417 lines
15 KiB
Python
417 lines
15 KiB
Python
|
import functools
|
||
|
import logging
|
||
|
import time
|
||
|
from enum import Enum
|
||
|
from typing import Any, Callable, Optional, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
class RequestStatus(Enum):
|
||
|
"""Status of a generation request through its lifecycle."""
|
||
|
|
||
|
PENDING = "pending"
|
||
|
PREFILLING = "prefilling"
|
||
|
PREFILLING_SPLIT = "prefilling_split"
|
||
|
SPLIT_PENDING_REMAINDER = "split_pending_remainder"
|
||
|
DECODING = "decoding"
|
||
|
FINISHED = "finished"
|
||
|
FAILED = "failed"
|
||
|
|
||
|
|
||
|
try:
|
||
|
from opentelemetry import metrics
|
||
|
from opentelemetry.trace import Status, StatusCode, get_tracer
|
||
|
|
||
|
_has_opentelemetry = True
|
||
|
except ImportError:
|
||
|
_has_opentelemetry = False
|
||
|
|
||
|
|
||
|
def attach_tracer(tracer_name_template=None):
|
||
|
"""
|
||
|
Decorator that attaches a tracer to a class.
|
||
|
|
||
|
This decorator should be applied to classes that need OpenTelemetry tracing.
|
||
|
It adds a tracer attribute to the class instance that can be used by the traced decorator.
|
||
|
|
||
|
Args:
|
||
|
tracer_name_template: Optional template string for the tracer name.
|
||
|
If provided, it should contain {module} which will be replaced with the class's full module path
|
||
|
and {class_name} for the class name.
|
||
|
If None, a default naming scheme will be used where:
|
||
|
- If the module already starts with "transformers.", it will use that directly
|
||
|
- Otherwise, it will prepend "transformers." to the module name
|
||
|
|
||
|
Returns:
|
||
|
Class decorator function
|
||
|
"""
|
||
|
if not _has_opentelemetry:
|
||
|
return lambda cls: cls
|
||
|
|
||
|
def decorator(cls):
|
||
|
original_init = cls.__init__
|
||
|
|
||
|
@functools.wraps(original_init)
|
||
|
def init_with_tracer(self, *args, **kwargs):
|
||
|
original_init(self, *args, **kwargs)
|
||
|
|
||
|
module_name = cls.__module__
|
||
|
class_name = cls.__qualname__
|
||
|
|
||
|
if tracer_name_template is None:
|
||
|
if module_name.startswith("transformers."):
|
||
|
tracer_name = f"{module_name}.{class_name}"
|
||
|
else:
|
||
|
tracer_name = f"transformers.{module_name}.{class_name}"
|
||
|
else:
|
||
|
tracer_name = tracer_name_template.format(module=module_name, class_name=class_name)
|
||
|
|
||
|
self.tracer = get_tracer(tracer_name)
|
||
|
|
||
|
cls.__init__ = init_with_tracer
|
||
|
return cls
|
||
|
|
||
|
return decorator
|
||
|
|
||
|
|
||
|
def traced(
|
||
|
func=None,
|
||
|
*,
|
||
|
span_name=None,
|
||
|
standalone=False,
|
||
|
additional_attributes: Optional[list[tuple[str, str, Union[Any, Callable[[Any], Any]]]]] = None,
|
||
|
):
|
||
|
"""
|
||
|
Decorator to trace function calls with OpenTelemetry.
|
||
|
|
||
|
Can be used as @traced or @traced(span_name="custom_name")
|
||
|
|
||
|
Args:
|
||
|
func: The function to trace
|
||
|
span_name: Optional custom name for the span (defaults to function name)
|
||
|
standalone: If True, creates a parentless span
|
||
|
additional_attributes: Optional list of additional attributes to set on the span.
