278 lines
13 KiB
Python
278 lines
13 KiB
Python
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||
|
# This file was automatically generated from src/transformers/models/siglip2/modular_siglip2.py.
|
||
|
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
||
|
# the file from the modular. If any change should be done, please apply the change to the
|
||
|
# modular_siglip2.py file directly. One of our CI enforces this.
|
||
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||
|
# coding=utf-8
|
||
|
# Copyright 2025 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class Siglip2TextConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Siglip2TextModel`]. It is used to instantiate a
|
||
|
Siglip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip2
|
||
|
[google/siglip2-base-patch16-224](https://huggingface.co/google/siglip2-base-patch16-224) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 32000):
|
||
|
Vocabulary size of the Siglip2 text model. Defines the number of different tokens that can be represented by
|
||
|
the `inputs_ids` passed when calling [`Siglip2Model`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 64):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
pad_token_id (`int`, *optional*, defaults to 1):
|
||
|
The id of the padding token in the vocabulary.
|
||
|
bos_token_id (`int`, *optional*, defaults to 49406):
|
||
|
The id of the beginning-of-sequence token in the vocabulary.
|
||
|
eos_token_id (`int`, *optional*, defaults to 49407):
|
||
|
The id of the end-of-sequence token in the vocabulary.
|
||
|
projection_size (`int`, *optional*, defaults to `hidden_size`):
|
||
|
The size of the projection head.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import Siglip2TextConfig, Siglip2TextModel
|
||
|
|
||
|
>>> # Initializing a Siglip2TextConfig with google/siglip2-base-patch16-224 style configuration
|
||
|
>>> configuration = Siglip2TextConfig()
|
||
|
|
||
|
>>> # Initializing a Siglip2TextModel (with random weights) from the google/siglip2-base-patch16-224 style configuration
|
||
|
>>> model = Siglip2TextModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "siglip2_text_model"
|
||
|
base_config_key = "text_config"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=32000,
|
||
|
hidden_size=768,
|
||
|
intermediate_size=3072,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
max_position_embeddings=64,
|
||
|
hidden_act="gelu_pytorch_tanh",
|
||
|
layer_norm_eps=1e-6,
|
||
|
attention_dropout=0.0,
|
||
|
# This differs from `CLIPTokenizer`'s default and from openai/siglip2
|
||
|
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
||
|
pad_token_id=1,
|
||
|
bos_token_id=49406,
|
||
|
eos_token_id=49407,
|
||
|
projection_size=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.projection_size = projection_size if projection_size is not None else hidden_size
|
||
|
|
||
|
|
||
|
class Siglip2VisionConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Siglip2VisionModel`]. It is used to instantiate a
|
||
|
Siglip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip2
|
||
|
[google/siglip2-base-patch16-naflex](https://huggingface.co/google/siglip2-base-patch16-naflex) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
Number of channels in the input images.
|
||
|
num_patches (`int`, *optional*, defaults to 256):
|
||
|
The number of patches in the image with the size of (`patch_size`, `patch_size`).
|
||
|
The image is resized to fill maximum of this number of patches, and to preserve
|
||
|
the aspect ratio. In case the resulted number of patches is lower, the image is
|
||
|
padded in "patch" dimension.
|
||
|
patch_size (`int`, *optional*, defaults to 16):
|
||
|
The size (resolution) of each patch.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import Siglip2VisionConfig, Siglip2VisionModel
|
||
|
|
||
|
>>> # Initializing a Siglip2VisionConfig with google/siglip2-base-patch16-naflex style configuration
|
||
|
>>> configuration = Siglip2VisionConfig()
|
||
|
|
||
|
>>> # Initializing a Siglip2VisionModel (with random weights) from the google/siglip2-base-patch16-naflex style configuration
|
||
|
>>> model = Siglip2VisionModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "siglip2_vision_model"
|
||
|
base_config_key = "vision_config"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size=768,
|
||
|
intermediate_size=3072,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
num_channels=3,
|
||
|
num_patches=256,
|
||
|
patch_size=16,
|
||
|
hidden_act="gelu_pytorch_tanh",
|
||
|
layer_norm_eps=1e-6,
|
||
|
attention_dropout=0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.num_channels = num_channels
|
||
|
self.patch_size = patch_size
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
|
||
|
class Siglip2Config(PretrainedConfig):
|
||
|
r"""
|
||
|
[`Siglip2Config`] is the configuration class to store the configuration of a [`Siglip2Model`]. It is used to
|
||
|
instantiate a Siglip2 model according to the specified arguments, defining the text model and vision model configs.
|
||
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip2
|
||
|
[google/siglip2-base-patch16-224](https://huggingface.co/google/siglip2-base-patch16-224) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
text_config (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`Siglip2TextConfig`].
|
||
|
vision_config (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`Siglip2VisionConfig`].
|
||
|
kwargs (*optional*):
|
||
|
Dictionary of keyword arguments.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import Siglip2Config, Siglip2Model
|
||
|
|
||
|
>>> # Initializing a Siglip2Config with google/siglip2-base-patch16-224 style configuration
|
||
|
>>> configuration = Siglip2Config()
|
||
|
|
||
|
>>> # Initializing a Siglip2Model (with random weights) from the google/siglip2-base-patch16-224 style configuration
|
||
|
>>> model = Siglip2Model(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
|
||
|
>>> # We can also initialize a Siglip2Config from a Siglip2TextConfig and a Siglip2VisionConfig
|
||
|
>>> from transformers import Siglip2TextConfig, Siglip2VisionConfig
|
||
|
|
||
|
>>> # Initializing a Siglip2Text and Siglip2Vision configuration
|
||
|
>>> config_text = Siglip2TextConfig()
|
||
|
>>> config_vision = Siglip2VisionConfig()
|
||
|
|
||
|
>>> config = Siglip2Config.from_text_vision_configs(config_text, config_vision)
|
||
|
```"""
|
||
|
|
||
|
model_type = "siglip2"
|
||
|
sub_configs = {"text_config": Siglip2TextConfig, "vision_config": Siglip2VisionConfig}
|
||
|
|
||
|
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
if text_config is None:
|
||
|
text_config = {}
|
||
|
logger.info("`text_config` is `None`. Initializing the `Siglip2TextConfig` with default values.")
|
||
|
|
||
|
if vision_config is None:
|
||
|
vision_config = {}
|
||
|
logger.info("`vision_config` is `None`. initializing the `Siglip2VisionConfig` with default values.")
|
||
|
|
||
|
self.text_config = Siglip2TextConfig(**text_config)
|
||
|
self.vision_config = Siglip2VisionConfig(**vision_config)
|
||
|
|
||
|
self.initializer_factor = 1.0
|
||
|
|
||
|
@classmethod
|
||
|
def from_text_vision_configs(cls, text_config: Siglip2TextConfig, vision_config: Siglip2VisionConfig, **kwargs):
|
||
|
r"""
|
||
|
Instantiate a [`Siglip2Config`] (or a derived class) from siglip2 text model configuration and siglip2 vision
|
||
|
model configuration.
|
||
|
|
||
|
Returns:
|
||
|
[`Siglip2Config`]: An instance of a configuration object
|
||
|
"""
|
||
|
|
||
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
||
|
|
||
|
|
||
|
__all__ = ["Siglip2Config", "Siglip2TextConfig", "Siglip2VisionConfig"]
|