Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
BIN
venv/Lib/site-packages/sklearn/.libs/msvcp140.dll
Normal file
BIN
venv/Lib/site-packages/sklearn/.libs/msvcp140.dll
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/sklearn/.libs/vcomp140.dll
Normal file
BIN
venv/Lib/site-packages/sklearn/.libs/vcomp140.dll
Normal file
Binary file not shown.
50
venv/Lib/site-packages/sklearn/__check_build/__init__.py
Normal file
50
venv/Lib/site-packages/sklearn/__check_build/__init__.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
""" Module to give helpful messages to the user that did not
|
||||
compile scikit-learn properly.
|
||||
"""
|
||||
import os
|
||||
|
||||
INPLACE_MSG = """
|
||||
It appears that you are importing a local scikit-learn source tree. For
|
||||
this, you need to have an inplace install. Maybe you are in the source
|
||||
directory and you need to try from another location."""
|
||||
|
||||
STANDARD_MSG = """
|
||||
If you have used an installer, please check that it is suited for your
|
||||
Python version, your operating system and your platform."""
|
||||
|
||||
|
||||
def raise_build_error(e):
|
||||
# Raise a comprehensible error and list the contents of the
|
||||
# directory to help debugging on the mailing list.
|
||||
local_dir = os.path.split(__file__)[0]
|
||||
msg = STANDARD_MSG
|
||||
if local_dir == "sklearn/__check_build":
|
||||
# Picking up the local install: this will work only if the
|
||||
# install is an 'inplace build'
|
||||
msg = INPLACE_MSG
|
||||
dir_content = list()
|
||||
for i, filename in enumerate(os.listdir(local_dir)):
|
||||
if (i + 1) % 3:
|
||||
dir_content.append(filename.ljust(26))
|
||||
else:
|
||||
dir_content.append(filename + "\n")
|
||||
raise ImportError(
|
||||
"""%s
|
||||
___________________________________________________________________________
|
||||
Contents of %s:
|
||||
%s
|
||||
___________________________________________________________________________
|
||||
It seems that scikit-learn has not been built correctly.
|
||||
|
||||
If you have installed scikit-learn from source, please do not forget
|
||||
to build the package before using it: run `python setup.py install` or
|
||||
`make` in the source directory.
|
||||
%s"""
|
||||
% (e, local_dir, "".join(dir_content).strip(), msg)
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
from ._check_build import check_build # noqa
|
||||
except ImportError as e:
|
||||
raise_build_error(e)
|
Binary file not shown.
Binary file not shown.
144
venv/Lib/site-packages/sklearn/__init__.py
Normal file
144
venv/Lib/site-packages/sklearn/__init__.py
Normal file
|
@ -0,0 +1,144 @@
|
|||
"""
|
||||
Machine learning module for Python
|
||||
==================================
|
||||
|
||||
sklearn is a Python module integrating classical machine
|
||||
learning algorithms in the tightly-knit world of scientific Python
|
||||
packages (numpy, scipy, matplotlib).
|
||||
|
||||
It aims to provide simple and efficient solutions to learning problems
|
||||
that are accessible to everybody and reusable in various contexts:
|
||||
machine-learning as a versatile tool for science and engineering.
|
||||
|
||||
See http://scikit-learn.org for complete documentation.
|
||||
"""
|
||||
import sys
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
|
||||
|
||||
from ._config import get_config, set_config, config_context
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# PEP0440 compatible formatted version, see:
|
||||
# https://www.python.org/dev/peps/pep-0440/
|
||||
#
|
||||
# Generic release markers:
|
||||
# X.Y.0 # For first release after an increment in Y
|
||||
# X.Y.Z # For bugfix releases
|
||||
#
|
||||
# Admissible pre-release markers:
|
||||
# X.Y.ZaN # Alpha release
|
||||
# X.Y.ZbN # Beta release
|
||||
# X.Y.ZrcN # Release Candidate
|
||||
# X.Y.Z # Final release
|
||||
#
|
||||
# Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer.
|
||||
# 'X.Y.dev0' is the canonical version of 'X.Y.dev'
|
||||
#
|
||||
__version__ = "1.2.2"
|
||||
|
||||
|
||||
# On OSX, we can get a runtime error due to multiple OpenMP libraries loaded
|
||||
# simultaneously. This can happen for instance when calling BLAS inside a
|
||||
# prange. Setting the following environment variable allows multiple OpenMP
|
||||
# libraries to be loaded. It should not degrade performances since we manually
|
||||
# take care of potential over-subcription performance issues, in sections of
|
||||
# the code where nested OpenMP loops can happen, by dynamically reconfiguring
|
||||
# the inner OpenMP runtime to temporarily disable it while under the scope of
|
||||
# the outer OpenMP parallel section.
|
||||
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "True")
|
||||
|
||||
# Workaround issue discovered in intel-openmp 2019.5:
|
||||
# https://github.com/ContinuumIO/anaconda-issues/issues/11294
|
||||
os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE")
|
||||
|
||||
try:
|
||||
# This variable is injected in the __builtins__ by the build
|
||||
# process. It is used to enable importing subpackages of sklearn when
|
||||
# the binaries are not built
|
||||
# mypy error: Cannot determine type of '__SKLEARN_SETUP__'
|
||||
__SKLEARN_SETUP__ # type: ignore
|
||||
except NameError:
|
||||
__SKLEARN_SETUP__ = False
|
||||
|
||||
if __SKLEARN_SETUP__:
|
||||
sys.stderr.write("Partial import of sklearn during the build process.\n")
|
||||
# We are not importing the rest of scikit-learn during the build
|
||||
# process, as it may not be compiled yet
|
||||
else:
|
||||
# `_distributor_init` allows distributors to run custom init code.
|
||||
# For instance, for the Windows wheel, this is used to pre-load the
|
||||
# vcomp shared library runtime for OpenMP embedded in the sklearn/.libs
|
||||
# sub-folder.
|
||||
# It is necessary to do this prior to importing show_versions as the
|
||||
# later is linked to the OpenMP runtime to make it possible to introspect
|
||||
# it and importing it first would fail if the OpenMP dll cannot be found.
|
||||
from . import _distributor_init # noqa: F401
|
||||
from . import __check_build # noqa: F401
|
||||
from .base import clone
|
||||
from .utils._show_versions import show_versions
|
||||
|
||||
__all__ = [
|
||||
"calibration",
|
||||
"cluster",
|
||||
"covariance",
|
||||
"cross_decomposition",
|
||||
"datasets",
|
||||
"decomposition",
|
||||
"dummy",
|
||||
"ensemble",
|
||||
"exceptions",
|
||||
"experimental",
|
||||
"externals",
|
||||
"feature_extraction",
|
||||
"feature_selection",
|
||||
"gaussian_process",
|
||||
"inspection",
|
||||
"isotonic",
|
||||
"kernel_approximation",
|
||||
"kernel_ridge",
|
||||
"linear_model",
|
||||
"manifold",
|
||||
"metrics",
|
||||
"mixture",
|
||||
"model_selection",
|
||||
"multiclass",
|
||||
"multioutput",
|
||||
"naive_bayes",
|
||||
"neighbors",
|
||||
"neural_network",
|
||||
"pipeline",
|
||||
"preprocessing",
|
||||
"random_projection",
|
||||
"semi_supervised",
|
||||
"svm",
|
||||
"tree",
|
||||
"discriminant_analysis",
|
||||
"impute",
|
||||
"compose",
|
||||
# Non-modules:
|
||||
"clone",
|
||||
"get_config",
|
||||
"set_config",
|
||||
"config_context",
|
||||
"show_versions",
|
||||
]
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
"""Fixture for the tests to assure globally controllable seeding of RNGs"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Check if a random seed exists in the environment, if not create one.
|
||||
_random_seed = os.environ.get("SKLEARN_SEED", None)
|
||||
if _random_seed is None:
|
||||
_random_seed = np.random.uniform() * np.iinfo(np.int32).max
|
||||
_random_seed = int(_random_seed)
|
||||
print("I: Seeding RNGs with %r" % _random_seed)
|
||||
np.random.seed(_random_seed)
|
||||
random.seed(_random_seed)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
venv/Lib/site-packages/sklearn/__pycache__/base.cpython-39.pyc
Normal file
BIN
venv/Lib/site-packages/sklearn/__pycache__/base.cpython-39.pyc
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
venv/Lib/site-packages/sklearn/__pycache__/dummy.cpython-39.pyc
Normal file
BIN
venv/Lib/site-packages/sklearn/__pycache__/dummy.cpython-39.pyc
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
128
venv/Lib/site-packages/sklearn/_build_utils/__init__.py
Normal file
128
venv/Lib/site-packages/sklearn/_build_utils/__init__.py
Normal file
|
@ -0,0 +1,128 @@
|
|||
"""
|
||||
Utilities useful during the build.
|
||||
"""
|
||||
# author: Andy Mueller, Gael Varoquaux
|
||||
# license: BSD
|
||||
|
||||
|
||||
import os
|
||||
import sklearn
|
||||
import contextlib
|
||||
|
||||
from .pre_build_helpers import basic_check_build
|
||||
from .openmp_helpers import check_openmp_support
|
||||
from .._min_dependencies import CYTHON_MIN_VERSION
|
||||
from ..externals._packaging.version import parse
|
||||
|
||||
|
||||
DEFAULT_ROOT = "sklearn"
|
||||
|
||||
|
||||
def _check_cython_version():
|
||||
message = (
|
||||
"Please install Cython with a version >= {0} in order "
|
||||
"to build a scikit-learn from source."
