team-10/venv/Lib/site-packages/sympy/physics/continuum_mechanics/arch.py

1026 lines
38 KiB
Python
Raw Normal View History

2025-08-02 02:00:33 +02:00
"""
This module can be used to solve probelsm related to 2D parabolic arches
"""
from sympy.core.sympify import sympify
from sympy.core.symbol import Symbol,symbols
from sympy import diff, sqrt, cos , sin, atan, rad, Min
from sympy.core.relational import Eq
from sympy.solvers.solvers import solve
from sympy.functions import Piecewise
from sympy.plotting import plot
from sympy import limit
from sympy.utilities.decorator import doctest_depends_on
from sympy.external.importtools import import_module
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})
class Arch:
"""
This class is used to solve problems related to a three hinged arch(determinate) structure.\n
An arch is a curved vertical structure spanning an open space underneath it.\n
Arches can be used to reduce the bending moments in long-span structures.\n
Arches are used in structural engineering(over windows, door and even bridges)\n
because they can support a very large mass placed on top of them.
Example
========
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(10,0),crown_x=5,crown_y=5)
>>> a.get_shape_eqn
5 - (x - 5)**2/5
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(10,1),crown_x=6)
>>> a.get_shape_eqn
9/5 - (x - 6)**2/20
"""
def __init__(self,left_support,right_support,**kwargs):
self._shape_eqn = None
self._left_support = (sympify(left_support[0]),sympify(left_support[1]))
self._right_support = (sympify(right_support[0]),sympify(right_support[1]))
self._crown_x = None
self._crown_y = None
if 'crown_x' in kwargs:
self._crown_x = sympify(kwargs['crown_x'])
if 'crown_y' in kwargs:
self._crown_y = sympify(kwargs['crown_y'])
self._shape_eqn = self.get_shape_eqn
self._conc_loads = {}
self._distributed_loads = {}
self._loads = {'concentrated': self._conc_loads, 'distributed':self._distributed_loads}
self._loads_applied = {}
self._supports = {'left':'hinge', 'right':'hinge'}
self._member = None
self._member_force = None
self._reaction_force = {Symbol('R_A_x'):0, Symbol('R_A_y'):0, Symbol('R_B_x'):0, Symbol('R_B_y'):0}
self._points_disc_x = set()
self._points_disc_y = set()
self._moment_x = {}
self._moment_y = {}
self._load_x = {}
self._load_y = {}
self._moment_x_func = Piecewise((0,True))
self._moment_y_func = Piecewise((0,True))
self._load_x_func = Piecewise((0,True))
self._load_y_func = Piecewise((0,True))
self._bending_moment = None
self._shear_force = None
self._axial_force = None
# self._crown = (sympify(crown[0]),sympify(crown[1]))
@property
def get_shape_eqn(self):
"returns the equation of the shape of arch developed"
if self._shape_eqn:
return self._shape_eqn
x,y,c = symbols('x y c')
a = Symbol('a',positive=False)
if self._crown_x and self._crown_y:
x0 = self._crown_x
y0 = self._crown_y
parabola_eqn = a*(x-x0)**2 + y0 - y
eq1 = parabola_eqn.subs({x:self._left_support[0], y:self._left_support[1]})
solution = solve((eq1),(a))
parabola_eqn = solution[0]*(x-x0)**2 + y0
if(parabola_eqn.subs({x:self._right_support[0]}) != self._right_support[1]):
raise ValueError("provided coordinates of crown and supports are not consistent with parabolic arch")
elif self._crown_x:
x0 = self._crown_x
parabola_eqn = a*(x-x0)**2 + c - y
eq1 = parabola_eqn.subs({x:self._left_support[0], y:self._left_support[1]})
eq2 = parabola_eqn.subs({x:self._right_support[0], y:self._right_support[1]})
solution = solve((eq1,eq2),(a,c))
if len(solution) <2 or solution[a] == 0:
raise ValueError("parabolic arch cannot be constructed with the provided coordinates, try providing crown_y")
parabola_eqn = solution[a]*(x-x0)**2+ solution[c]
self._crown_y = solution[c]
else:
raise KeyError("please provide crown_x to construct arch")
return parabola_eqn
@property
def get_loads(self):
"""
return the position of the applied load and angle (for concentrated loads)
"""
return self._loads
@property
def supports(self):
"""
Returns the type of support
"""
return self._supports
@property
def left_support(self):
"""
Returns the position of the left support.