|
||
|
Each item is a tuple of (instance_attribute_name, span_attribute_key, value_or_transform_function)
|
||
|
where:
|
||
|
- instance_attribute_name: Name of the attribute to get from the class instance
|
||
|
- span_attribute_key: Key to use when setting the attribute on the span
|
||
|
- value_or_transform_function: Either a raw value to use directly, or a function to transform
|
||
|
the attribute value before setting it on the span
|
||
|
|
||
|
Returns:
|
||
|
Decorated function with tracing
|
||
|
"""
|
||
|
|
||
|
def decorator(func):
|
||
|
if not _has_opentelemetry:
|
||
|
return func
|
||
|
|
||
|
import functools
|
||
|
|
||
|
@functools.wraps(func)
|
||
|
def wrapper(*args, **kwargs):
|
||
|
instance = args[0] if args and (hasattr(func, "__self__") and func.__self__ is not None) else None
|
||
|
is_method = instance is not None
|
||
|
|
||
|
if is_method and hasattr(instance, "tracer"):
|
||
|
tracer = instance.tracer
|
||
|
else:
|
||
|
tracer = get_tracer(f"transformers.{func.__module__}.{func.__name__}")
|
||
|
|
||
|
name = span_name or func.__name__
|
||
|
span_fn = tracer.start_span if standalone else tracer.start_as_current_span
|
||
|
with span_fn(name) as span:
|
||
|
span.set_attribute("function.name", func.__name__)
|
||
|
span.set_attribute("function.module", func.__module__)
|
||
|
span.set_attribute("function.is_method", is_method)
|
||
|
|
||
|
if args:
|
||
|
for i, arg in enumerate(args):
|
||
|
if isinstance(arg, (str, int, float, bool)) or arg is None:
|
||
|
span.set_attribute(f"args.{i}", str(arg))
|
||
|
else:
|
||
|
span.set_attribute(f"args.{i}", str(type(arg)))
|
||
|
if kwargs:
|
||
|
for key, value in kwargs.items():
|
||
|
if isinstance(value, (str, int, float, bool)) or value is None:
|
||
|
span.set_attribute(f"kwargs.{key}", str(value))
|
||
|
else:
|
||
|
span.set_attribute(f"kwargs.{key}", str(type(value)))
|
||
|
|
||
|
if additional_attributes and is_method:
|
||
|
for attr_config in additional_attributes:
|
||
|
instance_attribute_name, span_attribute_key, value_or_transform_function = attr_config
|
||
|
if hasattr(instance, instance_attribute_name):
|
||
|
attribute_value = getattr(instance, instance_attribute_name)
|
||
|
if callable(value_or_transform_function):
|
||
|
transformed_value = value_or_transform_function(attribute_value)
|
||
|
else:
|
||
|
transformed_value = value_or_transform_function
|
||
|
span.set_attribute(span_attribute_key, transformed_value)
|
||
|
|
||
|
try:
|
||
|
result = func(*args, **kwargs)
|
||
|
return result
|
||
|
except Exception as e:
|
||
|
span.set_status(Status(StatusCode.ERROR))
|
||
|
span.record_exception(e)
|
||
|
raise
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
if func is None:
|
||
|
return decorator
|
||
|
return decorator(func)
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
@attach_tracer()
|
||
|
class ContinuousBatchProcessorMetrics:
|
||
|
"""Metrics collection for ContinuousBatchProcessor."""
|
||
|
|
||
|
def __init__(self, max_batch_tokens: int):
|
||
|
"""Initialize metrics for continuous batch processor.
|
||
|
|
||
|
Args:
|
||
|
max_batch_tokens: Maximum number of tokens in a batch
|
||
|
"""
|
||
|
self.max_batch_tokens = max_batch_tokens
|
||
|
|
||
|
self._setup_metrics()
|
||
|
|
||
|
def _setup_metrics(self):
|
||
|
"""Initialize OpenTelemetry metrics and tracing if the library is available."""
|
||
|
|
||
|
if not _has_opentelemetry:
|
||
|
logger.info("OpenTelemetry is not installed. Metrics and tracing will not be recorded.")
|
||
|
return
|
||
|
|
||
|
self.meter = metrics.get_meter("transformers.generation.continuous_batch_processor")
|
||
|
|
||
|
# Define appropriate buckets for TTFT (typically ranges from ~50ms to several seconds)
|
||
|
ttft_buckets = [10, 25, 50, 75, 100, 150, 200, 300, 500, 750, 1000, 2000, 5000, 10000]
|
||
|
|
||
|
self.ttft_histogram = self.meter.create_histogram(
|
||
|
name="ttft_milliseconds",
|
||
|
description="Time to first token in milliseconds",
|
||
|
unit="ms",
|
||
|
explicit_bucket_boundaries_advisory=ttft_buckets,
|
||
|
)
|
||
|
|
||
|
self.active_requests_gauge = self.meter.create_gauge(
|
||
|
name="active_requests_count",
|
||
|
description="Number of active requests currently being processed",
|
||
|
unit="requests",
|
||
|
)
|
||
|
|
||
|
self.waiting_requests_gauge = self.meter.create_gauge(
|
||
|
name="waiting_requests_count",
|
||
|