|
||||
).format(CYTHON_MIN_VERSION)
|
||||
try:
|
||||
import Cython
|
||||
except ModuleNotFoundError as e:
|
||||
# Re-raise with more informative error message instead:
|
||||
raise ModuleNotFoundError(message) from e
|
||||
|
||||
if parse(Cython.__version__) < parse(CYTHON_MIN_VERSION):
|
||||
message += " The current version of Cython is {} installed in {}.".format(
|
||||
Cython.__version__, Cython.__path__
|
||||
)
|
||||
raise ValueError(message)
|
||||
|
||||
|
||||
def cythonize_extensions(extension):
|
||||
"""Check that a recent Cython is available and cythonize extensions"""
|
||||
_check_cython_version()
|
||||
from Cython.Build import cythonize
|
||||
import Cython
|
||||
|
||||
# Fast fail before cythonization if compiler fails compiling basic test
|
||||
# code even without OpenMP
|
||||
basic_check_build()
|
||||
|
||||
# check simple compilation with OpenMP. If it fails scikit-learn will be
|
||||
# built without OpenMP and the test test_openmp_supported in the test suite
|
||||
# will fail.
|
||||
# `check_openmp_support` compiles a small test program to see if the
|
||||
# compilers are properly configured to build with OpenMP. This is expensive
|
||||
# and we only want to call this function once.
|
||||
# The result of this check is cached as a private attribute on the sklearn
|
||||
# module (only at build-time) to be used twice:
|
||||
# - First to set the value of SKLEARN_OPENMP_PARALLELISM_ENABLED, the
|
||||
# cython build-time variable passed to the cythonize() call.
|
||||
# - Then in the build_ext subclass defined in the top-level setup.py file
|
||||
# to actually build the compiled extensions with OpenMP flags if needed.
|
||||
sklearn._OPENMP_SUPPORTED = check_openmp_support()
|
||||
|
||||
n_jobs = 1
|
||||
with contextlib.suppress(ImportError):
|
||||
import joblib
|
||||
|
||||
n_jobs = joblib.cpu_count()
|
||||
|
||||
# Additional checks for Cython
|
||||
cython_enable_debug_directives = (
|
||||
os.environ.get("SKLEARN_ENABLE_DEBUG_CYTHON_DIRECTIVES", "0") != "0"
|
||||
)
|
||||
|
||||
compiler_directives = {
|
||||
"language_level": 3,
|
||||
"boundscheck": cython_enable_debug_directives,
|
||||
"wraparound": False,
|
||||
"initializedcheck": False,
|
||||
"nonecheck": False,
|
||||
"cdivision": True,
|
||||
}
|
||||
|
||||
# TODO: once Cython 3 is released and we require Cython>=3 we should get
|
||||
# rid of the `legacy_implicit_noexcept` directive.
|
||||
# This should mostly consist in:
|
||||
#
|
||||
# - ensuring nogil is at the end of function signature,
|
||||
# e.g. replace "nogil except -1" by "except -1 nogil".
|
||||
#
|
||||
# - "noexcept"-qualifying Cython and externalized C interfaces
|
||||
# which aren't raising nor propagating exceptions.
|
||||
# See: https://cython.readthedocs.io/en/latest/src/userguide/language_basics.html#error-return-values # noqa
|
||||
#
|
||||
# See: https://github.com/cython/cython/issues/5088 for more details
|
||||
if parse(Cython.__version__) > parse("3.0.0a11"):
|
||||
compiler_directives["legacy_implicit_noexcept"] = True
|
||||
|
||||
return cythonize(
|
||||
extension,
|
||||
nthreads=n_jobs,
|
||||
compile_time_env={
|
||||
"SKLEARN_OPENMP_PARALLELISM_ENABLED": sklearn._OPENMP_SUPPORTED
|
||||
},
|
||||
compiler_directives=compiler_directives,
|
||||
)
|
||||
|
||||
|
||||
def gen_from_templates(templates):
|
||||
"""Generate cython files from a list of templates"""
|
||||
# Lazy import because cython is not a runtime dependency.
|
||||
from Cython import Tempita
|
||||
|
||||
for template in templates:
|
||||
outfile = template.replace(".tp", "")
|
||||
|
||||
# if the template is not updated, no need to output the cython file
|
||||
if not (
|
||||
os.path.exists(outfile)
|
||||
and os.stat(template).st_mtime < os.stat(outfile).st_mtime
|
||||
):
|
||||
|
||||
with open(template, "r") as f:
|
||||
tmpl = f.read()
|
||||
|
||||
tmpl_ = Tempita.sub(tmpl)
|
||||
|
||||
with open(outfile, "w") as f:
|
||||
f.write(tmpl_)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
132
venv/Lib/site-packages/sklearn/_build_utils/openmp_helpers.py
Normal file
132
venv/Lib/site-packages/sklearn/_build_utils/openmp_helpers.py
Normal file
|
@ -0,0 +1,132 @@
|
|||
"""Helpers for OpenMP support during the build."""
|
||||
|
||||
# This code is adapted for a large part from the astropy openmp helpers, which
|
||||
# can be found at: https://github.com/astropy/extension-helpers/blob/master/extension_helpers/_openmp_helpers.py # noqa
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
import textwrap
|
||||
import warnings
|
||||
|
||||
from .pre_build_helpers import compile_test_program
|
||||
|
||||
|
||||
def get_openmp_flag(compiler):
|
||||
if hasattr(compiler, "compiler"):
|
||||
compiler = compiler.compiler[0]
|
||||
else:
|
||||
compiler = compiler.__class__.__name__
|
||||
|
||||
if sys.platform == "win32":
|
||||
return ["/openmp"]
|
||||
elif sys.platform == "darwin" and "openmp" in os.getenv("CPPFLAGS", ""):
|
||||
# -fopenmp can't be passed as compile flag when using Apple-clang.
|
||||
# OpenMP support has to be enabled during preprocessing.
|
||||
#
|
||||
# For example, our macOS wheel build jobs use the following environment
|
||||
# variables to build with Apple-clang and the brew installed "libomp":
|
||||
#
|
||||
# export CPPFLAGS="$CPPFLAGS -Xpreprocessor -fopenmp"
|
||||
# export CFLAGS="$CFLAGS -I/usr/local/opt/libomp/include"
|
||||
# export CXXFLAGS="$CXXFLAGS -I/usr/local/opt/libomp/include"
|
||||
# export LDFLAGS="$LDFLAGS -Wl,-rpath,/usr/local/opt/libomp/lib
|
||||
# -L/usr/local/opt/libomp/lib -lomp"
|
||||
return []
|
||||
# Default flag for GCC and clang:
|
||||
return ["-fopenmp"]
|
||||
|
||||
|
||||
def check_openmp_support():
|
||||
"""Check whether OpenMP test code can be compiled and run"""
|
||||
if "PYODIDE_PACKAGE_ABI" in os.environ:
|
||||
# Pyodide doesn't support OpenMP
|
||||
return False
|
||||
|
||||
code = textwrap.dedent(
|
||||
"""\
|
||||
#include <omp.h>
|
||||
#include <stdio.h>
|
||||
int main(void) {
|
||||
#pragma omp parallel
|
||||
printf("nthreads=%d\\n", omp_get_num_threads());
|
||||
return 0;
|
||||
}
|
||||
"""
|
||||
)
|
||||
|
||||
extra_preargs = os.getenv("LDFLAGS", None)
|
||||
if extra_preargs is not None:
|
||||
extra_preargs = extra_preargs.strip().split(" ")
|
||||
# FIXME: temporary fix to link against system libraries on linux
|
||||
# "-Wl,--sysroot=/" should be removed
|
||||
extra_preargs = [
|
||||
flag
|
||||
for flag in extra_preargs
|
||||
if flag.startswith(("-L", "-Wl,-rpath", "-l", "-Wl,--sysroot=/"))
|
||||
]
|
||||
|
||||
extra_postargs = get_openmp_flag
|
||||
|
||||
openmp_exception = None
|
||||
try:
|
||||
output = compile_test_program(
|
||||
code, extra_preargs=extra_preargs, extra_postargs=extra_postargs
|
||||
)
|
||||
|
||||
if output and "nthreads=" in output[0]:
|
||||
nthreads = int(output[0].strip().split("=")[1])
|
||||
openmp_supported = len(output) == nthreads
|
||||
elif "PYTHON_CROSSENV" in os.environ:
|
||||
# Since we can't run the test program when cross-compiling
|
||||
# assume that openmp is supported if the program can be
|
||||
# compiled.
|
||||
openmp_supported = True
|
||||
else:
|
||||
openmp_supported = False
|
||||
|
||||
except Exception as exception:
|
||||
# We could be more specific and only catch: CompileError, LinkError,
|
||||
# and subprocess.CalledProcessError.
|
||||
# setuptools introduced CompileError and LinkError, but that requires
|
||||
# version 61.1. Even the latest version of Ubuntu (22.04LTS) only
|
||||
# ships with 59.6. So for now we catch all exceptions and reraise a
|
||||
# generic exception with the original error message instead:
|
||||
openmp_supported = False
|
||||
openmp_exception = exception
|
||||
|
||||
if not openmp_supported:
|
||||
if os.getenv("SKLEARN_FAIL_NO_OPENMP"):
|
||||
raise Exception(
|
||||
"Failed to build scikit-learn with OpenMP support"
|
||||
) from openmp_exception
|
||||
else:
|
||||
message = textwrap.dedent(
|
||||
"""
|
||||
|
||||
***********
|
||||
* WARNING *
|
||||
***********
|
||||
|
||||
It seems that scikit-learn cannot be built with OpenMP.
|
||||
|
||||
- Make sure you have followed the installation instructions:
|
||||
|
||||
https://scikit-learn.org/dev/developers/advanced_installation.html
|
||||
|
||||
- If your compiler supports OpenMP but you still see this
|
||||
message, please submit a bug report at:
|
||||
|
||||
https://github.com/scikit-learn/scikit-learn/issues
|
||||
|
||||
- The build will continue with OpenMP-based parallelism
|
||||
disabled. Note however that some estimators will run in
|
||||
sequential mode instead of leveraging thread-based
|
||||
parallelism.
|
||||
|
||||
***
|
||||
"""
|
||||
)
|
||||
warnings.warn(message)
|
||||
|
||||
return openmp_supported
|
|
@ -0,0 +1,82 @@
|
|||
"""Helpers to check build environment before actual build of scikit-learn"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import glob
|
||||
import tempfile
|
||||
import textwrap
|
||||
import subprocess
|
||||
|
||||
from setuptools.command.build_ext import customize_compiler, new_compiler
|
||||
|
||||
|
||||
def compile_test_program(code, extra_preargs=[], extra_postargs=[]):
|
||||
"""Check that some C code can be compiled and run"""
|
||||
ccompiler = new_compiler()
|
||||
customize_compiler(ccompiler)
|
||||
|
||||
# extra_(pre/post)args can be a callable to make it possible to get its
|
||||
# value from the compiler
|
||||
if callable(extra_preargs):
|
||||
extra_preargs = extra_preargs(ccompiler)
|
||||
if callable(extra_postargs):
|
||||
extra_postargs = extra_postargs(ccompiler)
|
||||
|
||||
start_dir = os.path.abspath(".")
