team-10/venv/Lib/site-packages/pandas/tests/io/sas/test_sas7bdat.py

422 lines
15 KiB
Python
Raw Normal View History

2025-08-02 02:00:33 +02:00
import contextlib
from datetime import datetime
import io
import os
from pathlib import Path
import numpy as np
import pytest
from pandas.compat import IS64
from pandas.errors import EmptyDataError
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.io.sas.sas7bdat import SAS7BDATReader
@pytest.fixture
def dirpath(datapath):
return datapath("io", "sas", "data")
@pytest.fixture(params=[(1, range(1, 16)), (2, [16])])
def data_test_ix(request, dirpath):
i, test_ix = request.param
fname = os.path.join(dirpath, f"test_sas7bdat_{i}.csv")
df = pd.read_csv(fname)
epoch = datetime(1960, 1, 1)
t1 = pd.to_timedelta(df["Column4"], unit="d")
df["Column4"] = (epoch + t1).astype("M8[s]")
t2 = pd.to_timedelta(df["Column12"], unit="d")
df["Column12"] = (epoch + t2).astype("M8[s]")
for k in range(df.shape[1]):
col = df.iloc[:, k]
if col.dtype == np.int64:
df.isetitem(k, df.iloc[:, k].astype(np.float64))
return df, test_ix
# https://github.com/cython/cython/issues/1720
class TestSAS7BDAT:
@pytest.mark.slow
def test_from_file(self, dirpath, data_test_ix):
expected, test_ix = data_test_ix
for k in test_ix:
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
df = pd.read_sas(fname, encoding="utf-8")
tm.assert_frame_equal(df, expected)
@pytest.mark.slow
def test_from_buffer(self, dirpath, data_test_ix):
expected, test_ix = data_test_ix
for k in test_ix:
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
with open(fname, "rb") as f:
byts = f.read()
buf = io.BytesIO(byts)
with pd.read_sas(
buf, format="sas7bdat", iterator=True, encoding="utf-8"
) as rdr:
df = rdr.read()
tm.assert_frame_equal(df, expected)
@pytest.mark.slow
def test_from_iterator(self, dirpath, data_test_ix):
expected, test_ix = data_test_ix
for k in test_ix:
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
df = rdr.read(2)
tm.assert_frame_equal(df, expected.iloc[0:2, :])
df = rdr.read(3)
tm.assert_frame_equal(df, expected.iloc[2:5, :])
@pytest.mark.slow
def test_path_pathlib(self, dirpath, data_test_ix):
expected, test_ix = data_test_ix
for k in test_ix:
fname = Path(os.path.join(dirpath, f"test{k}.sas7bdat"))
df = pd.read_sas(fname, encoding="utf-8")
tm.assert_frame_equal(df, expected)
@td.skip_if_no("py.path")
@pytest.mark.slow
def test_path_localpath(self, dirpath, data_test_ix):
from py.path import local as LocalPath
expected, test_ix = data_test_ix
for k in test_ix:
fname = LocalPath(os.path.join(dirpath, f"test{k}.sas7bdat"))
df = pd.read_sas(fname, encoding="utf-8")
tm.assert_frame_equal(df, expected)
@pytest.mark.slow
@pytest.mark.parametrize("chunksize", (3, 5, 10, 11))
@pytest.mark.parametrize("k", range(1, 17))
def test_iterator_loop(self, dirpath, k, chunksize):
# github #13654
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
with pd.read_sas(fname, chunksize=chunksize, encoding="utf-8") as rdr:
y = 0
for x in rdr:
y += x.shape[0]
assert y == rdr.row_count
def test_iterator_read_too_much(self, dirpath):
# github #14734
fname = os.path.join(dirpath, "test1.sas7bdat")
with pd.read_sas(
fname, format="sas7bdat", iterator=True, encoding="utf-8"
) as rdr:
d1 = rdr.read(rdr.row_count + 20)
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
d2 = rdr.read(rdr.row_count + 20)
tm.assert_frame_equal(d1, d2)
def test_encoding_options(datapath):
fname = datapath("io", "sas", "data", "test1.sas7bdat")
df1 = pd.read_sas(fname)
df2 = pd.read_sas(fname, encoding="utf-8")
for col in df1.columns:
try:
df1[col] = df1[col].str.decode("utf-8")
except AttributeError:
pass
tm.assert_frame_equal(df1, df2)
with contextlib.closing(SAS7BDATReader(fname, convert_header_text=False)) as rdr:
df3 = rdr.read()
for x, y in zip(df1.columns, df3.columns):
assert x == y.decode()
def test_encoding_infer(datapath):
fname = datapath("io", "sas", "data", "test1.sas7bdat")
with pd.read_sas(fname, encoding="infer", iterator=True) as df1_reader:
# check: is encoding inferred correctly from file
assert df1_reader.inferred_encoding == "cp1252"
df1 = df1_reader.read()
with pd.read_sas(fname, encoding="cp1252", iterator=True) as df2_reader:
