From 46053885ba36512a0b80bd8bbee9874f7ce4b8fb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Nicol=C3=B2?= Date: Sat, 2 Aug 2025 11:41:53 +0200 Subject: [PATCH] init --- app.py | 59 +++++++++++++++++++++------------------------------------- 1 file changed, 21 insertions(+), 38 deletions(-) diff --git a/app.py b/app.py index fd133803d..cc1f393cd 100644 --- a/app.py +++ b/app.py @@ -1,29 +1,14 @@ -import os +# app.py import streamlit as st -import pandas as pd -import joblib from PIL import Image -import torch -from torchvision import models from llama_cpp import Llama -from diffusers import DiffusionPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler from image_generation import generate_image st.set_page_config(page_title="GreenThumber", layout="centered") st.title("🌱 GreenThumber") -@st.cache_resource -def load_imagenet_labels(): - import urllib - url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt" - response = urllib.request.urlopen(url) - labels = [line.strip() for line in response.read().decode("utf-8").split("\n")] - return labels -labels = load_imagenet_labels() - -# Load Mistral LLM via llama-cpp-python with custom hash to avoid Streamlit caching issues @st.cache_resource(hash_funcs={Llama: lambda _: None}) def load_mistral_model(): llm = Llama( @@ -39,13 +24,14 @@ llm = load_mistral_model() # Generate a description using the Mistral model -def generate_growth_description(plant_type, soil_type, sunlight_hours, water_frequency, +def generate_growth_description(plant_type, plant_age, soil_type, sunlight_hours, water_frequency, fertilizer_type, temperature, humidity, days, additional_info): prompt = ( f" Instruction:\n" f"You are a botanical expert. Describe how a {plant_type} plant will likely look in {days} days " f"based on these conditions:\n" - f"Important additional conditions: {additional_info}\n" + f"Important environment conditions: {additional_info}\n" + f"- Plant age: {plant_age}\n" f"- Soil Type: {soil_type}\n" f"- Sunlight: {sunlight_hours} hours per day\n" f"- Water Frequency: {water_frequency} times per week\n" @@ -66,10 +52,11 @@ uploaded_image = None if plant_input_mode == "Type name": plant_type = st.selectbox("Select Plant Type", ["Basil", "Tomato", "Lettuce"]) plant_age = st.number_input("Enter Plant Age (in days)", min_value=1, max_value=365, value=25) + elif plant_input_mode == "Upload image": plant_type = st.selectbox("Select Plant Type", ["Basil", "Tomato", "Lettuce"]) - plant_age = st.number_input("Enter Plant Age (in days)", min_value=1, max_value=365, value=30) + plant_age = st.number_input("Enter Plant Age (in days)", min_value=1, max_value=365, value=25) image_file = st.file_uploader("Upload an image of your plant", type=["jpg", "jpeg", "png"]) if image_file: uploaded_image = Image.open(image_file) @@ -86,7 +73,6 @@ with col1: sunlight_hours = st.slider("Sunlight Hours per day", 0, 24, 6) water_frequency = st.slider("Water Frequency (times per week)", 0, 14, 3) -# --- Column 2: Environmental Parameters with col2: fertilizer_options = ["Organic", "Chemical", "None"] @@ -95,27 +81,24 @@ with col2: humidity = st.slider("Humidity (%)", 0, 100, 60) days = st.slider("Prediction Interval (in days)", min_value=1, max_value=30, value=7) -additional_info = st.text_area("Feel free to include any additional detail") +additional_info = st.text_area("Feel free to include any additional detail", "- e.g. 'I'm adding compost to the soil.'", height=100) -# Prediction + Description + Image Generation -if st.button("Start Prediction"): - if plant_type and plant_type.strip() != "": - if plant_input_mode == "Upload image" and uploaded_image is None: - st.warning("Please upload a plant image to proceed.") - else: - with st.spinner("Analyzing data and generating description..."): - description = generate_growth_description( - plant_type, soil_type, sunlight_hours, water_frequency, - fertilizer_type, temperature, humidity, days, additional_info - ) - st.subheader(f"📝 Predicted Plant Condition in {days} Days:") - st.write(description) - manipulated_img = generate_image(plant_type, description, plant_age) - st.image(manipulated_img, caption="Predicted Plant Condition Image") +#if st.button("Start Prediction"): +if plant_type and plant_type.strip() != "": + with st.spinner("Analyzing data and generating description..."): + description = generate_growth_description( + plant_type, plant_age, soil_type, sunlight_hours, water_frequency, + fertilizer_type, temperature, humidity, days, additional_info + ) + st.subheader(f"📝 Predicted Plant Condition in {days} Days:") + st.write(description) - else: - st.warning("Please select or enter a plant type.") + manipulated_img = generate_image(plant_type, description, plant_age) + st.image(manipulated_img, caption="Predicted Plant Condition Image") + +# else: +# st.warning("Please select or enter a plant type.")