (`int`, *optional*, defaults to 1): TODO
use_qk_norm (`int`, *optional*, defaults to `True`): TODO
output_router_logits (`int`, *optional*, defaults to `False`): TODO
router_aux_loss_coef (`int`, *optional*, defaults to 0.001): TODO
router_jitter_noise (`int`, *optional*, defaults to 0.0): TODO
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
<TODO>
<TODO>
no_rope_layers (`list[int]`, *optional*):
List with at least the same length as the number of layers in the model.
A `1` at an index position indicates that the corresponding layer will use RoPE,
while a `0` indicates that it's a NoPE layer.
no_rope_layer_interval (`int`, *optional*, defaults to 4):
If `no_rope_layers` is `None`, it will be created using a NoPE layer every
`no_rope_layer_interval` layers.
attention_chunk_size (`int`, *optional*, defaults to 8192):
<TODO>
layer_types (`list`, *optional*):
Attention pattern for each layer.
attn_temperature_tuning (`bool`, *optional*, defaults to `True`):
Whether to dynamically scale the attention temperature for each query token based on sequence length.
Recommended for long sequences (e.g., >32k tokens) to maintain stable output results.
floor_scale (`int`, *optional*, defaults to 8192): TODO
attn_scale (`int`, *optional*, defaults to 0.1): TODO
Example:
"""
model_type = "llama4_text"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.input_layernorm.weight": "sequence_parallel",
"layers.*.post_attention_layernorm.weight": "sequence_parallel",
"norm.weight": "sequence_parallel",
"layers.*.feed_forward.shared_expert.gate_proj": "local_colwise",
"layers.*.feed_forward.shared_expert.up_proj": "local_colwise",
"layers.*.feed_forward.shared_expert.down_proj": "local_rowwise",
"layers.*.feed_forward.experts.gate_up_proj": "local_packed_rowwise", # row because not linear
"layers.*.feed_forward.experts.down_proj": "local_colwise", # col because not linear
"layers.*.feed_forward.experts": "local",
"layers.*.feed_forward.gate_proj": "local_colwise",
"layers.*.feed_forward.up_proj": "local_colwise",
"layers.*.feed_forward.down_proj": "local_rowwise",
"layers.*.feed_forward": "gather",
}
base_model_ep_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.feed_forward.experts.gate_up_proj": "grouped_gemm", # row because not linear
"layers.*.feed_forward.experts.down_proj": "grouped_gemm", # col because not linear
"layers.*.feed_forward.experts": "gather", # all reduce
"layers.*.feed_forward.gate_proj": "local_colwise",
"layers.*.feed_forward.up_proj": "local_colwise",
"layers.*.feed_forward.down_proj": "local_rowwise",
"layers.*.feed_forward.router": "ep_router",
}
def __init__(
self,
vocab_size=202048,
hidden_size=5120,
intermediate_size=8192,
intermediate_size_mlp=16384,
num_hidden_layers=48,
num_attention_heads=40,
num_key_value_heads=8,
head_dim=128,
hidden_act="silu",
max_position_embeddings=4096 * 32,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=500000,
attention_dropout=0.0,
num_experts_per_tok=1,
num_local_experts=16,
moe_layers=None,
interleave_moe_layer_step=1,
use_qk_norm=True,
output_router_logits=False,
router_aux_loss_coef=0.001,
router_jitter_noise=0.0,
rope_scaling=None,
no_rope_layers=None,
no_rope_layer_interval=4,
attention_chunk_size=8192,
layer_types=None,
attn_temperature_tuning=True,
floor_scale=8192,
attn_scale=0.1,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.attn_temperature_tuning = attn_temperature_tuning
self.attn_scale = attn_scale
self.floor_scale = floor_scale
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.intermediate_size_mlp = intermediate_size_mlp
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.rope_scaling = rope_scaling
self.attention_bias = False
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
self.use_qk_norm = use_qk_norm
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.router_jitter_noise = router_jitter_noise
# Backwards compatibility
if no_rope_layers == []:
no_rope_layers = None
default_no_rope_layers = [
int((layer_idx + 1) % no_rope_layer_interval != 0) for layer_idx in range(self.num_hidden_layers)
]
self.no_rope_layers = no_rope_layers if no_rope_layers else default_no_rope_layers
self.interleave_moe_layer_step = interleave_moe_layer_step
self.moe_layers = (
moe_layers
if moe_layers is not None
else list(range(interleave_moe_layer_step - 1, num_hidden_layers, interleave_moe_layer_step))
)
self.attention_chunk_size = attention_chunk_size
self.layer_types = layer_types
if layer_types is None:
self.layer_types = [
"chunked_attention" if no_rope else "full_attention" for no_rope in self.no_rope_layers
]
layer_type_validation(self.layer_types)
class Llama4Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Llama4Model`]. It is used to instantiate an
Llama4 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Llama4 109B.
e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Llama4VisionConfig`, *optional*):
The Llama4 Vision config.
text_config (`Llama4TextConfig`, *optional*):
The Llama4 Text config.
boi_token_index (`int`, *optional*, defaults to 200080):
The begin-of-image token index to wrap the image prompt.
eoi_token_index (`int`, *optional*, defaults to 200081):
The end-of-image token index to wrap the image prompt.
image_token_index (`int`, *optional*, defaults to 200092):
The image token index to encode the image prompt.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
```python
>>> from transformers import Llama4Model, Llama4Config
>>> # Initializing a Llama4 7B style configuration
>>> configuration = Llama4Config()
>>> # Initializing a model from the Llama4 7B style configuration
>>> model = Llama4Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llama4"
attribute_map = {
"image_token_id": "image_token_index",
"boi_token_id": "boi_token_index",
"eoi_token_id": "eoi_token_index",
}
sub_configs = {"text_config": Llama4TextConfig, "vision_config": Llama4VisionConfig}
base_model_tp_plan = {
"multi_modal_projector.linear_1": "colwise_rep",
}
def __init__(
self,
vision_config=None,
text_config=None,
boi_token_index=200080,
eoi_token_index=200081,
image_token_index=200092,
tie_word_embeddings=False,
**kwargs,
):
if vision_config is None:
self.vision_config = Llama4VisionConfig()
logger.info("vision_config is None, using default llama4 vision config")
elif isinstance(vision_config, dict):
self.vision_config = Llama4VisionConfig(**vision_config)
elif isinstance(vision_config, Llama4VisionConfig):
self.vision_config = vision_config
self.boi_token_index = boi_token_index
self.eoi_token_index = eoi_token_index
self.image_token_index = image_token_index
if text_config is None:
self.text_config = Llama4TextConfig()
logger.info("text_config is None, using default llama4 text config")
elif isinstance(text_config, dict):
self.text_config = Llama4TextConfig(**text_config)
elif isinstance(text_config, Llama4TextConfig):
self.text_config = text_config
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
__all__ = ["Llama4Config", "Llama4TextConfig", "Llama4VisionConfig"]