description="Number of requests waiting to be processed",
|
||
|
unit="requests",
|
||
|
)
|
||
|
|
||
|
# Define appropriate buckets for request latency (similar to TTFT but with higher upper bounds)
|
||
|
latency_buckets = [50, 100, 250, 500, 1000, 2000, 5000, 10000, 20000, 30000, 60000]
|
||
|
|
||
|
self.request_latency_histogram = self.meter.create_histogram(
|
||
|
name="request_latency_milliseconds",
|
||
|
description="End-to-end latency for completed requests in milliseconds",
|
||
|
unit="ms",
|
||
|
explicit_bucket_boundaries_advisory=latency_buckets,
|
||
|
)
|
||
|
|
||
|
self.decode_prefill_ratio_gauge = self.meter.create_gauge(
|
||
|
name="decode_prefill_ratio",
|
||
|
description="Ratio of decode tokens to prefill tokens in a batch",
|
||
|
unit="ratio",
|
||
|
)
|
||
|
|
||
|
self.prefill_tokens_counter = self.meter.create_counter(
|
||
|
name="prefill_tokens_processed",
|
||
|
description="Number of prefill tokens processed",
|
||
|
unit="tokens",
|
||
|
)
|
||
|
|
||
|
self.decode_tokens_counter = self.meter.create_counter(
|
||
|
name="decode_tokens_processed",
|
||
|
description="Number of decode tokens processed",
|
||
|
unit="tokens",
|
||
|
)
|
||
|
|
||
|
# Define appropriate buckets for batch fill percentage (0-100%)
|
||
|
batch_fill_buckets = [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98, 100]
|
||
|
|
||
|
self.batch_fill_percentage_histogram = self.meter.create_histogram(
|
||
|
name="batch_fill_percentage",
|
||
|
description="Percentage of max_batch_tokens utilized in each batch",
|
||
|
unit="percent",
|
||
|
explicit_bucket_boundaries_advisory=batch_fill_buckets,
|
||
|
)
|
||
|
|
||
|
self.kv_cache_free_memory_gauge = self.meter.create_gauge(
|
||
|
name="kv_cache_free_memory_bytes",
|
||
|
description="Free memory of the PagedAttentionCache in bytes",
|
||
|
unit="bytes",
|
||
|
)
|
||
|
|
||
|
self.kv_cache_memory_gauge = self.meter.create_gauge(
|
||
|
name="kv_cache_memory_bytes",
|
||
|
description="Memory usage of the PagedAttentionCache in bytes",
|
||
|
unit="bytes",
|
||
|
)
|
||
|
|
||
|
@traced
|
||
|
def record_ttft_metric(self, created_time: float, request_id: str) -> None:
|
||
|
"""Record Time to First Token (TTFT).
|
||
|
|
||
|
Args:
|
||
|
created_time: The time the request was created
|
||
|
request_id: The ID of the request
|
||
|
"""
|
||
|
if not _has_opentelemetry:
|
||
|
return
|
||
|
|
||
|
ttft_ms = (time.time() - created_time) * 1000.0
|
||
|
|
||
|
try:
|
||
|
self.ttft_histogram.record(ttft_ms)
|
||
|
logger.debug(f"Recorded TTFT for request {request_id}: {ttft_ms:.2f}ms")
|
||
|
except Exception as e:
|
||
|
logger.warning(f"Failed to record TTFT metric: {e}")
|
||
|
|
||
|
@traced
|
||
|
def record_batch_metrics(self, requests_in_batch: list) -> None:
|
||
|
"""Record metrics about the batch composition including decode/prefill ratio and batch fill percentage.
|
||
|
|
||
|
Args:
|
||
|
requests_in_batch: List of request states in the current batch
|
||
|
"""
|
||
|
if not _has_opentelemetry or not requests_in_batch:
|
||
|
return
|
||
|
|
||
|
decode_tokens = 0
|
||
|
prefill_tokens = 0
|
||
|
|
||
|
for state in requests_in_batch:
|
||
|
if state.status == RequestStatus.DECODING:
|
||
|
decode_tokens += 1
|
||
|
elif state.status in [RequestStatus.PREFILLING, RequestStatus.PREFILLING_SPLIT]:
|
||
|
prefill_tokens += len(state.prompt_ids)
|
||
|
|
||
|
total_batch_tokens = decode_tokens + prefill_tokens
|
||
|
|
||
|
try:
|
||
|
if prefill_tokens > 0:
|
||
|
self.prefill_tokens_counter.add(prefill_tokens)
|
||
|
|
||
|
if decode_tokens > 0:
|
||
|
self.decode_tokens_counter.add(decode_tokens)
|
||
|
|
||
|
if prefill_tokens > 0:
|
||
|
ratio = decode_tokens / prefill_tokens
|
||
|
self.decode_prefill_ratio_gauge.set(ratio)
|
||
|
|
||
|
fill_percentage = (total_batch_tokens / self.max_batch_tokens) * 100.0
|
||
|
self.batch_fill_percentage_histogram.record(fill_percentage)
|
||
|
logger.debug(
|
||
|
f"Batch metrics: {decode_tokens} decode tokens, {prefill_tokens} prefill tokens, "
|
||
|
f"batch fill: {fill_percentage:.2f}% ({total_batch_tokens}/{self.max_batch_tokens})"
|
||
|
)
|
||
|
except Exception as e:
|
||
|
logger.warning(f"Failed to record batch metrics: {e}")
|
||
|
|
||
|
@traced
|
||
|
def record_kv_cache_memory_metrics(self, cache) -> None:
|
||
|
"""Record memory usage of the PagedAttentionCache without GPU synchronization.