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
try:
|
||||
os.chdir(tmp_dir)
|
||||
|
||||
# Write test program
|
||||
with open("test_program.c", "w") as f:
|
||||
f.write(code)
|
||||
|
||||
os.mkdir("objects")
|
||||
|
||||
# Compile, test program
|
||||
ccompiler.compile(
|
||||
["test_program.c"], output_dir="objects", extra_postargs=extra_postargs
|
||||
)
|
||||
|
||||
# Link test program
|
||||
objects = glob.glob(os.path.join("objects", "*" + ccompiler.obj_extension))
|
||||
ccompiler.link_executable(
|
||||
objects,
|
||||
"test_program",
|
||||
extra_preargs=extra_preargs,
|
||||
extra_postargs=extra_postargs,
|
||||
)
|
||||
|
||||
if "PYTHON_CROSSENV" not in os.environ:
|
||||
# Run test program if not cross compiling
|
||||
# will raise a CalledProcessError if return code was non-zero
|
||||
output = subprocess.check_output("./test_program")
|
||||
output = output.decode(sys.stdout.encoding or "utf-8").splitlines()
|
||||
else:
|
||||
# Return an empty output if we are cross compiling
|
||||
# as we cannot run the test_program
|
||||
output = []
|
||||
except Exception:
|
||||
raise
|
||||
finally:
|
||||
os.chdir(start_dir)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def basic_check_build():
|
||||
"""Check basic compilation and linking of C code"""
|
||||
if "PYODIDE_PACKAGE_ABI" in os.environ:
|
||||
# The following check won't work in pyodide
|
||||
return
|
||||
|
||||
code = textwrap.dedent(
|
||||
"""\
|
||||
#include <stdio.h>
|
||||
int main(void) {
|
||||
return 0;
|
||||
}
|
||||
"""
|
||||
)
|
||||
compile_test_program(code)
|
294
venv/Lib/site-packages/sklearn/_config.py
Normal file
294
venv/Lib/site-packages/sklearn/_config.py
Normal file
|
@ -0,0 +1,294 @@
|
|||
"""Global configuration state and functions for management
|
||||
"""
|
||||
import os
|
||||
from contextlib import contextmanager as contextmanager
|
||||
import threading
|
||||
|
||||
_global_config = {
|
||||
"assume_finite": bool(os.environ.get("SKLEARN_ASSUME_FINITE", False)),
|
||||
"working_memory": int(os.environ.get("SKLEARN_WORKING_MEMORY", 1024)),
|
||||
"print_changed_only": True,
|
||||
"display": "diagram",
|
||||
"pairwise_dist_chunk_size": int(
|
||||
os.environ.get("SKLEARN_PAIRWISE_DIST_CHUNK_SIZE", 256)
|
||||
),
|
||||
"enable_cython_pairwise_dist": True,
|
||||
"array_api_dispatch": False,
|
||||
"transform_output": "default",
|
||||
}
|
||||
_threadlocal = threading.local()
|
||||
|
||||
|
||||
def _get_threadlocal_config():
|
||||
"""Get a threadlocal **mutable** configuration. If the configuration
|
||||
does not exist, copy the default global configuration."""
|
||||
if not hasattr(_threadlocal, "global_config"):
|
||||
_threadlocal.global_config = _global_config.copy()
|
||||
return _threadlocal.global_config
|
||||
|
||||
|
||||
def get_config():
|
||||
"""Retrieve current values for configuration set by :func:`set_config`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
config : dict
|
||||
Keys are parameter names that can be passed to :func:`set_config`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
config_context : Context manager for global scikit-learn configuration.
|
||||
set_config : Set global scikit-learn configuration.
|
||||
"""
|
||||
# Return a copy of the threadlocal configuration so that users will
|
||||
# not be able to modify the configuration with the returned dict.
|
||||
return _get_threadlocal_config().copy()
|
||||
|
||||
|
||||
def set_config(
|
||||
assume_finite=None,
|
||||
working_memory=None,
|
||||
print_changed_only=None,
|
||||
display=None,
|
||||
pairwise_dist_chunk_size=None,
|
||||
enable_cython_pairwise_dist=None,
|
||||
array_api_dispatch=None,
|
||||
transform_output=None,
|
||||
):
|
||||
"""Set global scikit-learn configuration
|
||||
|
||||
.. versionadded:: 0.19
|
||||
|
||||
Parameters
|
||||
----------
|
||||
assume_finite : bool, default=None
|
||||
If True, validation for finiteness will be skipped,
|
||||
saving time, but leading to potential crashes. If
|
||||
False, validation for finiteness will be performed,
|
||||
avoiding error. Global default: False.
|
||||
|
||||
.. versionadded:: 0.19
|
||||
|
||||
working_memory : int, default=None
|
||||
If set, scikit-learn will attempt to limit the size of temporary arrays
|
||||
to this number of MiB (per job when parallelised), often saving both
|
||||
computation time and memory on expensive operations that can be
|
||||
performed in chunks. Global default: 1024.
|
||||
|
||||
.. versionadded:: 0.20
|
||||
|
||||
print_changed_only : bool, default=None
|
||||
If True, only the parameters that were set to non-default
|
||||
values will be printed when printing an estimator. For example,
|
||||
``print(SVC())`` while True will only print 'SVC()' while the default
|
||||
behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with
|
||||
all the non-changed parameters.
|
||||
|
||||
.. versionadded:: 0.21
|
||||
|
||||
display : {'text', 'diagram'}, default=None
|
||||
If 'diagram', estimators will be displayed as a diagram in a Jupyter
|
||||
lab or notebook context. If 'text', estimators will be displayed as
|
||||
text. Default is 'diagram'.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
|
||||
pairwise_dist_chunk_size : int, default=None
|
||||
The number of row vectors per chunk for the accelerated pairwise-
|
||||
distances reduction backend. Default is 256 (suitable for most of
|
||||
modern laptops' caches and architectures).
|
||||
|
||||
Intended for easier benchmarking and testing of scikit-learn internals.
|
||||
End users are not expected to benefit from customizing this configuration
|
||||
setting.
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
enable_cython_pairwise_dist : bool, default=None
|
||||
Use the accelerated pairwise-distances reduction backend when
|
||||
possible. Global default: True.
|
||||
|
||||
Intended for easier benchmarking and testing of scikit-learn internals.
|
||||
End users are not expected to benefit from customizing this configuration
|
||||
setting.
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
array_api_dispatch : bool, default=None
|
||||
Use Array API dispatching when inputs follow the Array API standard.
|
||||
Default is False.
|
||||
|
||||
See the :ref:`User Guide <array_api>` for more details.
|
||||
|
||||
.. versionadded:: 1.2
|
||||
|
||||
transform_output : str, default=None
|
||||
Configure output of `transform` and `fit_transform`.
|
||||
|
||||
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
|
||||
for an example on how to use the API.
|
||||
|
||||
- `"default"`: Default output format of a transformer
|
||||
- `"pandas"`: DataFrame output
|
||||
- `None`: Transform configuration is unchanged
|
||||
|
||||
.. versionadded:: 1.2
|
||||
|
||||
See Also
|
||||
--------
|
||||
config_context : Context manager for global scikit-learn configuration.
|
||||
get_config : Retrieve current values of the global configuration.
|
||||
"""
|
||||
local_config = _get_threadlocal_config()
|
||||
|
||||
if assume_finite is not None:
|
||||
local_config["assume_finite"] = assume_finite
|
||||
if working_memory is not None:
|
||||
local_config["working_memory"] = working_memory
|
||||
if print_changed_only is not None:
|
||||
local_config["print_changed_only"] = print_changed_only
|
||||
if display is not None:
|
||||
local_config["display"] = display
|
||||
if pairwise_dist_chunk_size is not None:
|
||||
local_config["pairwise_dist_chunk_size"] = pairwise_dist_chunk_size
|
||||
if enable_cython_pairwise_dist is not None:
|
||||
local_config["enable_cython_pairwise_dist"] = enable_cython_pairwise_dist
|
||||
if array_api_dispatch is not None:
|
||||
local_config["array_api_dispatch"] = array_api_dispatch
|
||||
if transform_output is not None:
|
||||
local_config["transform_output"] = transform_output
|
||||
|
||||
|
||||
@contextmanager
|
||||
def config_context(
|
||||
*,
|
||||
assume_finite=None,
|
||||
working_memory=None,
|
||||
print_changed_only=None,
|
||||
display=None,
|
||||
pairwise_dist_chunk_size=None,
|
||||
enable_cython_pairwise_dist=None,
|
||||
array_api_dispatch=None,
|
||||
transform_output=None,
|
||||
):
|
||||
"""Context manager for global scikit-learn configuration.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
assume_finite : bool, default=None
|
||||
If True, validation for finiteness will be skipped,
|
||||
saving time, but leading to potential crashes. If
|
||||
False, validation for finiteness will be performed,
|
||||
avoiding error. If None, the existing value won't change.
|
||||
The default value is False.
|
||||
|
||||
working_memory : int, default=None
|
||||
If set, scikit-learn will attempt to limit the size of temporary arrays
|
||||
to this number of MiB (per job when parallelised), often saving both
|
||||
computation time and memory on expensive operations that can be
|
||||
performed in chunks. If None, the existing value won't change.
|
||||
The default value is 1024.
|
||||
|
||||
print_changed_only : bool, default=None
|
||||
If True, only the parameters that were set to non-default
|
||||
values will be printed when printing an estimator. For example,
|
||||
``print(SVC())`` while True will only print 'SVC()', but would print
|
||||
'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters
|
||||
when False. If None, the existing value won't change.
|
||||
The default value is True.
|
||||
|
||||
.. versionchanged:: 0.23
|
||||
Default changed from False to True.
|
||||
|
||||
display : {'text', 'diagram'}, default=None
|
||||
If 'diagram', estimators will be displayed as a diagram in a Jupyter
|
||||
lab or notebook context. If 'text', estimators will be displayed as
|
||||
text. If None, the existing value won't change.
|
||||
The default value is 'diagram'.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
|
||||
pairwise_dist_chunk_size : int, default=None
|
||||
The number of row vectors per chunk for the accelerated pairwise-
|
||||
distances reduction backend. Default is 256 (suitable for most of
|
||||
modern laptops' caches and architectures).
|
||||
|
||||
Intended for easier benchmarking and testing of scikit-learn internals.
|
||||
End users are not expected to benefit from customizing this configuration
|
||||
setting.