"""
return self._left_support
@property
def right_support(self):
"""
Returns the position of the right support.
"""
return self._right_support
@property
def reaction_force(self):
"""
return the reaction forces generated
"""
return self._reaction_force
def apply_load(self,order,label,start,mag,end=None,angle=None):
"""
This method adds load to the Arch.
Parameters
==========
order : Integer
Order of the applied load.
- For point/concentrated loads, order = -1
- For distributed load, order = 0
label : String or Symbol
The label of the load
- should not use 'A' or 'B' as it is used for supports.
start : Float
- For concentrated/point loads, start is the x coordinate
- For distributed loads, start is the starting position of distributed load
mag : Sympifyable
Magnitude of the applied load. Must be positive
end : Float
Required for distributed loads
- For concentrated/point load , end is None(may not be given)
- For distributed loads, end is the end position of distributed load
angle: Sympifyable
The angle in degrees, the load vector makes with the horizontal
in the counter-clockwise direction.
Examples
========
For applying distributed load
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(10,0),crown_x=5,crown_y=5)
>>> a.apply_load(0,'C',start=3,end=5,mag=-10)
For applying point/concentrated_loads
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(10,0),crown_x=5,crown_y=5)
>>> a.apply_load(-1,'C',start=2,mag=15,angle=45)
"""
y = Symbol('y')
x = Symbol('x')
x0 = Symbol('x0')
# y0 = Symbol('y0')
order= sympify(order)
mag = sympify(mag)
angle = sympify(angle)
if label in self._loads_applied:
raise ValueError("load with the given label already exists")
if label in ['A','B']:
raise ValueError("cannot use the given label, reserved for supports")
if order == 0:
if end is None or end<start:
raise KeyError("provide end greater than start")
self._distributed_loads[label] = {'start':start, 'end':end, 'f_y': mag}
self._points_disc_y.add(start)
if start in self._moment_y:
self._moment_y[start] -= mag*(Min(x,end)-start)*(x0-(start+(Min(x,end)))/2)
self._load_y[start] += mag*(Min(end,x)-start)
else:
self._moment_y[start] = -mag*(Min(x,end)-start)*(x0-(start+(Min(x,end)))/2)
self._load_y[start] = mag*(Min(end,x)-start)
self._loads_applied[label] = 'distributed'
if order == -1:
if angle is None:
raise TypeError("please provide direction of force")
height = self._shape_eqn.subs({'x':start})
self._conc_loads[label] = {'x':start, 'y':height, 'f_x':mag*cos(rad(angle)), 'f_y': mag*sin(rad(angle)), 'mag':mag, 'angle':angle}
self._points_disc_x.add(start)
self._points_disc_y.add(start)
if start in self._moment_x:
self._moment_x[start] += self._conc_loads[label]['f_x']*(y-self._conc_loads[label]['y'])
self._load_x[start] += self._conc_loads[label]['f_x']
else:
self._moment_x[start] = self._conc_loads[label]['f_x']*(y-self._conc_loads[label]['y'])
self._load_x[start] = self._conc_loads[label]['f_x']
if start in self._moment_y:
self._moment_y[start] -= self._conc_loads[label]['f_y']*(x0-start)
self._load_y[start] += self._conc_loads[label]['f_y']
else:
self._moment_y[start] = -self._conc_loads[label]['f_y']*(x0-start)
self._load_y[start] = self._conc_loads[label]['f_y']
self._loads_applied[label] = 'concentrated'
def remove_load(self,label):
"""
This methods removes the load applied to the arch
Parameters
==========
label : String or Symbol
The label of the applied load
Examples
========
