team-10/env/Lib/site-packages/scipy/linalg/tests/test_decomp_cholesky.py

269 lines
9.5 KiB
Python
Raw Normal View History

2025-08-02 07:34:44 +02:00
import pytest
import numpy as np
from numpy.testing import assert_array_almost_equal
from pytest import raises as assert_raises
from numpy import array, transpose, dot, conjugate, zeros_like, empty
from numpy.random import random
from scipy.linalg import (cholesky, cholesky_banded, cho_solve_banded,
cho_factor, cho_solve)
from scipy.linalg._testutils import assert_no_overwrite
class TestCholesky:
def test_simple(self):
a = [[8, 2, 3], [2, 9, 3], [3, 3, 6]]
c = cholesky(a)
assert_array_almost_equal(dot(transpose(c), c), a)
c = transpose(c)
a = dot(c, transpose(c))
assert_array_almost_equal(cholesky(a, lower=1), c)
def test_check_finite(self):
a = [[8, 2, 3], [2, 9, 3], [3, 3, 6]]
c = cholesky(a, check_finite=False)
assert_array_almost_equal(dot(transpose(c), c), a)
c = transpose(c)
a = dot(c, transpose(c))
assert_array_almost_equal(cholesky(a, lower=1, check_finite=False), c)
def test_simple_complex(self):
m = array([[3+1j, 3+4j, 5], [0, 2+2j, 2+7j], [0, 0, 7+4j]])
a = dot(transpose(conjugate(m)), m)
c = cholesky(a)
a1 = dot(transpose(conjugate(c)), c)
assert_array_almost_equal(a, a1)
c = transpose(c)
a = dot(c, transpose(conjugate(c)))
assert_array_almost_equal(cholesky(a, lower=1), c)
def test_random(self):
n = 20
for k in range(2):
m = random([n, n])
for i in range(n):
m[i, i] = 20*(.1+m[i, i])
a = dot(transpose(m), m)
c = cholesky(a)
a1 = dot(transpose(c), c)
assert_array_almost_equal(a, a1)
c = transpose(c)
a = dot(c, transpose(c))
assert_array_almost_equal(cholesky(a, lower=1), c)
def test_random_complex(self):
n = 20
for k in range(2):
m = random([n, n])+1j*random([n, n])
for i in range(n):
m[i, i] = 20*(.1+abs(m[i, i]))
a = dot(transpose(conjugate(m)), m)
c = cholesky(a)
a1 = dot(transpose(conjugate(c)), c)
assert_array_almost_equal(a, a1)
c = transpose(c)
a = dot(c, transpose(conjugate(c)))
assert_array_almost_equal(cholesky(a, lower=1), c)
@pytest.mark.xslow
def test_int_overflow(self):
# regression test for
# https://github.com/scipy/scipy/issues/17436
# the problem was an int overflow in zeroing out
# the unused triangular part
n = 47_000
x = np.eye(n, dtype=np.float64, order='F')
x[:4, :4] = np.array([[4, -2, 3, -1],
[-2, 4, -3, 1],
[3, -3, 5, 0],
[-1, 1, 0, 5]])
cholesky(x, check_finite=False, overwrite_a=True) # should not segfault
@pytest.mark.parametrize('dt', [int, float, np.float32, complex, np.complex64])
@pytest.mark.parametrize('dt_b', [int, float, np.float32, complex, np.complex64])
def test_empty(self, dt, dt_b):
a = empty((0, 0), dtype=dt)
c = cholesky(a)
assert c.shape == (0, 0)
assert c.dtype == cholesky(np.eye(2, dtype=dt)).dtype
c_and_lower = (c, True)
b = np.asarray([], dtype=dt_b)
x = cho_solve(c_and_lower, b)
assert x.shape == (0,)
assert x.dtype == cho_solve((np.eye(2, dtype=dt), True),
np.ones(2, dtype=dt_b)).dtype
b = empty((0, 0), dtype=dt_b)
x = cho_solve(c_and_lower, b)
assert x.shape == (0, 0)
assert x.dtype == cho_solve((np.eye(2, dtype=dt), True),
np.ones(2, dtype=dt_b)).dtype
a1 = array([])
a2 = array([[]])
a3 = []
a4 = [[]]
for x in ([a1, a2, a3, a4]):
assert_raises(ValueError, cholesky, x)
class TestCholeskyBanded:
"""Tests for cholesky_banded() and cho_solve_banded."""
def test_check_finite(self):
# Symmetric positive definite banded matrix `a`
a = array([[4.0, 1.0, 0.0, 0.0],
[1.0, 4.0, 0.5, 0.0],
[0.0, 0.5, 4.0, 0.2],
[0.0, 0.0, 0.2, 4.0]])
# Banded storage form of `a`.
ab = array([[-1.0, 1.0, 0.5, 0.2],
[4.0, 4.0, 4.0, 4.0]])
c = cholesky_banded(ab, lower=False, check_finite=False)
ufac = zeros_like(a)
ufac[list(range(4)), list(range(4))] = c[-1]
ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:]
assert_array_almost_equal(a, dot(ufac.T, ufac))
b = array([0.0, 0.5, 4.2, 4.2])
x = cho_solve_banded((c, False), b, check_finite=False)
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
def test_upper_real(self):
# Symmetric positive definite banded matrix `a`
a = array([[4.0, 1.0, 0.0, 0.0],
[1.0, 4.0, 0.5, 0.0],
[0.0, 0.5, 4.0, 0.2],
[0.0, 0.0, 0.2, 4.0]])