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
enable_cython_pairwise_dist : bool, default=None
|
||||
Use the accelerated pairwise-distances reduction backend when
|
||||
possible. Global default: True.
|
||||
|
||||
Intended for easier benchmarking and testing of scikit-learn internals.
|
||||
End users are not expected to benefit from customizing this configuration
|
||||
setting.
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
array_api_dispatch : bool, default=None
|
||||
Use Array API dispatching when inputs follow the Array API standard.
|
||||
Default is False.
|
||||
|
||||
See the :ref:`User Guide <array_api>` for more details.
|
||||
|
||||
.. versionadded:: 1.2
|
||||
|
||||
transform_output : str, default=None
|
||||
Configure output of `transform` and `fit_transform`.
|
||||
|
||||
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
|
||||
for an example on how to use the API.
|
||||
|
||||
- `"default"`: Default output format of a transformer
|
||||
- `"pandas"`: DataFrame output
|
||||
- `None`: Transform configuration is unchanged
|
||||
|
||||
.. versionadded:: 1.2
|
||||
|
||||
Yields
|
||||
------
|
||||
None.
|
||||
|
||||
See Also
|
||||
--------
|
||||
set_config : Set global scikit-learn configuration.
|
||||
get_config : Retrieve current values of the global configuration.
|
||||
|
||||
Notes
|
||||
-----
|
||||
All settings, not just those presently modified, will be returned to
|
||||
their previous values when the context manager is exited.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import sklearn
|
||||
>>> from sklearn.utils.validation import assert_all_finite
|
||||
>>> with sklearn.config_context(assume_finite=True):
|
||||
... assert_all_finite([float('nan')])
|
||||
>>> with sklearn.config_context(assume_finite=True):
|
||||
... with sklearn.config_context(assume_finite=False):
|
||||
... assert_all_finite([float('nan')])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input contains NaN...
|
||||
"""
|
||||
old_config = get_config()
|
||||
set_config(
|
||||
assume_finite=assume_finite,
|
||||
working_memory=working_memory,
|
||||
print_changed_only=print_changed_only,
|
||||
display=display,
|
||||
pairwise_dist_chunk_size=pairwise_dist_chunk_size,
|
||||
enable_cython_pairwise_dist=enable_cython_pairwise_dist,
|
||||
array_api_dispatch=array_api_dispatch,
|
||||
transform_output=transform_output,
|
||||
)
|
||||
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
set_config(**old_config)
|
22
venv/Lib/site-packages/sklearn/_distributor_init.py
Normal file
22
venv/Lib/site-packages/sklearn/_distributor_init.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
|
||||
'''Helper to preload vcomp140.dll and msvcp140.dll to prevent
|
||||
"not found" errors.
|
||||
|
||||
Once vcomp140.dll and msvcp140.dll are
|
||||
preloaded, the namespace is made available to any subsequent
|
||||
vcomp140.dll and msvcp140.dll. This is
|
||||
created as part of the scripts that build the wheel.
|
||||
'''
|
||||
|
||||
|
||||
import os
|
||||
import os.path as op
|
||||
from ctypes import WinDLL
|
||||
|
||||
|
||||
if os.name == "nt":
|
||||
libs_path = op.join(op.dirname(__file__), ".libs")
|
||||
vcomp140_dll_filename = op.join(libs_path, "vcomp140.dll")
|
||||
msvcp140_dll_filename = op.join(libs_path, "msvcp140.dll")
|
||||
WinDLL(op.abspath(vcomp140_dll_filename))
|
||||
WinDLL(op.abspath(msvcp140_dll_filename))
|
BIN
venv/Lib/site-packages/sklearn/_isotonic.cp39-win_amd64.pyd
Normal file
BIN
venv/Lib/site-packages/sklearn/_isotonic.cp39-win_amd64.pyd
Normal file
Binary file not shown.
29
venv/Lib/site-packages/sklearn/_loss/__init__.py
Normal file
29
venv/Lib/site-packages/sklearn/_loss/__init__.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
"""
|
||||
The :mod:`sklearn._loss` module includes loss function classes suitable for
|
||||
fitting classification and regression tasks.
|
||||
"""
|
||||
|
||||
from .loss import (
|
||||
HalfSquaredError,
|
||||
AbsoluteError,
|
||||
PinballLoss,
|
||||
HalfPoissonLoss,
|
||||
HalfGammaLoss,
|
||||
HalfTweedieLoss,
|
||||
HalfTweedieLossIdentity,
|
||||
HalfBinomialLoss,
|
||||
HalfMultinomialLoss,
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"HalfSquaredError",
|
||||
"AbsoluteError",
|
||||
"PinballLoss",
|
||||
"HalfPoissonLoss",
|
||||
"HalfGammaLoss",
|
||||
"HalfTweedieLoss",
|
||||
"HalfTweedieLossIdentity",
|
||||
"HalfBinomialLoss",
|
||||
"HalfMultinomialLoss",
|
||||
]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
venv/Lib/site-packages/sklearn/_loss/_loss.cp39-win_amd64.pyd
Normal file
BIN
venv/Lib/site-packages/sklearn/_loss/_loss.cp39-win_amd64.pyd
Normal file
Binary file not shown.
81
venv/Lib/site-packages/sklearn/_loss/_loss.pxd
Normal file
81
venv/Lib/site-packages/sklearn/_loss/_loss.pxd
Normal file
|
@ -0,0 +1,81 @@
|
|||
# cython: language_level=3
|
||||
|
||||
cimport numpy as cnp
|
||||
|
||||
cnp.import_array()
|
||||
|
||||
|
||||
# Fused types for y_true, y_pred, raw_prediction
|
||||
ctypedef fused Y_DTYPE_C:
|
||||
cnp.npy_float64
|
||||
cnp.npy_float32
|
||||
|
||||
|
||||
# Fused types for gradient and hessian
|
||||
ctypedef fused G_DTYPE_C:
|
||||
cnp.npy_float64
|
||||
cnp.npy_float32
|
||||
|
||||
|
||||
# Struct to return 2 doubles
|
||||
ctypedef struct double_pair:
|
||||
double val1
|
||||
double val2
|
||||
|
||||
|
||||
# C base class for loss functions
|
||||
cdef class CyLossFunction:
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyHalfSquaredError(CyLossFunction):
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyAbsoluteError(CyLossFunction):
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyPinballLoss(CyLossFunction):
|
||||
cdef readonly double quantile # readonly makes it accessible from Python
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyHalfPoissonLoss(CyLossFunction):
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyHalfGammaLoss(CyLossFunction):
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyHalfTweedieLoss(CyLossFunction):
|
||||
cdef readonly double power # readonly makes it accessible from Python
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyHalfTweedieLossIdentity(CyLossFunction):
|
||||
cdef readonly double power # readonly makes it accessible from Python
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
||||
|
||||
|
||||
cdef class CyHalfBinomialLoss(CyLossFunction):
|
||||
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
|
||||
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
|
||||
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
|
373
venv/Lib/site-packages/sklearn/_loss/glm_distribution.py
Normal file
373
venv/Lib/site-packages/sklearn/_loss/glm_distribution.py
Normal file
|
@ -0,0 +1,373 @@
|
|||
"""
|
||||
Distribution functions used in GLM
|
||||
"""
|
||||
|
||||
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
|
||||
# License: BSD 3 clause
|
||||
#
|
||||
# TODO(1.3): remove file
|
||||
# This is only used for backward compatibility in _GeneralizedLinearRegressor
|
||||
# for the deprecated family attribute.
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from collections import namedtuple
|
||||
import numbers
|
||||
|
||||
import numpy as np
|
||||
from scipy.special import xlogy
|
||||
|
||||
|
||||
DistributionBoundary = namedtuple("DistributionBoundary", ("value", "inclusive"))
|
||||
|
||||
|
||||
class ExponentialDispersionModel(metaclass=ABCMeta):
|
||||
r"""Base class for reproductive Exponential Dispersion Models (EDM).
|
||||
|
||||
The pdf of :math:`Y\sim \mathrm{EDM}(y_\textrm{pred}, \phi)` is given by
|
||||
|
||||
.. math:: p(y| \theta, \phi) = c(y, \phi)
|
||||
\exp\left(\frac{\theta y-A(\theta)}{\phi}\right)
|
||||
= \tilde{c}(y, \phi)
|
||||
\exp\left(-\frac{d(y, y_\textrm{pred})}{2\phi}\right)
|
||||
|
||||
with mean :math:`\mathrm{E}[Y] = A'(\theta) = y_\textrm{pred}`,
|
||||
variance :math:`\mathrm{Var}[Y] = \phi \cdot v(y_\textrm{pred})`,
|
||||
unit variance :math:`v(y_\textrm{pred})` and
|
||||
unit deviance :math:`d(y,y_\textrm{pred})`.
|
||||
|
||||
Methods
|
||||
-------
|
||||
deviance
|
||||
deviance_derivative
|
||||
in_y_range
|
||||
unit_deviance
|
||||
unit_deviance_derivative
|
||||
unit_variance
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Exponential_dispersion_model.
|
||||
"""
|
||||
|
||||
def in_y_range(self, y):
|
||||
"""Returns ``True`` if y is in the valid range of Y~EDM.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array of shape (n_samples,)
|
||||
Target values.
|
||||
"""
|
||||
# Note that currently supported distributions have +inf upper bound
|
||||
|
||||
if not isinstance(self._lower_bound, DistributionBoundary):
|
||||
raise TypeError(
|
||||
"_lower_bound attribute must be of type DistributionBoundary"
|
||||
)
|
||||
|
||||
if self._lower_bound.inclusive:
|
||||
return np.greater_equal(y, self._lower_bound.value)
|
||||
else:
|
||||
return np.greater(y, self._lower_bound.value)
|
||||
|
||||
@abstractmethod
|
||||
def unit_variance(self, y_pred):
|
||||
r"""Compute the unit variance function.
|
||||
|
||||
The unit variance :math:`v(y_\textrm{pred})` determines the variance as
|
||||
a function of the mean :math:`y_\textrm{pred}` by
|
||||
:math:`\mathrm{Var}[Y_i] = \phi/s_i*v(y_\textrm{pred}_i)`.