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(10,0),crown_x=5,crown_y=5)
>>> a.apply_load(0,'C',start=3,end=5,mag=-10)
>>> a.remove_load('C')
removed load C: {'start': 3, 'end': 5, 'f_y': -10}
"""
y = Symbol('y')
x = Symbol('x')
x0 = Symbol('x0')
if label in self._distributed_loads :
self._loads_applied.pop(label)
start = self._distributed_loads[label]['start']
end = self._distributed_loads[label]['end']
mag = self._distributed_loads[label]['f_y']
self._points_disc_y.remove(start)
self._load_y[start] -= mag*(Min(x,end)-start)
self._moment_y[start] += mag*(Min(x,end)-start)*(x0-(start+(Min(x,end)))/2)
val = self._distributed_loads.pop(label)
print(f"removed load {label}: {val}")
elif label in self._conc_loads :
self._loads_applied.pop(label)
start = self._conc_loads[label]['x']
self._points_disc_x.remove(start)
self._points_disc_y.remove(start)
self._moment_y[start] += self._conc_loads[label]['f_y']*(x0-start)
self._moment_x[start] -= self._conc_loads[label]['f_x']*(y-self._conc_loads[label]['y'])
self._load_x[start] -= self._conc_loads[label]['f_x']
self._load_y[start] -= self._conc_loads[label]['f_y']
val = self._conc_loads.pop(label)
print(f"removed load {label}: {val}")
else :
raise ValueError("label not found")
def change_support_position(self, left_support=None, right_support=None):
"""
Change position of supports.
If not provided , defaults to the old value.
Parameters
==========
left_support: tuple (x, y)
x: float
x-coordinate value of the left_support
y: float
y-coordinate value of the left_support
right_support: tuple (x, y)
x: float
x-coordinate value of the right_support
y: float
y-coordinate value of the right_support
"""
if left_support is not None:
self._left_support = (left_support[0],left_support[1])
if right_support is not None:
self._right_support = (right_support[0],right_support[1])
self._shape_eqn = None
self._shape_eqn = self.get_shape_eqn
def change_crown_position(self,crown_x=None,crown_y=None):
"""
Change the position of the crown/hinge of the arch
Parameters
==========
crown_x: Float
The x coordinate of the position of the hinge
- if not provided, defaults to old value
crown_y: Float
The y coordinate of the position of the hinge
- if not provided defaults to None
"""
self._crown_x = crown_x
self._crown_y = crown_y
self._shape_eqn = None
self._shape_eqn = self.get_shape_eqn
def change_support_type(self,left_support=None,right_support=None):
"""
Add the type for support at each end.
Can use roller or hinge support at each end.
Parameters
==========
left_support, right_support : string
Type of support at respective end
- For roller support , left_support/right_support = "roller"
- For hinged support, left_support/right_support = "hinge"
- defaults to hinge if value not provided
Examples
========
For applying roller support at right end
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(10,0),crown_x=5,crown_y=5)
>>> a.change_support_type(right_support="roller")
"""
support_types = ['roller','hinge']
if left_support:
if left_support not in support_types:
raise ValueError("supports must only be roller or hinge")
self._supports['left'] = left_support
if right_support:
if right_support not in support_types:
raise ValueError("supports must only be roller or hinge")
self._supports['right'] = right_support
def add_member(self,y):
"""
This method adds a member/rod at a particular height y.
A rod is used for stability of the structure in case of a roller support.
