923 lines
38 KiB
Python
923 lines
38 KiB
Python
![]() |
# coding=utf-8
|
||
|
# Copyright 2021 Facebook AI Research (FAIR), Ross Wightman, The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch DeiT model."""
|
||
|
|
||
|
import collections.abc
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Callable, Optional, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_layers import GradientCheckpointingLayer
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutput,
|
||
|
BaseModelOutputWithPooling,
|
||
|
ImageClassifierOutput,
|
||
|
MaskedImageModelingOutput,
|
||
|
)
|
||
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||
|
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
||
|
from ...utils import ModelOutput, auto_docstring, logging, torch_int
|
||
|
from .configuration_deit import DeiTConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class DeiTEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: DeiTConfig, use_mask_token: bool = False) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
||
|
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
||
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
|
||
|
self.patch_embeddings = DeiTPatchEmbeddings(config)
|
||
|
num_patches = self.patch_embeddings.num_patches
|
||
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size))
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.patch_size = config.patch_size
|
||
|
|
||
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
||
|
"""
|
||
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
|
||
|
images. This method is also adapted to support torch.jit tracing and 2 class embeddings.
|
||
|
|
||
|
Adapted from:
|
||
|
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
|
||
|
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
|
||
|
"""
|
||
|
|
||
|
num_patches = embeddings.shape[1] - 2
|
||
|
num_positions = self.position_embeddings.shape[1] - 2
|
||
|
|
||
|
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
|
||
|
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
|
||
|
return self.position_embeddings
|
||
|
|
||
|
class_and_dist_pos_embed = self.position_embeddings[:, :2]
|
||
|
patch_pos_embed = self.position_embeddings[:, 2:]
|
||
|
|
||
|
dim = embeddings.shape[-1]
|
||
|
|
||
|
new_height = height // self.patch_size
|
||
|
new_width = width // self.patch_size
|
||
|
|
||
|
sqrt_num_positions = torch_int(num_positions**0.5)
|
||
|
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
|
||
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
||
|
|
||
|
patch_pos_embed = nn.functional.interpolate(
|
||
|
patch_pos_embed,
|
||
|
size=(new_height, new_width),
|
||
|
mode="bicubic",
|
||
|
align_corners=False,
|
||
|
)
|
||
|
|
||
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
||
|
|
||
|
return torch.cat((class_and_dist_pos_embed, patch_pos_embed), dim=1)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.Tensor,
|
||
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||
|
interpolate_pos_encoding: bool = False,
|
||
|
) -> torch.Tensor:
|
||
|
_, _, height, width = pixel_values.shape
|
||
|
embeddings = self.patch_embeddings(pixel_values)
|
||
|
|
||
|
batch_size, seq_length, _ = embeddings.size()
|
||
|
|
||
|
if bool_masked_pos is not None:
|
||
|
mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
|
||
|
# replace the masked visual tokens by mask_tokens
|
||
|
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
||
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
|
||
|
|
||
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
||
|
|
||
|
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1)
|
||
|
|
||
|
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1)
|
||
|
position_embedding = self.position_embeddings
|
||
|
|
||
|
if interpolate_pos_encoding:
|
||
|
position_embedding = self.interpolate_pos_encoding(embeddings, height, width)
|
||
|
|
||
|
embeddings = embeddings + position_embedding
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class DeiTPatchEmbeddings(nn.Module):
|
||
|
"""
|
||
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
||
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
||
|
Transformer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
image_size, patch_size = config.image_size, config.patch_size
|
||
|
num_channels, hidden_size = config.num_channels, config.hidden_size
|
||
|
|
||
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
||
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
||
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_channels = num_channels
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
if num_channels != self.num_channels:
|
||
|
raise ValueError(
|
||
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
||
|
)
|
||
|
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
||
|
return x
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.eager_attention_forward
|
||
|
def eager_attention_forward(
|
||
|
module: nn.Module,
|
||
|
query: torch.Tensor,
|
||
|
key: torch.Tensor,
|
||
|
value: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor],
|
||
|
scaling: float,
|
||
|
dropout: float = 0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if attention_mask is not None:
|
||
|
attn_weights = attn_weights * attention_mask
|
||
|
|
||
|
attn_output = torch.matmul(attn_weights, value)
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
|
||
|
return attn_output, attn_weights
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT
|
||
|
class DeiTSelfAttention(nn.Module):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||
|
raise ValueError(
|
||
|
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
|
||
|
f"heads {config.num_attention_heads}."