|
||||
It can also be derived from the unit deviance
|
||||
:math:`d(y,y_\textrm{pred})` as
|
||||
|
||||
.. math:: v(y_\textrm{pred}) = \frac{2}{
|
||||
\frac{\partial^2 d(y,y_\textrm{pred})}{
|
||||
\partialy_\textrm{pred}^2}}\big|_{y=y_\textrm{pred}}
|
||||
|
||||
See also :func:`variance`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y_pred : array of shape (n_samples,)
|
||||
Predicted mean.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def unit_deviance(self, y, y_pred, check_input=False):
|
||||
r"""Compute the unit deviance.
|
||||
|
||||
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
|
||||
log-likelihood as
|
||||
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
|
||||
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array of shape (n_samples,)
|
||||
Target values.
|
||||
|
||||
y_pred : array of shape (n_samples,)
|
||||
Predicted mean.
|
||||
|
||||
check_input : bool, default=False
|
||||
If True raise an exception on invalid y or y_pred values, otherwise
|
||||
they will be propagated as NaN.
|
||||
Returns
|
||||
-------
|
||||
deviance: array of shape (n_samples,)
|
||||
Computed deviance
|
||||
"""
|
||||
|
||||
def unit_deviance_derivative(self, y, y_pred):
|
||||
r"""Compute the derivative of the unit deviance w.r.t. y_pred.
|
||||
|
||||
The derivative of the unit deviance is given by
|
||||
:math:`\frac{\partial}{\partialy_\textrm{pred}}d(y,y_\textrm{pred})
|
||||
= -2\frac{y-y_\textrm{pred}}{v(y_\textrm{pred})}`
|
||||
with unit variance :math:`v(y_\textrm{pred})`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array of shape (n_samples,)
|
||||
Target values.
|
||||
|
||||
y_pred : array of shape (n_samples,)
|
||||
Predicted mean.
|
||||
"""
|
||||
return -2 * (y - y_pred) / self.unit_variance(y_pred)
|
||||
|
||||
def deviance(self, y, y_pred, weights=1):
|
||||
r"""Compute the deviance.
|
||||
|
||||
The deviance is a weighted sum of the per sample unit deviances,
|
||||
:math:`D = \sum_i s_i \cdot d(y_i, y_\textrm{pred}_i)`
|
||||
with weights :math:`s_i` and unit deviance
|
||||
:math:`d(y,y_\textrm{pred})`.
|
||||
In terms of the log-likelihood it is :math:`D = -2\phi\cdot
|
||||
\left(loglike(y,y_\textrm{pred},\frac{phi}{s})
|
||||
- loglike(y,y,\frac{phi}{s})\right)`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array of shape (n_samples,)
|
||||
Target values.
|
||||
|
||||
y_pred : array of shape (n_samples,)
|
||||
Predicted mean.
|
||||
|
||||
weights : {int, array of shape (n_samples,)}, default=1
|
||||
Weights or exposure to which variance is inverse proportional.
|
||||
"""
|
||||
return np.sum(weights * self.unit_deviance(y, y_pred))
|
||||
|
||||
def deviance_derivative(self, y, y_pred, weights=1):
|
||||
r"""Compute the derivative of the deviance w.r.t. y_pred.
|
||||
|
||||
It gives :math:`\frac{\partial}{\partial y_\textrm{pred}}
|
||||
D(y, \y_\textrm{pred}; weights)`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array, shape (n_samples,)
|
||||
Target values.
|
||||
|
||||
y_pred : array, shape (n_samples,)
|
||||
Predicted mean.
|
||||
|
||||
weights : {int, array of shape (n_samples,)}, default=1
|
||||
Weights or exposure to which variance is inverse proportional.
|
||||
"""
|
||||
return weights * self.unit_deviance_derivative(y, y_pred)
|
||||
|
||||
|
||||
class TweedieDistribution(ExponentialDispersionModel):
|
||||
r"""A class for the Tweedie distribution.
|
||||
|
||||
A Tweedie distribution with mean :math:`y_\textrm{pred}=\mathrm{E}[Y]`
|
||||
is uniquely defined by it's mean-variance relationship
|
||||
:math:`\mathrm{Var}[Y] \propto y_\textrm{pred}^power`.
|
||||
|
||||
Special cases are:
|
||||
|
||||
===== ================
|
||||
Power Distribution
|
||||
===== ================
|
||||
0 Normal
|
||||
1 Poisson
|
||||
(1,2) Compound Poisson
|
||||
2 Gamma
|
||||
3 Inverse Gaussian
|
||||
|
||||
Parameters
|
||||
----------
|
||||
power : float, default=0
|
||||
The variance power of the `unit_variance`
|
||||
:math:`v(y_\textrm{pred}) = y_\textrm{pred}^{power}`.
|
||||
For ``0<power<1``, no distribution exists.
|
||||
"""
|
||||
|
||||
def __init__(self, power=0):
|
||||
self.power = power
|
||||
|
||||
@property
|
||||
def power(self):
|
||||
return self._power
|
||||
|
||||
@power.setter
|
||||
def power(self, power):
|
||||
# We use a property with a setter, to update lower and
|
||||
# upper bound when the power parameter is updated e.g. in grid
|
||||
# search.
|
||||
if not isinstance(power, numbers.Real):
|
||||
raise TypeError("power must be a real number, input was {0}".format(power))
|
||||
|
||||
if power <= 0:
|
||||
# Extreme Stable or Normal distribution
|
||||
self._lower_bound = DistributionBoundary(-np.Inf, inclusive=False)
|
||||
elif 0 < power < 1:
|
||||
raise ValueError(
|
||||
"Tweedie distribution is only defined for power<=0 and power>=1."
|
||||
)
|
||||
elif 1 <= power < 2:
|
||||
# Poisson or Compound Poisson distribution
|
||||
self._lower_bound = DistributionBoundary(0, inclusive=True)
|
||||
elif power >= 2:
|
||||
# Gamma, Positive Stable, Inverse Gaussian distributions
|
||||
self._lower_bound = DistributionBoundary(0, inclusive=False)
|
||||
else: # pragma: no cover
|
||||
# this branch should be unreachable.
|
||||
raise ValueError
|
||||
|
||||
self._power = power
|
||||
|
||||
def unit_variance(self, y_pred):
|
||||
"""Compute the unit variance of a Tweedie distribution
|
||||
v(y_\textrm{pred})=y_\textrm{pred}**power.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y_pred : array of shape (n_samples,)
|
||||
Predicted mean.
|
||||
"""
|
||||
return np.power(y_pred, self.power)
|
||||
|
||||
def unit_deviance(self, y, y_pred, check_input=False):
|
||||
r"""Compute the unit deviance.
|
||||
|
||||
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
|
||||
log-likelihood as
|
||||
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
|
||||
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array of shape (n_samples,)
|
||||
Target values.
|
||||
|
||||
y_pred : array of shape (n_samples,)
|
||||
Predicted mean.
|
||||
|
||||
check_input : bool, default=False
|
||||
If True raise an exception on invalid y or y_pred values, otherwise
|
||||
they will be propagated as NaN.
|
||||
Returns
|
||||
-------
|
||||
deviance: array of shape (n_samples,)
|
||||
Computed deviance
|
||||
"""
|
||||
p = self.power
|
||||
|
||||
if check_input:
|
||||
message = (
|
||||
"Mean Tweedie deviance error with power={} can only be used on ".format(
|
||||
p
|
||||
)
|
||||
)
|
||||
if p < 0:
|
||||
# 'Extreme stable', y any real number, y_pred > 0
|
||||
if (y_pred <= 0).any():
|
||||
raise ValueError(message + "strictly positive y_pred.")
|
||||
elif p == 0:
|
||||
# Normal, y and y_pred can be any real number
|
||||
pass
|
||||
elif 0 < p < 1:
|
||||
raise ValueError(
|
||||
"Tweedie deviance is only defined for power<=0 and power>=1."
|
||||
)
|
||||
elif 1 <= p < 2:
|
||||
# Poisson and compound Poisson distribution, y >= 0, y_pred > 0
|
||||
if (y < 0).any() or (y_pred <= 0).any():
|
||||
raise ValueError(
|
||||
message + "non-negative y and strictly positive y_pred."
|
||||
)
|
||||
elif p >= 2:
|
||||
# Gamma and Extreme stable distribution, y and y_pred > 0
|
||||
if (y <= 0).any() or (y_pred <= 0).any():
|
||||
raise ValueError(message + "strictly positive y and y_pred.")
|
||||
else: # pragma: nocover
|
||||
# Unreachable statement
|
||||
raise ValueError
|
||||
|
||||
if p < 0:
|
||||
# 'Extreme stable', y any real number, y_pred > 0
|
||||
dev = 2 * (
|
||||
np.power(np.maximum(y, 0), 2 - p) / ((1 - p) * (2 - p))
|
||||
- y * np.power(y_pred, 1 - p) / (1 - p)
|
||||
+ np.power(y_pred, 2 - p) / (2 - p)
|
||||
)
|
||||
|
||||
elif p == 0:
|
||||
# Normal distribution, y and y_pred any real number
|
||||
dev = (y - y_pred) ** 2
|
||||
elif p < 1:
|
||||
raise ValueError(
|
||||
"Tweedie deviance is only defined for power<=0 and power>=1."
|
||||
)
|
||||
elif p == 1:
|
||||
# Poisson distribution
|
||||
dev = 2 * (xlogy(y, y / y_pred) - y + y_pred)
|
||||
elif p == 2:
|
||||
# Gamma distribution
|
||||
dev = 2 * (np.log(y_pred / y) + y / y_pred - 1)
|
||||
else:
|
||||
dev = 2 * (
|
||||
np.power(y, 2 - p) / ((1 - p) * (2 - p))
|
||||
- y * np.power(y_pred, 1 - p) / (1 - p)
|
||||
+ np.power(y_pred, 2 - p) / (2 - p)
|
||||
)
|
||||
return dev
|
||||
|
||||
|
||||
class NormalDistribution(TweedieDistribution):
|
||||
"""Class for the Normal (aka Gaussian) distribution."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(power=0)
|
||||
|
||||
|
||||
class PoissonDistribution(TweedieDistribution):
|
||||
"""Class for the scaled Poisson distribution."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(power=1)
|
||||
|
||||
|
||||
class GammaDistribution(TweedieDistribution):
|
||||
"""Class for the Gamma distribution."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(power=2)
|
||||
|
||||
|
||||
class InverseGaussianDistribution(TweedieDistribution):
|
||||
"""Class for the scaled InverseGaussianDistribution distribution."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(power=3)
|
||||
|
||||
|
||||
EDM_DISTRIBUTIONS = {
|
||||
"normal": NormalDistribution,
|
||||
"poisson": PoissonDistribution,
|
||||
"gamma": GammaDistribution,
|
||||
"inverse-gaussian": InverseGaussianDistribution,
|
||||
}
|
261
venv/Lib/site-packages/sklearn/_loss/link.py
Normal file
261
venv/Lib/site-packages/sklearn/_loss/link.py
Normal file
|
@ -0,0 +1,261 @@
|
|||
"""
|
||||
Module contains classes for invertible (and differentiable) link functions.