"""
if y>self._crown_y or y<min(self._left_support[1], self._right_support[1]):
raise ValueError(f"position of support must be between y={min(self._left_support[1], self._right_support[1])} and y={self._crown_y}")
x = Symbol('x')
a = diff(self._shape_eqn,x).subs(x,self._crown_x+1)/2
x_diff = sqrt((y - self._crown_y)/a)
x1 = self._crown_x + x_diff
x2 = self._crown_x - x_diff
self._member = (x1,x2,y)
def shear_force_at(self, pos = None, **kwargs):
"""
return the shear at some x-coordinates
if no x value provided, returns the formula
"""
if pos is None:
return self._shear_force
else:
x = Symbol('x')
if 'dir' in kwargs:
dir = kwargs['dir']
return limit(self._shear_force,x,pos,dir=dir)
return self._shear_force.subs(x,pos)
def bending_moment_at(self, pos = None, **kwargs):
"""
return the bending moment at some x-coordinates
if no x value provided, returns the formula
"""
if pos is None:
return self._bending_moment
else:
x0 = Symbol('x0')
if 'dir' in kwargs:
dir = kwargs['dir']
return limit(self._bending_moment,x0,pos,dir=dir)
return self._bending_moment.subs(x0,pos)
def axial_force_at(self,pos = None, **kwargs):
"""
return the axial/normal force generated at some x-coordinate
if no x value provided, returns the formula
"""
if pos is None:
return self._axial_force
else:
x = Symbol('x')
if 'dir' in kwargs:
dir = kwargs['dir']
return limit(self._axial_force,x,pos,dir=dir)
return self._axial_force.subs(x,pos)
def solve(self):
"""
This method solves for the reaction forces generated at the supports,\n
and bending moment and generated in the arch and tension produced in the member if used.
Examples
========
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(10,0),crown_x=5,crown_y=5)
>>> a.apply_load(0,'C',start=3,end=5,mag=-10)
>>> a.solve()
>>> a.reaction_force
{R_A_x: 8, R_A_y: 12, R_B_x: -8, R_B_y: 8}
>>> from sympy import Symbol
>>> t = Symbol('t')
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(16,0),crown_x=8,crown_y=5)
>>> a.apply_load(0,'C',start=3,end=5,mag=t)
>>> a.solve()
>>> a.reaction_force
{R_A_x: -4*t/5, R_A_y: -3*t/2, R_B_x: 4*t/5, R_B_y: -t/2}
>>> a.bending_moment_at(4)
-5*t/2
"""
y = Symbol('y')
x = Symbol('x')
x0 = Symbol('x0')
discontinuity_points_x = sorted(self._points_disc_x)
discontinuity_points_y = sorted(self._points_disc_y)
self._moment_x_func = Piecewise((0,True))
self._moment_y_func = Piecewise((0,True))
self._load_x_func = Piecewise((0,True))
self._load_y_func = Piecewise((0,True))
accumulated_x_moment = 0
accumulated_y_moment = 0
accumulated_x_load = 0
accumulated_y_load = 0
for point in discontinuity_points_x:
cond = (x >= point)
accumulated_x_load += self._load_x[point]
accumulated_x_moment += self._moment_x[point]
self._load_x_func = Piecewise((accumulated_x_load,cond),(self._load_x_func,True))
self._moment_x_func = Piecewise((accumulated_x_moment,cond),(self._moment_x_func,True))
for point in discontinuity_points_y:
cond = (x >= point)
accumulated_y_moment += self._moment_y[point]
accumulated_y_load += self._load_y[point]
self._load_y_func = Piecewise((accumulated_y_load,cond),(self._load_y_func,True))
self._moment_y_func = Piecewise((accumulated_y_moment,cond),(self._moment_y_func,True))