df2 = df2_reader.read()
# check: reader reads correct information
tm.assert_frame_equal(df1, df2)
def test_productsales(datapath):
fname = datapath("io", "sas", "data", "productsales.sas7bdat")
df = pd.read_sas(fname, encoding="utf-8")
fname = datapath("io", "sas", "data", "productsales.csv")
df0 = pd.read_csv(fname, parse_dates=["MONTH"])
vn = ["ACTUAL", "PREDICT", "QUARTER", "YEAR"]
df0[vn] = df0[vn].astype(np.float64)
df0["MONTH"] = df0["MONTH"].astype("M8[s]")
tm.assert_frame_equal(df, df0)
def test_12659(datapath):
fname = datapath("io", "sas", "data", "test_12659.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "test_12659.csv")
df0 = pd.read_csv(fname)
df0 = df0.astype(np.float64)
tm.assert_frame_equal(df, df0)
def test_airline(datapath):
fname = datapath("io", "sas", "data", "airline.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "airline.csv")
df0 = pd.read_csv(fname)
df0 = df0.astype(np.float64)
tm.assert_frame_equal(df, df0)
def test_date_time(datapath):
# Support of different SAS date/datetime formats (PR #15871)
fname = datapath("io", "sas", "data", "datetime.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "datetime.csv")
df0 = pd.read_csv(
fname, parse_dates=["Date1", "Date2", "DateTime", "DateTimeHi", "Taiw"]
)
# GH 19732: Timestamps imported from sas will incur floating point errors
# See GH#56014 for discussion of the correct "expected" results
# We are really just testing that we are "close". This only seems to be
# an issue near the implementation bounds.
df[df.columns[3]] = df.iloc[:, 3].dt.round("us")
df0["Date1"] = df0["Date1"].astype("M8[s]")
df0["Date2"] = df0["Date2"].astype("M8[s]")
df0["DateTime"] = df0["DateTime"].astype("M8[ms]")
df0["Taiw"] = df0["Taiw"].astype("M8[s]")
res = df0["DateTimeHi"].astype("M8[us]").dt.round("ms")
df0["DateTimeHi"] = res.astype("M8[ms]")
if not IS64:
# No good reason for this, just what we get on the CI
df0.loc[0, "DateTimeHi"] += np.timedelta64(1, "ms")
df0.loc[[2, 3], "DateTimeHi"] -= np.timedelta64(1, "ms")
tm.assert_frame_equal(df, df0)
@pytest.mark.parametrize("column", ["WGT", "CYL"])
def test_compact_numerical_values(datapath, column):
# Regression test for #21616
fname = datapath("io", "sas", "data", "cars.sas7bdat")
df = pd.read_sas(fname, encoding="latin-1")
# The two columns CYL and WGT in cars.sas7bdat have column
# width < 8 and only contain integral values.
# Test that pandas doesn't corrupt the numbers by adding
# decimals.
result = df[column]
expected = df[column].round()
tm.assert_series_equal(result, expected, check_exact=True)
def test_many_columns(datapath):
# Test for looking for column information in more places (PR #22628)
fname = datapath("io", "sas", "data", "many_columns.sas7bdat")
df = pd.read_sas(fname, encoding="latin-1")
fname = datapath("io", "sas", "data", "many_columns.csv")
df0 = pd.read_csv(fname, encoding="latin-1")
tm.assert_frame_equal(df, df0)
def test_inconsistent_number_of_rows(datapath):
# Regression test for issue #16615. (PR #22628)
fname = datapath("io", "sas", "data", "load_log.sas7bdat")
df = pd.read_sas(fname, encoding="latin-1")
assert len(df) == 2097
def test_zero_variables(datapath):
# Check if the SAS file has zero variables (PR #18184)
fname = datapath("io", "sas", "data", "zero_variables.sas7bdat")
with pytest.raises(EmptyDataError, match="No columns to parse from file"):
pd.read_sas(fname)
@pytest.mark.parametrize("encoding", [None, "utf8"])
def test_zero_rows(datapath, encoding):
# GH 18198
fname = datapath("io", "sas", "data", "zero_rows.sas7bdat")
result = pd.read_sas(fname, encoding=encoding)
str_value = b"a" if encoding is None else "a"
expected = pd.DataFrame([{"char_field": str_value, "num_field": 1.0}]).iloc[:0]
tm.assert_frame_equal(result, expected)
def test_corrupt_read(datapath):
# We don't really care about the exact failure, the important thing is
# that the resource should be cleaned up afterwards (BUG #35566)
fname = datapath("io", "sas", "data", "corrupt.sas7bdat")
msg = "'SAS7BDATReader' object has no attribute 'row_count'"
with pytest.raises(AttributeError, match=msg):
pd.read_sas(fname)
def test_max_sas_date(datapath):