|
||
|
)
|
||
|
|
||
|
self.config = config
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
self.dropout_prob = config.attention_probs_dropout_prob
|
||
|
self.scaling = self.attention_head_size**-0.5
|
||
|
self.is_causal = False
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[tuple[torch.Tensor, torch.Tensor], tuple[torch.Tensor]]:
|
||
|
batch_size, seq_length, _ = hidden_states.shape
|
||
|
key_layer = (
|
||
|
self.key(hidden_states)
|
||
|
.view(batch_size, -1, self.num_attention_heads, self.attention_head_size)
|
||
|
.transpose(1, 2)
|
||
|
)
|
||
|
value_layer = (
|
||
|
self.value(hidden_states)
|
||
|
.view(batch_size, -1, self.num_attention_heads, self.attention_head_size)
|
||
|
.transpose(1, 2)
|
||
|
)
|
||
|
query_layer = (
|
||
|
self.query(hidden_states)
|
||
|
.view(batch_size, -1, self.num_attention_heads, self.attention_head_size)
|
||
|
.transpose(1, 2)
|
||
|
)
|
||
|
|
||
|
attention_interface: Callable = eager_attention_forward
|
||
|
if self.config._attn_implementation != "eager":
|
||
|
if self.config._attn_implementation == "sdpa" and output_attentions:
|
||
|
logger.warning_once(
|
||
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
|
)
|
||
|
else:
|
||
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||
|
|
||
|
context_layer, attention_probs = attention_interface(
|
||
|
self,
|
||
|
query_layer,
|
||
|
key_layer,
|
||
|
value_layer,
|
||
|
head_mask,
|
||
|
is_causal=self.is_causal,
|
||
|
scaling=self.scaling,
|
||
|
dropout=0.0 if not self.training else self.dropout_prob,
|
||
|
)
|
||
|
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.reshape(new_context_layer_shape)
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DeiT
|
||
|
class DeiTSelfOutput(nn.Module):
|
||
|
"""
|
||
|
The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the
|
||
|
layernorm applied before each block.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT
|
||
|
class DeiTAttention(nn.Module):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.attention = DeiTSelfAttention(config)
|
||
|
self.output = DeiTSelfOutput(config)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
def prune_heads(self, heads: set[int]) -> None:
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(
|
||
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
||
|
)
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.attention.query = prune_linear_layer(self.attention.query, index)
|
||
|
self.attention.key = prune_linear_layer(self.attention.key, index)
|
||
|
self.attention.value = prune_linear_layer(self.attention.value, index)
|
||
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
||
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[tuple[torch.Tensor, torch.Tensor], tuple[torch.Tensor]]:
|
||
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
||
|
|
||
|
attention_output = self.output(self_outputs[0], hidden_states)
|
||
|
|
||
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT
|
||
|
class DeiTIntermediate(nn.Module):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT
|
||
|
class DeiTOutput(nn.Module):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states + input_tensor
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->DeiT,VIT->DEIT
|
||
|
class DeiTLayer(GradientCheckpointingLayer):
|
||
|
"""This corresponds to the Block class in the timm implementation."""