moment_A = self._moment_y_func.subs(x,self._right_support[0]).subs(x0,self._left_support[0]) +\
self._moment_x_func.subs(x,self._right_support[0]).subs(y,self._left_support[1])
moment_hinge_left = self._moment_y_func.subs(x,self._crown_x).subs(x0,self._crown_x) +\
self._moment_x_func.subs(x,self._crown_x).subs(y,self._crown_y)
moment_hinge_right = self._moment_y_func.subs(x,self._right_support[0]).subs(x0,self._crown_x)- \
self._moment_y_func.subs(x,self._crown_x).subs(x0,self._crown_x) +\
self._moment_x_func.subs(x,self._right_support[0]).subs(y,self._crown_y) -\
self._moment_x_func.subs(x,self._crown_x).subs(y,self._crown_y)
net_x = self._load_x_func.subs(x,self._right_support[0])
net_y = self._load_y_func.subs(x,self._right_support[0])
if (self._supports['left']=='roller' or self._supports['right']=='roller') and not self._member:
print("member must be added if any of the supports is roller")
return
R_A_x, R_A_y, R_B_x, R_B_y, T = symbols('R_A_x R_A_y R_B_x R_B_y T')
if self._supports['left'] == 'roller' and self._supports['right'] == 'roller':
if self._member[2]>=max(self._left_support[1],self._right_support[1]):
if net_x!=0:
raise ValueError("net force in x direction not possible under the specified conditions")
else:
eq1 = Eq(R_A_x ,0)
eq2 = Eq(R_B_x, 0)
eq3 = Eq(R_A_y + R_B_y + net_y,0)
eq4 = Eq(R_B_y*(self._right_support[0]-self._left_support[0])-\
R_B_x*(self._right_support[1]-self._left_support[1])+moment_A,0)
eq5 = Eq(moment_hinge_right + R_B_y*(self._right_support[0]-self._crown_x) +\
T*(self._member[2]-self._crown_y),0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._member[2]>=self._left_support[1]:
eq1 = Eq(R_A_x ,0)
eq2 = Eq(R_B_x, 0)
eq3 = Eq(R_A_y + R_B_y + net_y,0)
eq4 = Eq(R_B_y*(self._right_support[0]-self._left_support[0])-\
T*(self._member[2]-self._left_support[1])+moment_A,0)
eq5 = Eq(T+net_x,0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._member[2]>=self._right_support[1]:
eq1 = Eq(R_A_x ,0)
eq2 = Eq(R_B_x, 0)
eq3 = Eq(R_A_y + R_B_y + net_y,0)
eq4 = Eq(R_B_y*(self._right_support[0]-self._left_support[0])+\
T*(self._member[2]-self._left_support[1])+moment_A,0)
eq5 = Eq(T-net_x,0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._supports['left'] == 'roller':
if self._member[2]>=max(self._left_support[1], self._right_support[1]):
eq1 = Eq(R_A_x ,0)
eq2 = Eq(R_B_x+net_x,0)
eq3 = Eq(R_A_y + R_B_y + net_y,0)
eq4 = Eq(R_B_y*(self._right_support[0]-self._left_support[0])-\
R_B_x*(self._right_support[1]-self._left_support[1])+moment_A,0)
eq5 = Eq(moment_hinge_left + R_A_y*(self._left_support[0]-self._crown_x) -\
T*(self._member[2]-self._crown_y),0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._member[2]>=self._left_support[1]:
eq1 = Eq(R_A_x ,0)
eq2 = Eq(R_B_x+ T +net_x,0)
eq3 = Eq(R_A_y + R_B_y + net_y,0)
eq4 = Eq(R_B_y*(self._right_support[0]-self._left_support[0])-\
R_B_x*(self._right_support[1]-self._left_support[1])-\
T*(self._member[2]-self._left_support[0])+moment_A,0)
eq5 = Eq(moment_hinge_left + R_A_y*(self._left_support[0]-self._crown_x)-\
T*(self._member[2]-self._crown_y),0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._member[2]>=self._right_support[0]:
eq1 = Eq(R_A_x,0)
eq2 = Eq(R_B_x- T +net_x,0)