# GH 20927
# NB. max datetime in SAS dataset is 31DEC9999:23:59:59.999
# but this is read as 29DEC9999:23:59:59.998993 by a buggy
# sas7bdat module
# See also GH#56014 for discussion of the correct "expected" results.
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
df = pd.read_sas(fname, encoding="iso-8859-1")
expected = pd.DataFrame(
{
"text": ["max", "normal"],
"dt_as_float": [253717747199.999, 1880323199.999],
"dt_as_dt": np.array(
[
datetime(9999, 12, 29, 23, 59, 59, 999000),
datetime(2019, 8, 1, 23, 59, 59, 999000),
],
dtype="M8[ms]",
),
"date_as_float": [2936547.0, 21762.0],
"date_as_date": np.array(
[
datetime(9999, 12, 29),
datetime(2019, 8, 1),
],
dtype="M8[s]",
),
},
columns=["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"],
)
if not IS64:
# No good reason for this, just what we get on the CI
expected.loc[:, "dt_as_dt"] -= np.timedelta64(1, "ms")
tm.assert_frame_equal(df, expected)
def test_max_sas_date_iterator(datapath):
# GH 20927
# when called as an iterator, only those chunks with a date > pd.Timestamp.max
# are returned as datetime.datetime, if this happens that whole chunk is returned
# as datetime.datetime
col_order = ["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"]
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
results = []
for df in pd.read_sas(fname, encoding="iso-8859-1", chunksize=1):
# GH 19732: Timestamps imported from sas will incur floating point errors
df.reset_index(inplace=True, drop=True)
results.append(df)
expected = [
pd.DataFrame(
{
"text": ["max"],
"dt_as_float": [253717747199.999],
"dt_as_dt": np.array(
[datetime(9999, 12, 29, 23, 59, 59, 999000)], dtype="M8[ms]"
),
"date_as_float": [2936547.0],
"date_as_date": np.array([datetime(9999, 12, 29)], dtype="M8[s]"),
},
columns=col_order,
),
pd.DataFrame(
{
"text": ["normal"],
"dt_as_float": [1880323199.999],
"dt_as_dt": np.array(["2019-08-01 23:59:59.999"], dtype="M8[ms]"),
"date_as_float": [21762.0],
"date_as_date": np.array(["2019-08-01"], dtype="M8[s]"),
},
columns=col_order,
),
]
if not IS64:
# No good reason for this, just what we get on the CI
expected[0].loc[0, "dt_as_dt"] -= np.timedelta64(1, "ms")
expected[1].loc[0, "dt_as_dt"] -= np.timedelta64(1, "ms")
tm.assert_frame_equal(results[0], expected[0])
tm.assert_frame_equal(results[1], expected[1])
def test_null_date(datapath):
fname = datapath("io", "sas", "data", "dates_null.sas7bdat")
df = pd.read_sas(fname, encoding="utf-8")
expected = pd.DataFrame(
{
"datecol": np.array(
[
datetime(9999, 12, 29),
np.datetime64("NaT"),
],
dtype="M8[s]",
),
"datetimecol": np.array(
[
datetime(9999, 12, 29, 23, 59, 59, 999000),
np.datetime64("NaT"),
],
dtype="M8[ms]",
),
},
)
if not IS64:
# No good reason for this, just what we get on the CI
expected.loc[0, "datetimecol"] -= np.timedelta64(1, "ms")
tm.assert_frame_equal(df, expected)
def test_meta2_page(datapath):
# GH 35545
fname = datapath("io", "sas", "data", "test_meta2_page.sas7bdat")
df = pd.read_sas(fname)
assert len(df) == 1000
@pytest.mark.parametrize(
"test_file, override_offset, override_value, expected_msg",
[
("test2.sas7bdat", 0x10000 + 55229, 0x80 | 0x0F, "Out of bounds"),
("test2.sas7bdat", 0x10000 + 55229, 0x10, "unknown control byte"),
("test3.sas7bdat", 118170, 184, "Out of bounds"),
],
)
def test_rle_rdc_exceptions(
datapath, test_file, override_offset, override_value, expected_msg
):
"""Errors in RLE/RDC decompression should propagate."""
with open(datapath("io", "sas", "data", test_file), "rb") as fd:
data = bytearray(fd.read())
data[override_offset] = override_value
with pytest.raises(Exception, match=expected_msg):
pd.read_sas(io.BytesIO(data), format="sas7bdat")
def test_0x40_control_byte(datapath):
# GH 31243
fname = datapath("io", "sas", "data", "0x40controlbyte.sas7bdat")
df = pd.read_sas(fname, encoding="ascii")
fname = datapath("io", "sas", "data", "0x40controlbyte.csv")
df0 = pd.read_csv(fname, dtype="str")
tm.assert_frame_equal(df, df0)
def test_0x00_control_byte(datapath):
# GH 47099
fname = datapath("io", "sas", "data", "0x00controlbyte.sas7bdat.bz2")
df = next(pd.read_sas(fname, chunksize=11_000))
assert df.shape == (11_000, 20)