# Banded storage form of `a`.
ab = array([[-1.0, 1.0, 0.5, 0.2],
[4.0, 4.0, 4.0, 4.0]])
c = cholesky_banded(ab, lower=False)
ufac = zeros_like(a)
ufac[list(range(4)), list(range(4))] = c[-1]
ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:]
assert_array_almost_equal(a, dot(ufac.T, ufac))
b = array([0.0, 0.5, 4.2, 4.2])
x = cho_solve_banded((c, False), b)
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
def test_upper_complex(self):
# Hermitian positive definite banded matrix `a`
a = array([[4.0, 1.0, 0.0, 0.0],
[1.0, 4.0, 0.5, 0.0],
[0.0, 0.5, 4.0, -0.2j],
[0.0, 0.0, 0.2j, 4.0]])
# Banded storage form of `a`.
ab = array([[-1.0, 1.0, 0.5, -0.2j],
[4.0, 4.0, 4.0, 4.0]])
c = cholesky_banded(ab, lower=False)
ufac = zeros_like(a)
ufac[list(range(4)), list(range(4))] = c[-1]
ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:]
assert_array_almost_equal(a, dot(ufac.conj().T, ufac))
b = array([0.0, 0.5, 4.0-0.2j, 0.2j + 4.0])
x = cho_solve_banded((c, False), b)
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
def test_lower_real(self):
# Symmetric positive definite banded matrix `a`
a = array([[4.0, 1.0, 0.0, 0.0],
[1.0, 4.0, 0.5, 0.0],
[0.0, 0.5, 4.0, 0.2],
[0.0, 0.0, 0.2, 4.0]])
# Banded storage form of `a`.
ab = array([[4.0, 4.0, 4.0, 4.0],
[1.0, 0.5, 0.2, -1.0]])
c = cholesky_banded(ab, lower=True)
lfac = zeros_like(a)
lfac[list(range(4)), list(range(4))] = c[0]
lfac[(1, 2, 3), (0, 1, 2)] = c[1, :3]
assert_array_almost_equal(a, dot(lfac, lfac.T))
b = array([0.0, 0.5, 4.2, 4.2])
x = cho_solve_banded((c, True), b)
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
def test_lower_complex(self):
# Hermitian positive definite banded matrix `a`
a = array([[4.0, 1.0, 0.0, 0.0],
[1.0, 4.0, 0.5, 0.0],
[0.0, 0.5, 4.0, -0.2j],
[0.0, 0.0, 0.2j, 4.0]])
# Banded storage form of `a`.
ab = array([[4.0, 4.0, 4.0, 4.0],
[1.0, 0.5, 0.2j, -1.0]])
c = cholesky_banded(ab, lower=True)
lfac = zeros_like(a)
lfac[list(range(4)), list(range(4))] = c[0]
lfac[(1, 2, 3), (0, 1, 2)] = c[1, :3]
assert_array_almost_equal(a, dot(lfac, lfac.conj().T))
b = array([0.0, 0.5j, 3.8j, 3.8])
x = cho_solve_banded((c, True), b)
assert_array_almost_equal(x, [0.0, 0.0, 1.0j, 1.0])
@pytest.mark.parametrize('dt', [int, float, np.float32, complex, np.complex64])
@pytest.mark.parametrize('dt_b', [int, float, np.float32, complex, np.complex64])
def test_empty(self, dt, dt_b):
ab = empty((0, 0), dtype=dt)
cb = cholesky_banded(ab)
assert cb.shape == (0, 0)
m = cholesky_banded(np.array([[0, 0], [1, 1]], dtype=dt))
assert cb.dtype == m.dtype
cb_and_lower = (cb, True)
b = np.asarray([], dtype=dt_b)
x = cho_solve_banded(cb_and_lower, b)
assert x.shape == (0,)
dtype_nonempty = cho_solve_banded((m, True), np.ones(2, dtype=dt_b)).dtype
assert x.dtype == dtype_nonempty
b = empty((0, 0), dtype=dt_b)
x = cho_solve_banded(cb_and_lower, b)
assert x.shape == (0, 0)
assert x.dtype == dtype_nonempty
class TestOverwrite:
def test_cholesky(self):
assert_no_overwrite(cholesky, [(3, 3)])
def test_cho_factor(self):
assert_no_overwrite(cho_factor, [(3, 3)])
def test_cho_solve(self):
x = array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]])
xcho = cho_factor(x)
assert_no_overwrite(lambda b: cho_solve(xcho, b), [(3,)])
def test_cholesky_banded(self):
assert_no_overwrite(cholesky_banded, [(2, 3)])
def test_cho_solve_banded(self):
x = array([[0, -1, -1], [2, 2, 2]])
xcho = cholesky_banded(x)
assert_no_overwrite(lambda b: cho_solve_banded((xcho, False), b),
[(3,)])
class TestChoFactor:
@pytest.mark.parametrize('dt', [int, float, np.float32, complex, np.complex64])
def test_empty(self, dt):
a = np.empty((0, 0), dtype=dt)
x, lower = cho_factor(a)
assert x.shape == (0, 0)
xx, lower = cho_factor(np.eye(2, dtype=dt))
assert x.dtype == xx.dtype