211 lines
9.9 KiB
Python
211 lines
9.9 KiB
Python
![]() |
# coding=utf-8
|
||
|
# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Bamba model configuration"""
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class BambaConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`BambaModel`]. It is used to instantiate a
|
||
|
BambaModel model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||
|
with defaults taken from [ibm-fms/Bamba-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/Bamba-9.8b-2.2T-hf).
|
||
|
|
||
|
The BambaModel is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU.
|
||
|
The checkpoints are jointly trained by IBM, Princeton, and UIUC.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 128000):
|
||
|
Vocabulary size of the Bamba model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`BambaModel`]
|
||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
||
|
model has an output word embedding layer.
|
||
|
hidden_size (`int`, *optional*, defaults to 4096):
|
||
|
Dimension of the hidden representations.
|
||
|
intermediate_size (`int`, *optional*, defaults to 14336):
|
||
|
Dimension of the MLP representations.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
num_key_value_heads (`int`, *optional*, defaults to 8):
|
||
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||
|
by meanpooling all the original heads within that group. For more details, check out [this
|
||
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||
|
The non-linear activation function (function or string) in the decoder.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||
|
The epsilon used by the rms normalization layers.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||
|
relevant if `config.is_decoder=True`.
|
||
|
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
|
||
|
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
|
||
|
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
|
||
|
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
|
||
|
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
|
||
|
significantly.
|
||
|
pad_token_id (`int`, *optional*, defaults to 0):
|
||
|
The id of the padding token.
|
||
|
bos_token_id (`int`, *optional*, defaults to 1):
|
||
|
The id of the "beginning-of-sequence" token.
|
||
|
eos_token_id (`int`, *optional*, defaults to 2):
|
||
|
The id of the "end-of-sequence" token.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 262144):
|
||
|
Max cached sequence length for the model
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
attn_layer_indices (`list`, *optional*):
|
||
|
Specifies the layer indices that will have full attention. Must contain values at most num_hidden_layers.
|
||
|
mamba_n_heads (`int`, *optional*, defaults to 128):
|
||
|
The number of mamba heads used in the v2 implementation.
|
||
|
mamba_d_head (`int`, *optional*, defaults to `"auto"`):
|
||
|
Head embedding dimension size
|
||
|
mamba_n_groups (`int`, *optional*, defaults to 1):
|
||
|
The number of the mamba groups used in the v2 implementation.
|
||
|
mamba_d_state (`int`, *optional*, defaults to 256):
|
||
|
The dimension the mamba state space latents
|
||
|
mamba_d_conv (`int`, *optional*, defaults to 4):
|
||
|
The size of the mamba convolution kernel
|
||
|
mamba_expand (`int`, *optional*, defaults to 2):
|
||
|
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
|
||
|
mamba_chunk_size (`int`, *optional*, defaults to 256):
|
||
|
The chunks in which to break the sequence when doing prefill/training
|
||
|
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
|
||
|
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
||
|
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
|
||
|
z_loss_coefficient (`float`, *optional*, defaults to 0.0):
|
||
|
Coefficient for auxiliary z-loss used to control logit growth during training
|
||
|
|
||
|
"""
|
||
|
|
||
|
model_type = "bamba"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=128000,
|
||
|
tie_word_embeddings=False,
|
||
|
hidden_size=4096,
|
||
|
intermediate_size=14336,
|
||
|
num_hidden_layers=32,
|
||
|
num_attention_heads=32,
|
||
|
num_key_value_heads=8,
|
||
|
hidden_act="silu",
|
||
|
initializer_range=0.02,
|
||
|
rms_norm_eps=1e-5,
|
||
|
use_cache=True,
|
||
|
num_logits_to_keep=1,
|
||
|
pad_token_id=0,
|
||
|
bos_token_id=1,
|
||
|
eos_token_id=2,
|
||
|
max_position_embeddings=262144,
|
||
|
attention_dropout=0.0,
|
||
|
attn_layer_indices=None,
|
||
|
mamba_n_heads=128,
|
||
|
mamba_d_head="auto",
|
||
|
mamba_n_groups=1,
|
||
|
mamba_d_state=256,
|
||
|
mamba_d_conv=4,
|
||
|
mamba_expand=2,
|
||
|
mamba_chunk_size=256,
|
||
|
mamba_conv_bias=True,
|
||
|
mamba_proj_bias=False,
|
||
|
z_loss_coefficient=0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.tie_word_embeddings = tie_word_embeddings
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.attention_bias = False
|
||
|
self.mlp_bias = False
|
||
|
|
||
|
# for backward compatibility
|
||
|
if num_key_value_heads is None:
|
||
|
num_key_value_heads = num_attention_heads
|
||
|
|
||
|
self.num_key_value_heads = num_key_value_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
self.rms_norm_eps = rms_norm_eps
|
||
|
|
||
|
self.use_cache = use_cache
|
||
|
self.num_logits_to_keep = num_logits_to_keep
|
||
|
|
||
|
self.attn_layer_indices = attn_layer_indices
|
||
|
self.rope_theta = 10000.0
|
||
|
self.rope_scaling = None
|
||
|
self.partial_rotary_factor = 0.5
|
||
|
|
||
|
mamba_intermediate = mamba_expand * hidden_size
|
||
|
|
||
|
if mamba_intermediate % mamba_n_heads != 0:
|
||
|
raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size")
|
||
|
|
||
|
# for the mamba_v2, must satisfy the following
|
||
|
if mamba_d_head == "auto":
|
||
|
mamba_d_head = mamba_intermediate // mamba_n_heads
|
||
|
|
||
|
if mamba_d_head * mamba_n_heads != mamba_intermediate:
|
||
|
raise ValueError("The dimensions for the Mamba head state do not match the model intermediate_size")
|
||
|
|
||
|
self.mamba_n_heads = mamba_n_heads
|
||
|
self.mamba_d_head = mamba_d_head
|
||
|
self.mamba_n_groups = mamba_n_groups
|
||
|
self.mamba_d_state = mamba_d_state
|
||
|
self.mamba_d_conv = mamba_d_conv
|
||
|
self.mamba_expand = mamba_expand
|
||
|
self.mamba_chunk_size = mamba_chunk_size
|
||
|
self.mamba_conv_bias = mamba_conv_bias
|
||
|
self.mamba_proj_bias = mamba_proj_bias
|
||
|
self.z_loss_coefficient = z_loss_coefficient
|
||
|
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
tie_word_embeddings=tie_word_embeddings,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def layers_block_type(self):
|
||
|
return [
|
||
|
"attention" if (self.attn_layer_indices and i in self.attn_layer_indices) else "mamba"
|
||
|
for i in range(self.num_hidden_layers)
|
||
|
]
|
||
|
|
||
|
|
||
|
__all__ = ["BambaConfig"]
|