|
||||
"""
|
||||
# Author: Christian Lorentzen <lorentzen.ch@gmail.com>
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
|
||||
import numpy as np
|
||||
from scipy.special import expit, logit
|
||||
from scipy.stats import gmean
|
||||
from ..utils.extmath import softmax
|
||||
|
||||
|
||||
@dataclass
|
||||
class Interval:
|
||||
low: float
|
||||
high: float
|
||||
low_inclusive: bool
|
||||
high_inclusive: bool
|
||||
|
||||
def __post_init__(self):
|
||||
"""Check that low <= high"""
|
||||
if self.low > self.high:
|
||||
raise ValueError(
|
||||
f"One must have low <= high; got low={self.low}, high={self.high}."
|
||||
)
|
||||
|
||||
def includes(self, x):
|
||||
"""Test whether all values of x are in interval range.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : ndarray
|
||||
Array whose elements are tested to be in interval range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : bool
|
||||
"""
|
||||
if self.low_inclusive:
|
||||
low = np.greater_equal(x, self.low)
|
||||
else:
|
||||
low = np.greater(x, self.low)
|
||||
|
||||
if not np.all(low):
|
||||
return False
|
||||
|
||||
if self.high_inclusive:
|
||||
high = np.less_equal(x, self.high)
|
||||
else:
|
||||
high = np.less(x, self.high)
|
||||
|
||||
# Note: np.all returns numpy.bool_
|
||||
return bool(np.all(high))
|
||||
|
||||
|
||||
def _inclusive_low_high(interval, dtype=np.float64):
|
||||
"""Generate values low and high to be within the interval range.
|
||||
|
||||
This is used in tests only.
|
||||
|
||||
Returns
|
||||
-------
|
||||
low, high : tuple
|
||||
The returned values low and high lie within the interval.
|
||||
"""
|
||||
eps = 10 * np.finfo(dtype).eps
|
||||
if interval.low == -np.inf:
|
||||
low = -1e10
|
||||
elif interval.low < 0:
|
||||
low = interval.low * (1 - eps) + eps
|
||||
else:
|
||||
low = interval.low * (1 + eps) + eps
|
||||
|
||||
if interval.high == np.inf:
|
||||
high = 1e10
|
||||
elif interval.high < 0:
|
||||
high = interval.high * (1 + eps) - eps
|
||||
else:
|
||||
high = interval.high * (1 - eps) - eps
|
||||
|
||||
return low, high
|
||||
|
||||
|
||||
class BaseLink(ABC):
|
||||
"""Abstract base class for differentiable, invertible link functions.
|
||||
|
||||
Convention:
|
||||
- link function g: raw_prediction = g(y_pred)
|
||||
- inverse link h: y_pred = h(raw_prediction)
|
||||
|
||||
For (generalized) linear models, `raw_prediction = X @ coef` is the so
|
||||
called linear predictor, and `y_pred = h(raw_prediction)` is the predicted
|
||||
conditional (on X) expected value of the target `y_true`.
|
||||
|
||||
The methods are not implemented as staticmethods in case a link function needs
|
||||
parameters.
|
||||
"""
|
||||
|
||||
is_multiclass = False # used for testing only
|
||||
|
||||
# Usually, raw_prediction may be any real number and y_pred is an open
|
||||
# interval.
|
||||
# interval_raw_prediction = Interval(-np.inf, np.inf, False, False)
|
||||
interval_y_pred = Interval(-np.inf, np.inf, False, False)
|
||||
|
||||
@abstractmethod
|
||||
def link(self, y_pred, out=None):
|
||||
"""Compute the link function g(y_pred).
|
||||
|
||||
The link function maps (predicted) target values to raw predictions,
|
||||
i.e. `g(y_pred) = raw_prediction`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y_pred : array
|
||||
Predicted target values.
|
||||
out : array
|
||||
A location into which the result is stored. If provided, it must
|
||||
have a shape that the inputs broadcast to. If not provided or None,
|
||||
a freshly-allocated array is returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : array
|
||||
Output array, element-wise link function.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def inverse(self, raw_prediction, out=None):
|
||||
"""Compute the inverse link function h(raw_prediction).
|
||||
|
||||
The inverse link function maps raw predictions to predicted target
|
||||
values, i.e. `h(raw_prediction) = y_pred`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
raw_prediction : array
|
||||
Raw prediction values (in link space).
|
||||
out : array
|
||||
A location into which the result is stored. If provided, it must
|
||||
have a shape that the inputs broadcast to. If not provided or None,
|
||||
a freshly-allocated array is returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : array
|
||||
Output array, element-wise inverse link function.
|
||||
"""
|
||||
|
||||
|
||||
class IdentityLink(BaseLink):
|
||||
"""The identity link function g(x)=x."""
|
||||
|
||||
def link(self, y_pred, out=None):
|
||||
if out is not None:
|
||||
np.copyto(out, y_pred)
|
||||
return out
|
||||
else:
|
||||
return y_pred
|
||||
|
||||
inverse = link
|
||||
|
||||
|
||||
class LogLink(BaseLink):
|
||||
"""The log link function g(x)=log(x)."""
|
||||
|
||||
interval_y_pred = Interval(0, np.inf, False, False)
|
||||
|
||||
def link(self, y_pred, out=None):
|
||||
return np.log(y_pred, out=out)
|
||||
|
||||
def inverse(self, raw_prediction, out=None):
|
||||
return np.exp(raw_prediction, out=out)
|
||||
|
||||
|
||||
class LogitLink(BaseLink):
|
||||
"""The logit link function g(x)=logit(x)."""
|
||||
|
||||
interval_y_pred = Interval(0, 1, False, False)
|
||||
|
||||
def link(self, y_pred, out=None):
|
||||
return logit(y_pred, out=out)
|
||||
|
||||
def inverse(self, raw_prediction, out=None):
|
||||
return expit(raw_prediction, out=out)
|
||||
|
||||
|
||||
class MultinomialLogit(BaseLink):
|
||||
"""The symmetric multinomial logit function.
|
||||
|
||||
Convention:
|
||||
- y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
|
||||
|
||||
Notes:
|
||||
- The inverse link h is the softmax function.
|
||||
- The sum is over the second axis, i.e. axis=1 (n_classes).
|
||||
|
||||
We have to choose additional constraints in order to make
|
||||
|
||||
y_pred[k] = exp(raw_pred[k]) / sum(exp(raw_pred[k]), k=0..n_classes-1)
|
||||
|
||||
for n_classes classes identifiable and invertible.
|
||||
We choose the symmetric side constraint where the geometric mean response
|
||||
is set as reference category, see [2]:
|
||||
|
||||
The symmetric multinomial logit link function for a single data point is
|
||||
then defined as
|
||||
|
||||
raw_prediction[k] = g(y_pred[k]) = log(y_pred[k]/gmean(y_pred))
|
||||
= log(y_pred[k]) - mean(log(y_pred)).
|
||||
|
||||
Note that this is equivalent to the definition in [1] and implies mean
|
||||
centered raw predictions:
|
||||
|
||||
sum(raw_prediction[k], k=0..n_classes-1) = 0.
|
||||
|
||||
For linear models with raw_prediction = X @ coef, this corresponds to
|
||||
sum(coef[k], k=0..n_classes-1) = 0, i.e. the sum over classes for every
|
||||
feature is zero.
|
||||
|
||||
Reference
|
||||
---------
|
||||
.. [1] Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert. "Additive
|
||||
logistic regression: a statistical view of boosting" Ann. Statist.
|
||||
28 (2000), no. 2, 337--407. doi:10.1214/aos/1016218223.
|
||||
https://projecteuclid.org/euclid.aos/1016218223
|
||||
|
||||
.. [2] Zahid, Faisal Maqbool and Gerhard Tutz. "Ridge estimation for
|
||||
multinomial logit models with symmetric side constraints."
|
||||
Computational Statistics 28 (2013): 1017-1034.
|
||||
http://epub.ub.uni-muenchen.de/11001/1/tr067.pdf
|
||||
"""
|
||||
|
||||
is_multiclass = True
|
||||
interval_y_pred = Interval(0, 1, False, False)
|
||||
|
||||
def symmetrize_raw_prediction(self, raw_prediction):
|
||||
return raw_prediction - np.mean(raw_prediction, axis=1)[:, np.newaxis]
|
||||
|
||||
def link(self, y_pred, out=None):
|
||||
# geometric mean as reference category
|
||||
gm = gmean(y_pred, axis=1)
|
||||
return np.log(y_pred / gm[:, np.newaxis], out=out)
|
||||
|
||||
def inverse(self, raw_prediction, out=None):
|
||||
if out is None:
|
||||
return softmax(raw_prediction, copy=True)
|
||||
else:
|
||||
np.copyto(out, raw_prediction)
|
||||
softmax(out, copy=False)
|
||||
return out
|
||||
|
||||
|
||||
_LINKS = {
|
||||
"identity": IdentityLink,
|
||||
"log": LogLink,
|
||||
"logit": LogitLink,
|
||||
"multinomial_logit": MultinomialLogit,
|
||||
}
|
1027
venv/Lib/site-packages/sklearn/_loss/loss.py
Normal file
1027
venv/Lib/site-packages/sklearn/_loss/loss.py
Normal file
File diff suppressed because it is too large
Load diff
0
venv/Lib/site-packages/sklearn/_loss/tests/__init__.py
Normal file
0
venv/Lib/site-packages/sklearn/_loss/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,123 @@
|
|||
# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
#
|
||||
# TODO(1.3): remove file
|
||||
import numpy as np
|
||||
from numpy.testing import (
|
||||
assert_allclose,
|
||||
assert_array_equal,
|
||||
)
|
||||
from scipy.optimize import check_grad
|
||||
import pytest
|
||||
|
||||
from sklearn._loss.glm_distribution import (
|
||||
TweedieDistribution,
|
||||
NormalDistribution,
|
||||
PoissonDistribution,
|
||||
GammaDistribution,
|
||||
InverseGaussianDistribution,
|
||||
DistributionBoundary,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"family, expected",
|
||||
[
|
||||
(NormalDistribution(), [True, True, True]),
|
||||
(PoissonDistribution(), [False, True, True]),
|
||||
(TweedieDistribution(power=1.5), [False, True, True]),
|
||||
(GammaDistribution(), [False, False, True]),
|
||||
(InverseGaussianDistribution(), [False, False, True]),
|
||||
(TweedieDistribution(power=4.5), [False, False, True]),
|
||||
],
|
||||
)
|
||||
def test_family_bounds(family, expected):
|
||||
"""Test the valid range of distributions at -1, 0, 1."""