eq3 = Eq(R_A_y + R_B_y + net_y,0)
eq4 = Eq(moment_hinge_left+R_A_y*(self._left_support[0]-self._crown_x),0)
eq5 = Eq(moment_A+R_B_y*(self._right_support[0]-self._left_support[0])-\
R_B_x*(self._right_support[1]-self._left_support[1])+\
T*(self._member[2]-self._left_support[1]),0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._supports['right'] == 'roller':
if self._member[2]>=max(self._left_support[1], self._right_support[1]):
eq1 = Eq(R_B_x,0)
eq2 = Eq(R_A_x+net_x,0)
eq3 = Eq(R_A_y+R_B_y+net_y,0)
eq4 = Eq(moment_hinge_right+R_B_y*(self._right_support[0]-self._crown_x)+\
T*(self._member[2]-self._crown_y),0)
eq5 = Eq(moment_A+R_B_y*(self._right_support[0]-self._left_support[0]),0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._member[2]>=self._left_support[1]:
eq1 = Eq(R_B_x,0)
eq2 = Eq(R_A_x+T+net_x,0)
eq3 = Eq(R_A_y+R_B_y+net_y,0)
eq4 = Eq(moment_hinge_right+R_B_y*(self._right_support[0]-self._crown_x),0)
eq5 = Eq(moment_A-T*(self._member[2]-self._left_support[1])+\
R_B_y*(self._right_support[0]-self._left_support[0]),0)
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
elif self._member[2]>=self._right_support[1]:
eq1 = Eq(R_B_x,0)
eq2 = Eq(R_A_x-T+net_x,0)
eq3 = Eq(R_A_y+R_B_y+net_y,0)
eq4 = Eq(moment_hinge_right+R_B_y*(self._right_support[0]-self._crown_x)+\
T*(self._member[2]-self._crown_y),0)
eq5 = Eq(moment_A+T*(self._member[2]-self._left_support[1])+\
R_B_y*(self._right_support[0]-self._left_support[0]))
solution = solve((eq1,eq2,eq3,eq4,eq5),(R_A_x,R_A_y,R_B_x,R_B_y,T))
else:
eq1 = Eq(R_A_x + R_B_x + net_x,0)
eq2 = Eq(R_A_y + R_B_y + net_y,0)
eq3 = Eq(R_B_y*(self._right_support[0]-self._left_support[0])-\
R_B_x*(self._right_support[1]-self._left_support[1])+moment_A,0)
eq4 = Eq(moment_hinge_right + R_B_y*(self._right_support[0]-self._crown_x) -\
R_B_x*(self._right_support[1]-self._crown_y),0)
solution = solve((eq1,eq2,eq3,eq4),(R_A_x,R_A_y,R_B_x,R_B_y))
for symb in self._reaction_force:
self._reaction_force[symb] = solution[symb]
self._bending_moment = - (self._moment_x_func.subs(x,x0) + self._moment_y_func.subs(x,x0) -\
solution[R_A_y]*(x0-self._left_support[0]) +\
solution[R_A_x]*(self._shape_eqn.subs({x:x0})-self._left_support[1]))
angle = atan(diff(self._shape_eqn,x))
fx = (self._load_x_func+solution[R_A_x])
fy = (self._load_y_func+solution[R_A_y])
axial_force = fx*cos(angle) + fy*sin(angle)
shear_force = -fx*sin(angle) + fy*cos(angle)
self._axial_force = axial_force
self._shear_force = shear_force
@doctest_depends_on(modules=('numpy',))
def draw(self):
"""
This method returns a plot object containing the diagram of the specified arch along with the supports
and forces applied to the structure.
Examples
========
>>> from sympy import Symbol
>>> t = Symbol('t')
>>> from sympy.physics.continuum_mechanics.arch import Arch
>>> a = Arch((0,0),(40,0),crown_x=20,crown_y=12)
>>> a.apply_load(-1,'C',8,150,angle=270)
>>> a.apply_load(0,'D',start=20,end=40,mag=-4)
>>> a.apply_load(-1,'E',10,t,angle=300)
>>> p = a.draw()
>>> p # doctest: +ELLIPSIS
Plot object containing:
[0]: cartesian line: 11.325 - 3*(x - 20)**2/100 for x over (0.0, 40.0)
[1]: cartesian line: 12 - 3*(x - 20)**2/100 for x over (0.0, 40.0)
...