|
||
|
|
||
|
This calculates the theoretical memory usage based on cache configuration
|
||
|
and the number of blocks currently in use.
|
||
|
|
||
|
Args:
|
||
|
cache: The PagedAttentionCache object to measure
|
||
|
"""
|
||
|
if not _has_opentelemetry:
|
||
|
return
|
||
|
|
||
|
try:
|
||
|
# Calculate memory usage based on cache configuration
|
||
|
num_used_blocks = cache.num_blocks - len(cache._free_blocks)
|
||
|
num_layers = len(cache.key_cache)
|
||
|
|
||
|
# Each used block stores key and value states
|
||
|
# Each with shape: (num_kv_heads, block_size, head_dim)
|
||
|
bytes_per_parameter = 2 if cache.dtype in [torch.float16, torch.bfloat16] else 4 # Size in bytes
|
||
|
|
||
|
# Total bytes = num_layers * num_used_blocks * block_size *
|
||
|
# num_kv_heads * head_dim * 2 (both K and V) * bytes_per_parameter
|
||
|
memory_bytes = (
|
||
|
num_layers
|
||
|
* num_used_blocks
|
||
|
* cache.block_size
|
||
|
* cache.num_key_value_heads
|
||
|
* cache.head_dim
|
||
|
* 2 # For both key and value caches
|
||
|
* bytes_per_parameter
|
||
|
)
|
||
|
|
||
|
free_memory_bytes = (
|
||
|
num_layers
|
||
|
* len(cache._free_blocks)
|
||
|
* cache.block_size
|
||
|
* cache.num_key_value_heads
|
||
|
* cache.head_dim
|
||
|
* 2 # For both key and value caches
|
||
|
* bytes_per_parameter
|
||
|
)
|
||
|
|
||
|
self.kv_cache_memory_gauge.set(memory_bytes)
|
||
|
self.kv_cache_free_memory_gauge.set(free_memory_bytes)
|
||
|
logger.debug(
|
||
|
f"KV Cache memory: {memory_bytes / (1024 * 1024):.2f}MB, "
|
||
|
f"Used blocks: {num_used_blocks}/{cache.num_blocks} "
|
||
|
f"({num_used_blocks / cache.num_blocks * 100:.1f}%)"
|
||
|
)
|
||
|
except Exception as e:
|
||
|
logger.warning(f"Failed to record KV cache memory metrics: {e}")
|
||
|
|
||
|
@traced
|
||
|
def record_queue_metrics(self, active_requests: int, waiting_requests: int) -> None:
|
||
|
"""Record metrics about active and waiting requests.
|
||
|
|
||
|
Args:
|
||
|
active_requests: Number of active requests
|
||
|
waiting_requests: Number of waiting requests
|
||
|
"""
|
||
|
if not _has_opentelemetry:
|
||
|
return
|
||
|
|
||
|
try:
|
||
|
self.active_requests_gauge.set(active_requests)
|
||
|
self.waiting_requests_gauge.set(waiting_requests)
|
||
|
logger.debug(f"Queue metrics: {active_requests} active requests, {waiting_requests} waiting requests")
|
||
|
except Exception as e:
|
||
|
logger.warning(f"Failed to record queue metrics: {e}")
|
||
|
|
||
|
@traced
|
||
|
def record_request_completion(self, created_time: float, request_id: str) -> None:
|
||
|
"""Record metrics about a completed request.
|
||
|
|
||
|
Args:
|
||
|
created_time: The time the request was created
|
||
|
request_id: The ID of the request
|
||
|
"""
|
||
|
if not _has_opentelemetry:
|
||
|
return
|
||
|
|
||
|
latency_ms = (time.time() - created_time) * 1000.0
|
||
|
|
||
|
try:
|
||
|
self.request_latency_histogram.record(latency_ms)
|
||
|
|
||
|
logger.debug(f"Recorded request completion for {request_id}: {latency_ms:.2f}ms")
|
||
|
except Exception as e:
|
||
|
logger.warning(f"Failed to record request completion metric: {e}")
|