|
||||
result = family.in_y_range([-1, 0, 1])
|
||||
assert_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_invalid_distribution_bound():
|
||||
dist = TweedieDistribution()
|
||||
dist._lower_bound = 0
|
||||
with pytest.raises(TypeError, match="must be of type DistributionBoundary"):
|
||||
dist.in_y_range([-1, 0, 1])
|
||||
|
||||
|
||||
def test_tweedie_distribution_power():
|
||||
msg = "distribution is only defined for power<=0 and power>=1"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
TweedieDistribution(power=0.5)
|
||||
|
||||
with pytest.raises(TypeError, match="must be a real number"):
|
||||
TweedieDistribution(power=1j)
|
||||
|
||||
with pytest.raises(TypeError, match="must be a real number"):
|
||||
dist = TweedieDistribution()
|
||||
dist.power = 1j
|
||||
|
||||
dist = TweedieDistribution()
|
||||
assert isinstance(dist._lower_bound, DistributionBoundary)
|
||||
|
||||
assert dist._lower_bound.inclusive is False
|
||||
dist.power = 1
|
||||
assert dist._lower_bound.value == 0.0
|
||||
assert dist._lower_bound.inclusive is True
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"family, chk_values",
|
||||
[
|
||||
(NormalDistribution(), [-1.5, -0.1, 0.1, 2.5]),
|
||||
(PoissonDistribution(), [0.1, 1.5]),
|
||||
(GammaDistribution(), [0.1, 1.5]),
|
||||
(InverseGaussianDistribution(), [0.1, 1.5]),
|
||||
(TweedieDistribution(power=-2.5), [0.1, 1.5]),
|
||||
(TweedieDistribution(power=-1), [0.1, 1.5]),
|
||||
(TweedieDistribution(power=1.5), [0.1, 1.5]),
|
||||
(TweedieDistribution(power=2.5), [0.1, 1.5]),
|
||||
(TweedieDistribution(power=-4), [0.1, 1.5]),
|
||||
],
|
||||
)
|
||||
def test_deviance_zero(family, chk_values):
|
||||
"""Test deviance(y,y) = 0 for different families."""
|
||||
for x in chk_values:
|
||||
assert_allclose(family.deviance(x, x), 0, atol=1e-9)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"family",
|
||||
[
|
||||
NormalDistribution(),
|
||||
PoissonDistribution(),
|
||||
GammaDistribution(),
|
||||
InverseGaussianDistribution(),
|
||||
TweedieDistribution(power=-2.5),
|
||||
TweedieDistribution(power=-1),
|
||||
TweedieDistribution(power=1.5),
|
||||
TweedieDistribution(power=2.5),
|
||||
TweedieDistribution(power=-4),
|
||||
],
|
||||
ids=lambda x: x.__class__.__name__,
|
||||
)
|
||||
def test_deviance_derivative(family, global_random_seed):
|
||||
"""Test deviance derivative for different families."""
|
||||
rng = np.random.RandomState(global_random_seed)
|
||||
y_true = rng.rand(10)
|
||||
# make data positive
|
||||
y_true += np.abs(y_true.min()) + 1e-2
|
||||
|
||||
y_pred = y_true + np.fmax(rng.rand(10), 0.0)
|
||||
|
||||
dev = family.deviance(y_true, y_pred)
|
||||
assert isinstance(dev, float)
|
||||
dev_derivative = family.deviance_derivative(y_true, y_pred)
|
||||
assert dev_derivative.shape == y_pred.shape
|
||||
|
||||
err = check_grad(
|
||||
lambda y_pred: family.deviance(y_true, y_pred),
|
||||
lambda y_pred: family.deviance_derivative(y_true, y_pred),
|
||||
y_pred,
|
||||
) / np.linalg.norm(dev_derivative)
|
||||
assert abs(err) < 3e-6
|
109
venv/Lib/site-packages/sklearn/_loss/tests/test_link.py
Normal file
109
venv/Lib/site-packages/sklearn/_loss/tests/test_link.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_allclose, assert_array_equal
|
||||
import pytest
|
||||
|
||||
from sklearn._loss.link import (
|
||||
_LINKS,
|
||||
_inclusive_low_high,
|
||||
MultinomialLogit,
|
||||
Interval,
|
||||
)
|
||||
|
||||
|
||||
LINK_FUNCTIONS = list(_LINKS.values())
|
||||
|
||||
|
||||
def test_interval_raises():
|
||||
"""Test that interval with low > high raises ValueError."""
|
||||
with pytest.raises(
|
||||
ValueError, match="One must have low <= high; got low=1, high=0."
|
||||
):
|
||||
Interval(1, 0, False, False)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"interval",
|
||||
[
|
||||
Interval(0, 1, False, False),
|
||||
Interval(0, 1, False, True),
|
||||
Interval(0, 1, True, False),
|
||||
Interval(0, 1, True, True),
|
||||
Interval(-np.inf, np.inf, False, False),
|
||||
Interval(-np.inf, np.inf, False, True),
|
||||
Interval(-np.inf, np.inf, True, False),
|
||||
Interval(-np.inf, np.inf, True, True),
|
||||
Interval(-10, -1, False, False),
|
||||
Interval(-10, -1, False, True),
|
||||
Interval(-10, -1, True, False),
|
||||
Interval(-10, -1, True, True),
|
||||
],
|
||||
)
|
||||
def test_is_in_range(interval):
|
||||
# make sure low and high are always within the interval, used for linspace
|
||||
low, high = _inclusive_low_high(interval)
|
||||
|
||||
x = np.linspace(low, high, num=10)
|
||||
assert interval.includes(x)
|
||||
|
||||
# x contains lower bound
|
||||
assert interval.includes(np.r_[x, interval.low]) == interval.low_inclusive
|
||||
|
||||
# x contains upper bound
|
||||
assert interval.includes(np.r_[x, interval.high]) == interval.high_inclusive
|
||||
|
||||
# x contains upper and lower bound
|
||||
assert interval.includes(np.r_[x, interval.low, interval.high]) == (
|
||||
interval.low_inclusive and interval.high_inclusive
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("link", LINK_FUNCTIONS)
|
||||
def test_link_inverse_identity(link, global_random_seed):
|
||||
# Test that link of inverse gives identity.
|
||||
rng = np.random.RandomState(global_random_seed)
|
||||
link = link()
|
||||
n_samples, n_classes = 100, None
|
||||
# The values for `raw_prediction` are limited from -20 to 20 because in the
|
||||
# class `LogitLink` the term `expit(x)` comes very close to 1 for large
|
||||
# positive x and therefore loses precision.
|
||||
if link.is_multiclass:
|
||||
n_classes = 10
|
||||
raw_prediction = rng.uniform(low=-20, high=20, size=(n_samples, n_classes))
|
||||
if isinstance(link, MultinomialLogit):
|
||||
raw_prediction = link.symmetrize_raw_prediction(raw_prediction)
|
||||
else:
|
||||
raw_prediction = rng.uniform(low=-20, high=20, size=(n_samples))
|
||||
|
||||
assert_allclose(link.link(link.inverse(raw_prediction)), raw_prediction)
|
||||
y_pred = link.inverse(raw_prediction)
|
||||
assert_allclose(link.inverse(link.link(y_pred)), y_pred)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("link", LINK_FUNCTIONS)
|
||||
def test_link_out_argument(link):
|
||||
# Test that out argument gets assigned the result.
|
||||
rng = np.random.RandomState(42)
|
||||
link = link()
|
||||
n_samples, n_classes = 100, None
|
||||
if link.is_multiclass:
|
||||
n_classes = 10
|
||||
raw_prediction = rng.normal(loc=0, scale=10, size=(n_samples, n_classes))
|
||||
if isinstance(link, MultinomialLogit):
|
||||
raw_prediction = link.symmetrize_raw_prediction(raw_prediction)
|
||||
else:
|
||||
# So far, the valid interval of raw_prediction is (-inf, inf) and
|
||||
# we do not need to distinguish.
|
||||
raw_prediction = rng.normal(loc=0, scale=10, size=(n_samples))
|
||||
|
||||
y_pred = link.inverse(raw_prediction, out=None)
|
||||
out = np.empty_like(raw_prediction)
|
||||
y_pred_2 = link.inverse(raw_prediction, out=out)
|
||||
assert_allclose(y_pred, out)
|
||||
assert_array_equal(out, y_pred_2)
|
||||
assert np.shares_memory(out, y_pred_2)
|
||||
|
||||
out = np.empty_like(y_pred)
|
||||
raw_prediction_2 = link.link(y_pred, out=out)
|
||||
assert_allclose(raw_prediction, out)
|
||||
assert_array_equal(out, raw_prediction_2)
|
||||
assert np.shares_memory(out, raw_prediction_2)
|
1161
venv/Lib/site-packages/sklearn/_loss/tests/test_loss.py
Normal file
1161
venv/Lib/site-packages/sklearn/_loss/tests/test_loss.py
Normal file
File diff suppressed because it is too large
Load diff
72
venv/Lib/site-packages/sklearn/_min_dependencies.py
Normal file
72
venv/Lib/site-packages/sklearn/_min_dependencies.py
Normal file
|
@ -0,0 +1,72 @@
|
|||
"""All minimum dependencies for scikit-learn."""