>>> p.show()
"""
x = Symbol('x')
markers = []
annotations = self._draw_loads()
rectangles = []
supports = self._draw_supports()
markers+=supports
xmax = self._right_support[0]
xmin = self._left_support[0]
ymin = min(self._left_support[1],self._right_support[1])
ymax = self._crown_y
lim = max(xmax*1.1-xmin*0.8+1, ymax*1.1-ymin*0.8+1)
rectangles = self._draw_rectangles()
filler = self._draw_filler()
rectangles+=filler
if self._member is not None:
if(self._member[2]>=self._right_support[1]):
markers.append(
{
'args':[[self._member[1]+0.005*lim],[self._member[2]]],
'marker':'o',
'markersize': 4,
'color': 'white',
'markerfacecolor':'none'
}
)
if(self._member[2]>=self._left_support[1]):
markers.append(
{
'args':[[self._member[0]-0.005*lim],[self._member[2]]],
'marker':'o',
'markersize': 4,
'color': 'white',
'markerfacecolor':'none'
}
)
markers.append({
'args':[[self._crown_x],[self._crown_y-0.005*lim]],
'marker':'o',
'markersize': 5,
'color':'white',
'markerfacecolor':'none',
})
if lim==xmax*1.1-xmin*0.8+1:
sing_plot = plot(self._shape_eqn-0.015*lim,
self._shape_eqn,
(x, self._left_support[0], self._right_support[0]),
markers=markers,
show=False,
annotations=annotations,
rectangles = rectangles,
xlim=(xmin-0.05*lim, xmax*1.1),
ylim=(xmin-0.05*lim, xmax*1.1),
axis=False,
line_color='brown')
else:
sing_plot = plot(self._shape_eqn-0.015*lim,
self._shape_eqn,
(x, self._left_support[0], self._right_support[0]),
markers=markers,
show=False,
annotations=annotations,
rectangles = rectangles,
xlim=(ymin-0.05*lim, ymax*1.1),
ylim=(ymin-0.05*lim, ymax*1.1),
axis=False,
line_color='brown')
return sing_plot
def _draw_supports(self):
support_markers = []
xmax = self._right_support[0]
xmin = self._left_support[0]
ymin = min(self._left_support[1],self._right_support[1])
ymax = self._crown_y
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
max_diff = 1.1*xmax-0.8*xmin
else:
max_diff = 1.1*ymax-0.8*ymin
if self._supports['left']=='roller':
support_markers.append(
{
'args':[
[self._left_support[0]],
[self._left_support[1]-0.02*max_diff]
],
'marker':'o',
'markersize':11,
'color':'black',
'markerfacecolor':'none'
}
)
else:
support_markers.append(
{
'args':[
[self._left_support[0]],
[self._left_support[1]-0.007*max_diff]
],
'marker':6,
'markersize':15,
'color':'black',
'markerfacecolor':'none'
}
)
if self._supports['right']=='roller':
support_markers.append(
{
'args':[
[self._right_support[0]],
[self._right_support[1]-0.02*max_diff]
],
'marker':'o',
'markersize':11,
'color':'black',
'markerfacecolor':'none'
}
)
else:
support_markers.append(
{
'args':[
[self._right_support[0]],
[self._right_support[1]-0.007*max_diff]
],
'marker':6,
'markersize':15,
'color':'black',
'markerfacecolor':'none'
}
)
support_markers.append(
{
'args':[
[self._right_support[0]],
[self._right_support[1]-0.036*max_diff]
],
'marker':'_',
'markersize':15,
'color':'black',
'markerfacecolor':'none'
}
)
support_markers.append(
{
'args':[
[self._left_support[0]],
[self._left_support[1]-0.036*max_diff]
],
'marker':'_',
'markersize':15,
'color':'black',
'markerfacecolor':'none'
}
)
return support_markers
def _draw_rectangles(self):
member = []
xmax = self._right_support[0]
xmin = self._left_support[0]
ymin = min(self._left_support[1],self._right_support[1])
ymax = self._crown_y
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
max_diff = 1.1*xmax-0.8*xmin
else:
max_diff = 1.1*ymax-0.8*ymin
if self._member is not None:
if self._member[2]>= max(self._left_support[1],self._right_support[1]):
member.append(
{