|
||
|
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
self.attention = DeiTAttention(config)
|
||
|
self.intermediate = DeiTIntermediate(config)
|
||
|
self.output = DeiTOutput(config)
|
||
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[tuple[torch.Tensor, torch.Tensor], tuple[torch.Tensor]]:
|
||
|
self_attention_outputs = self.attention(
|
||
|
self.layernorm_before(hidden_states), # in DeiT, layernorm is applied before self-attention
|
||
|
head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
|
||
|
# first residual connection
|
||
|
hidden_states = attention_output + hidden_states
|
||
|
|
||
|
# in DeiT, layernorm is also applied after self-attention
|
||
|
layer_output = self.layernorm_after(hidden_states)
|
||
|
layer_output = self.intermediate(layer_output)
|
||
|
|
||
|
# second residual connection is done here
|
||
|
layer_output = self.output(layer_output, hidden_states)
|
||
|
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT
|
||
|
class DeiTEncoder(nn.Module):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[tuple, BaseModelOutput]:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
|
||
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@auto_docstring
|
||
|
class DeiTPreTrainedModel(PreTrainedModel):
|
||
|
config: DeiTConfig
|
||
|
base_model_prefix = "deit"
|
||
|
main_input_name = "pixel_values"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["DeiTLayer"]
|
||
|
_supports_sdpa = True
|
||
|
_supports_flash_attn = True
|
||
|
_supports_flex_attn = True
|
||
|
_supports_attention_backend = True
|
||
|
|
||
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||
|
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
||
|
# `trunc_normal_cpu` not implemented in `half` issues
|
||
|
module.weight.data = nn.init.trunc_normal_(
|
||
|
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
|
||
|
).to(module.weight.dtype)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, DeiTEmbeddings):
|
||
|
module.cls_token.data.zero_()
|
||
|
module.position_embeddings.data.zero_()
|
||
|
module.distillation_token.data.zero_()
|
||
|
if module.mask_token is not None:
|
||
|
module.mask_token.data.zero_()
|
||
|
|
||
|
|
||
|
@auto_docstring
|
||
|
class DeiTModel(DeiTPreTrainedModel):
|
||
|
def __init__(self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False) -> None:
|
||
|
r"""
|
||
|
add_pooling_layer (bool, *optional*, defaults to `True`):
|
||
|
Whether to add a pooling layer
|
||
|
use_mask_token (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use a mask token for masked image modeling.
|
||
|
"""
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
self.embeddings = DeiTEmbeddings(config, use_mask_token=use_mask_token)
|
||
|
self.encoder = DeiTEncoder(config)
|
||
|
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.pooler = DeiTPooler(config) if add_pooling_layer else None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> DeiTPatchEmbeddings:
|
||
|
return self.embeddings.patch_embeddings
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
interpolate_pos_encoding: bool = False,
|
||
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
||
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if pixel_values is None:
|
||
|
raise ValueError("You have to specify pixel_values")
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
# TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
|
||
|
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
|
||
|
if pixel_values.dtype != expected_dtype:
|
||
|
pixel_values = pixel_values.to(expected_dtype)
|
||
|
|
||
|
embedding_output = self.embeddings(
|
||
|
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
|
||
|
)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
sequence_output = self.layernorm(sequence_output)
|
||
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
if not return_dict:
|
||
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
|
||
|
return head_outputs + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT
|
||
|
class DeiTPooler(nn.Module):
|
||
|
def __init__(self, config: DeiTConfig):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.pooler_output_size)
|
||
|
self.activation = ACT2FN[config.pooler_act]
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
DeiT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://huggingface.co/papers/2111.09886).
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Note that we provide a script to pre-train this model on custom data in our [examples
|
||
|
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
||
|
|
||
|
</Tip>
|
||
|
"""
|
||
|
)
|
||
|
class DeiTForMaskedImageModeling(DeiTPreTrainedModel):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.deit = DeiTModel(config, add_pooling_layer=False, use_mask_token=True)
|
||
|
|
||
|
self.decoder = nn.Sequential(
|
||
|
nn.Conv2d(
|
||
|
in_channels=config.hidden_size,
|
||
|
out_channels=config.encoder_stride**2 * config.num_channels,
|
||
|
kernel_size=1,
|
||
|
),
|
||
|
nn.PixelShuffle(config.encoder_stride),
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
interpolate_pos_encoding: bool = False,
|
||
|
) -> Union[tuple, MaskedImageModelingOutput]:
|
||
|
r"""
|
||
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
||
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling
|
||
|
>>> import torch
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
|
||
|
>>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224")
|
||
|
|
||
|
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
|
||
|
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
|
||
|
>>> # create random boolean mask of shape (batch_size, num_patches)
|
||
|
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
|
||
|
|
||
|
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
|
||
|
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
|
||
|
>>> list(reconstructed_pixel_values.shape)
|
||
|
[1, 3, 224, 224]
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.deit(
|
||
|
pixel_values,
|
||
|
bool_masked_pos=bool_masked_pos,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
# Reshape to (batch_size, num_channels, height, width)
|
||
|
sequence_output = sequence_output[:, 1:-1]
|
||
|
batch_size, sequence_length, num_channels = sequence_output.shape
|
||
|
height = width = int(sequence_length**0.5)
|
||
|
sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
|
||
|
|
||
|
# Reconstruct pixel values
|
||
|
reconstructed_pixel_values = self.decoder(sequence_output)
|
||
|
|
||
|
masked_im_loss = None
|
||
|
if bool_masked_pos is not None:
|
||
|
size = self.config.image_size // self.config.patch_size
|
||
|
bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
|
||
|
mask = (
|
||
|
bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
|
||
|
.repeat_interleave(self.config.patch_size, 2)
|
||
|
.unsqueeze(1)
|
||
|
.contiguous()
|
||
|
)
|
||
|
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
|
||
|
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (reconstructed_pixel_values,) + outputs[1:]
|
||
|
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
|
||
|
|
||
|
return MaskedImageModelingOutput(
|
||
|
loss=masked_im_loss,
|
||
|
reconstruction=reconstructed_pixel_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
|
||
|
the [CLS] token) e.g. for ImageNet.