'xy':(self._member[0],self._member[2]-0.005*max_diff),
'width':self._member[1]-self._member[0],
'height': 0.01*max_diff,
'angle': 0,
'color':'brown',
}
)
elif self._member[2]>=self._left_support[1]:
member.append(
{
'xy':(self._member[0],self._member[2]-0.005*max_diff),
'width':self._right_support[0]-self._member[0],
'height': 0.01*max_diff,
'angle': 0,
'color':'brown',
}
)
else:
member.append(
{
'xy':(self._member[1],self._member[2]-0.005*max_diff),
'width':abs(self._left_support[0]-self._member[1]),
'height': 0.01*max_diff,
'angle': 180,
'color':'brown',
}
)
if self._distributed_loads:
for loads in self._distributed_loads:
start = self._distributed_loads[loads]['start']
end = self._distributed_loads[loads]['end']
member.append(
{
'xy':(start,self._crown_y+max_diff*0.15),
'width': (end-start),
'height': max_diff*0.01,
'color': 'orange'
}
)
return member
def _draw_loads(self):
load_annotations = []
xmax = self._right_support[0]
xmin = self._left_support[0]
ymin = min(self._left_support[1],self._right_support[1])
ymax = self._crown_y
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
max_diff = 1.1*xmax-0.8*xmin
else:
max_diff = 1.1*ymax-0.8*ymin
for load in self._conc_loads:
x = self._conc_loads[load]['x']
y = self._conc_loads[load]['y']
angle = self._conc_loads[load]['angle']
mag = self._conc_loads[load]['mag']
load_annotations.append(
{
'text':'',
'xy':(
x+cos(rad(angle))*max_diff*0.08,
y+sin(rad(angle))*max_diff*0.08
),
'xytext':(x,y),
'fontsize':10,
'fontweight': 'bold',
'arrowprops':{'width':1.5, 'headlength':5, 'headwidth':5, 'facecolor':'blue','edgecolor':'blue'}
}
)
load_annotations.append(
{
'text':f'{load}: {mag} N',
'fontsize':10,
'fontweight': 'bold',
'xy': (x+cos(rad(angle))*max_diff*0.12,y+sin(rad(angle))*max_diff*0.12)
}
)
for load in self._distributed_loads:
start = self._distributed_loads[load]['start']
end = self._distributed_loads[load]['end']
mag = self._distributed_loads[load]['f_y']
x_points = numpy.arange(start,end,(end-start)/(max_diff*0.25))
x_points = numpy.append(x_points,end)
for point in x_points:
if(mag<0):
load_annotations.append(
{
'text':'',
'xy':(point,self._crown_y+max_diff*0.05),
'xytext': (point,self._crown_y+max_diff*0.15),
'arrowprops':{'width':1.5, 'headlength':5, 'headwidth':5, 'facecolor':'orange','edgecolor':'orange'}
}
)
else:
load_annotations.append(
{
'text':'',
'xy':(point,self._crown_y+max_diff*0.2),
'xytext': (point,self._crown_y+max_diff*0.15),
'arrowprops':{'width':1.5, 'headlength':5, 'headwidth':5, 'facecolor':'orange','edgecolor':'orange'}
}
)
if(mag<0):
load_annotations.append(
{
'text':f'{load}: {abs(mag)} N/m',
'fontsize':10,
'fontweight': 'bold',
'xy':((start+end)/2,self._crown_y+max_diff*0.175)
}
)
else:
load_annotations.append(
{
'text':f'{load}: {abs(mag)} N/m',
'fontsize':10,
'fontweight': 'bold',
'xy':((start+end)/2,self._crown_y+max_diff*0.125)
}
)
return load_annotations
def _draw_filler(self):
x = Symbol('x')
filler = []
xmax = self._right_support[0]
xmin = self._left_support[0]
ymin = min(self._left_support[1],self._right_support[1])
ymax = self._crown_y
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
max_diff = 1.1*xmax-0.8*xmin
else:
max_diff = 1.1*ymax-0.8*ymin
x_points = numpy.arange(self._left_support[0],self._right_support[0],(self._right_support[0]-self._left_support[0])/(max_diff*max_diff))
for point in x_points:
filler.append(
{
'xy':(point,self._shape_eqn.subs(x,point)-max_diff*0.015),
'width': (self._right_support[0]-self._left_support[0])/(max_diff*max_diff),
'height': max_diff*0.015,
'color': 'brown'
}
)
return filler