|
||
|
"""
|
||
|
)
|
||
|
class DeiTForImageClassification(DeiTPreTrainedModel):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.num_labels = config.num_labels
|
||
|
self.deit = DeiTModel(config, add_pooling_layer=False)
|
||
|
|
||
|
# Classifier head
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
interpolate_pos_encoding: bool = False,
|
||
|
) -> Union[tuple, ImageClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoImageProcessor, DeiTForImageClassification
|
||
|
>>> import torch
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> torch.manual_seed(3) # doctest: +IGNORE_RESULT
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here,
|
||
|
>>> # so the head will be randomly initialized, hence the predictions will be random
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
|
||
|
>>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")
|
||
|
|
||
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> logits = outputs.logits
|
||
|
>>> # model predicts one of the 1000 ImageNet classes
|
||
|
>>> predicted_class_idx = logits.argmax(-1).item()
|
||
|
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
|
||
|
Predicted class: Polaroid camera, Polaroid Land camera
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.deit(
|
||
|
pixel_values,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
logits = self.classifier(sequence_output[:, 0, :])
|
||
|
# we don't use the distillation token
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
labels = labels.to(logits.device)
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return ImageClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
Output type of [`DeiTForImageClassificationWithTeacher`].
|
||
|
"""
|
||
|
)
|
||
|
class DeiTForImageClassificationWithTeacherOutput(ModelOutput):
|
||
|
r"""
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
||
|
Prediction scores as the average of the cls_logits and distillation logits.
|
||
|
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
||
|
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
|
||
|
class token).
|
||
|
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
||
|
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
|
||
|
distillation token).
|
||
|
"""
|
||
|
|
||
|
logits: Optional[torch.FloatTensor] = None
|
||
|
cls_logits: Optional[torch.FloatTensor] = None
|
||
|
distillation_logits: Optional[torch.FloatTensor] = None
|
||
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
@auto_docstring(
|
||
|
custom_intro="""
|
||
|
DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of
|
||
|
the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
|
||
|
supported.
|
||
|
"""
|
||
|
)
|
||
|
class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel):
|
||
|
def __init__(self, config: DeiTConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.num_labels = config.num_labels
|
||
|
self.deit = DeiTModel(config, add_pooling_layer=False)
|
||
|
|
||
|
# Classifier heads
|
||
|
self.cls_classifier = (
|
||
|
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
||
|
)
|
||
|
self.distillation_classifier = (
|
||
|
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@auto_docstring
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
interpolate_pos_encoding: bool = False,
|
||
|
) -> Union[tuple, DeiTForImageClassificationWithTeacherOutput]:
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.deit(
|
||
|
pixel_values,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
cls_logits = self.cls_classifier(sequence_output[:, 0, :])
|
||
|
distillation_logits = self.distillation_classifier(sequence_output[:, 1, :])
|
||
|
|
||
|
# during inference, return the average of both classifier predictions
|
||
|
logits = (cls_logits + distillation_logits) / 2
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits, cls_logits, distillation_logits) + outputs[1:]
|
||
|
return output
|
||
|
|
||
|
return DeiTForImageClassificationWithTeacherOutput(
|
||
|
logits=logits,
|
||
|
cls_logits=cls_logits,
|
||
|
distillation_logits=distillation_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"DeiTForImageClassification",
|
||
|
"DeiTForImageClassificationWithTeacher",
|
||
|
"DeiTForMaskedImageModeling",
|
||
|
"DeiTModel",
|
||
|
"DeiTPreTrainedModel",
|
||
|
]
|