|
||||
from collections import defaultdict
|
||||
import platform
|
||||
import argparse
|
||||
|
||||
|
||||
# scipy and cython should by in sync with pyproject.toml
|
||||
|
||||
# NumPy version should match oldest-supported-numpy for the minimum supported
|
||||
# Python version.
|
||||
# see: https://github.com/scipy/oldest-supported-numpy/blob/main/setup.cfg
|
||||
if platform.python_implementation() == "PyPy":
|
||||
NUMPY_MIN_VERSION = "1.19.2"
|
||||
else:
|
||||
NUMPY_MIN_VERSION = "1.17.3"
|
||||
|
||||
SCIPY_MIN_VERSION = "1.3.2"
|
||||
JOBLIB_MIN_VERSION = "1.1.1"
|
||||
THREADPOOLCTL_MIN_VERSION = "2.0.0"
|
||||
PYTEST_MIN_VERSION = "5.3.1"
|
||||
CYTHON_MIN_VERSION = "0.29.24"
|
||||
|
||||
|
||||
# 'build' and 'install' is included to have structured metadata for CI.
|
||||
# It will NOT be included in setup's extras_require
|
||||
# The values are (version_spec, comma separated tags)
|
||||
dependent_packages = {
|
||||
"numpy": (NUMPY_MIN_VERSION, "build, install"),
|
||||
"scipy": (SCIPY_MIN_VERSION, "build, install"),
|
||||
"joblib": (JOBLIB_MIN_VERSION, "install"),
|
||||
"threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"),
|
||||
"cython": (CYTHON_MIN_VERSION, "build"),
|
||||
"matplotlib": ("3.1.3", "benchmark, docs, examples, tests"),
|
||||
"scikit-image": ("0.16.2", "docs, examples, tests"),
|
||||
"pandas": ("1.0.5", "benchmark, docs, examples, tests"),
|
||||
"seaborn": ("0.9.0", "docs, examples"),
|
||||
"memory_profiler": ("0.57.0", "benchmark, docs"),
|
||||
"pytest": (PYTEST_MIN_VERSION, "tests"),
|
||||
"pytest-cov": ("2.9.0", "tests"),
|
||||
"flake8": ("3.8.2", "tests"),
|
||||
"black": ("22.3.0", "tests"),
|
||||
"mypy": ("0.961", "tests"),
|
||||
"pyamg": ("4.0.0", "tests"),
|
||||
"sphinx": ("4.0.1", "docs"),
|
||||
"sphinx-gallery": ("0.7.0", "docs"),
|
||||
"numpydoc": ("1.2.0", "docs, tests"),
|
||||
"Pillow": ("7.1.2", "docs"),
|
||||
"pooch": ("1.6.0", "docs, examples, tests"),
|
||||
"sphinx-prompt": ("1.3.0", "docs"),
|
||||
"sphinxext-opengraph": ("0.4.2", "docs"),
|
||||
"plotly": ("5.10.0", "docs, examples"),
|
||||
# XXX: Pin conda-lock to the latest released version (needs manual update
|
||||
# from time to time)
|
||||
"conda-lock": ("1.3.0", "maintenance"),
|
||||
}
|
||||
|
||||
|
||||
# create inverse mapping for setuptools
|
||||
tag_to_packages: dict = defaultdict(list)
|
||||
for package, (min_version, extras) in dependent_packages.items():
|
||||
for extra in extras.split(", "):
|
||||
tag_to_packages[extra].append("{}>={}".format(package, min_version))
|
||||
|
||||
|
||||
# Used by CI to get the min dependencies
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Get min dependencies for a package")
|
||||
|
||||
parser.add_argument("package", choices=dependent_packages)
|
||||
args = parser.parse_args()
|
||||
min_version = dependent_packages[args.package][0]
|
||||
print(min_version)
|
1068
venv/Lib/site-packages/sklearn/base.py
Normal file
1068
venv/Lib/site-packages/sklearn/base.py
Normal file
File diff suppressed because it is too large
Load diff
1428
venv/Lib/site-packages/sklearn/calibration.py
Normal file
1428
venv/Lib/site-packages/sklearn/calibration.py
Normal file
File diff suppressed because it is too large
Load diff
54
venv/Lib/site-packages/sklearn/cluster/__init__.py
Normal file
54
venv/Lib/site-packages/sklearn/cluster/__init__.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
"""
|
||||
The :mod:`sklearn.cluster` module gathers popular unsupervised clustering
|
||||
algorithms.
|
||||
"""
|
||||
|
||||
from ._spectral import spectral_clustering, SpectralClustering
|
||||
from ._mean_shift import mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds
|
||||
from ._affinity_propagation import affinity_propagation, AffinityPropagation
|
||||
from ._agglomerative import (
|
||||
ward_tree,
|
||||
AgglomerativeClustering,
|
||||
linkage_tree,
|
||||
FeatureAgglomeration,
|
||||
)
|
||||
from ._kmeans import k_means, KMeans, MiniBatchKMeans, kmeans_plusplus
|
||||
from ._bisect_k_means import BisectingKMeans
|
||||
from ._dbscan import dbscan, DBSCAN
|
||||
from ._optics import (
|
||||
OPTICS,
|
||||
cluster_optics_dbscan,
|
||||
compute_optics_graph,
|
||||
cluster_optics_xi,
|
||||
)
|
||||
from ._bicluster import SpectralBiclustering, SpectralCoclustering
|
||||
from ._birch import Birch
|
||||
|
||||
__all__ = [
|
||||
"AffinityPropagation",
|
||||
"AgglomerativeClustering",
|
||||
"Birch",
|
||||
"DBSCAN",
|
||||
"OPTICS",
|
||||
"cluster_optics_dbscan",
|
||||
"cluster_optics_xi",
|
||||
"compute_optics_graph",
|
||||
"KMeans",
|
||||
"BisectingKMeans",
|
||||
"FeatureAgglomeration",
|
||||
"MeanShift",
|
||||
"MiniBatchKMeans",
|
||||
"SpectralClustering",
|
||||
"affinity_propagation",
|
||||
"dbscan",
|
||||
"estimate_bandwidth",
|
||||
"get_bin_seeds",
|
||||
"k_means",
|
||||
"kmeans_plusplus",
|
||||
"linkage_tree",
|
||||
"mean_shift",
|
||||
"spectral_clustering",
|
||||
"ward_tree",
|
||||
"SpectralBiclustering",
|
||||
"SpectralCoclustering",
|
||||
]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
582
venv/Lib/site-packages/sklearn/cluster/_affinity_propagation.py
Normal file
582
venv/Lib/site-packages/sklearn/cluster/_affinity_propagation.py
Normal file
|
@ -0,0 +1,582 @@
|
|||
"""Affinity Propagation clustering algorithm."""
|
||||
|
||||
# Author: Alexandre Gramfort alexandre.gramfort@inria.fr
|
||||
# Gael Varoquaux gael.varoquaux@normalesup.org
|
||||
|
||||
# License: BSD 3 clause
|
||||
|
||||
from numbers import Integral, Real
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..exceptions import ConvergenceWarning
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..utils import as_float_array, check_random_state
|
||||
from ..utils._param_validation import Interval, StrOptions
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..metrics import euclidean_distances
|
||||
from ..metrics import pairwise_distances_argmin
|
||||
from .._config import config_context
|
||||
|
||||
|
||||
def _equal_similarities_and_preferences(S, preference):
|
||||
def all_equal_preferences():
|
||||
return np.all(preference == preference.flat[0])
|
||||
|
||||
def all_equal_similarities():
|
||||
# Create mask to ignore diagonal of S
|
||||
mask = np.ones(S.shape, dtype=bool)
|
||||
np.fill_diagonal(mask, 0)
|
||||
|
||||
return np.all(S[mask].flat == S[mask].flat[0])
|
||||
|
||||
return all_equal_preferences() and all_equal_similarities()
|
||||
|
||||
|
||||
def _affinity_propagation(
|
||||
S,
|
||||
*,
|
||||
preference,
|
||||
convergence_iter,
|
||||
max_iter,
|
||||
damping,
|
||||
verbose,
|
||||
return_n_iter,
|
||||
random_state,
|
||||
):
|
||||
"""Main affinity propagation algorithm."""
|
||||
n_samples = S.shape[0]
|
||||
if n_samples == 1 or _equal_similarities_and_preferences(S, preference):
|
||||
# It makes no sense to run the algorithm in this case, so return 1 or
|
||||
# n_samples clusters, depending on preferences
|
||||
warnings.warn(
|
||||
"All samples have mutually equal similarities. "
|
||||
"Returning arbitrary cluster center(s)."
|
||||
)
|
||||
if preference.flat[0] >= S.flat[n_samples - 1]:
|
||||
return (
|
||||
(np.arange(n_samples), np.arange(n_samples), 0)
|
||||
if return_n_iter
|
||||
else (np.arange(n_samples), np.arange(n_samples))
|
||||
)
|
||||
else:
|
||||
return (
|
||||
(np.array([0]), np.array([0] * n_samples), 0)
|
||||
if return_n_iter
|
||||
else (np.array([0]), np.array([0] * n_samples))
|
||||
)
|
||||
|
||||
# Place preference on the diagonal of S
|
||||
S.flat[:: (n_samples + 1)] = preference
|
||||
|
||||
A = np.zeros((n_samples, n_samples))
|
||||
R = np.zeros((n_samples, n_samples)) # Initialize messages
|
||||
# Intermediate results
|
||||
tmp = np.zeros((n_samples, n_samples))
|
||||
|
||||
# Remove degeneracies
|
||||
S += (
|
||||
np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100
|
||||
) * random_state.standard_normal(size=(n_samples, n_samples))
|
||||
|
||||
# Execute parallel affinity propagation updates
|
||||
e = np.zeros((n_samples, convergence_iter))
|
||||
|
||||
ind = np.arange(n_samples)
|
||||
|
||||
for it in range(max_iter):
|
||||
# tmp = A + S; compute responsibilities
|
||||
np.add(A, S, tmp)
|
||||
I = np.argmax(tmp, axis=1)
|
||||
Y = tmp[ind, I] # np.max(A + S, axis=1)
|
||||
tmp[ind, I] = -np.inf
|
||||
Y2 = np.max(tmp, axis=1)
|
||||
|
||||
# tmp = Rnew
|
||||
np.subtract(S, Y[:, None], tmp)
|
||||
tmp[ind, I] = S[ind, I] - Y2
|
||||
|
||||
# Damping
|
||||
tmp *= 1 - damping
|
||||
R *= damping
|
||||
R += tmp
|
||||
|
||||
# tmp = Rp; compute availabilities
|
||||
np.maximum(R, 0, tmp)
|
||||
tmp.flat[:: n_samples + 1] = R.flat[:: n_samples + 1]
|
||||
|
||||
# tmp = -Anew
|
||||
tmp -= np.sum(tmp, axis=0)
|
||||
dA = np.diag(tmp).copy()
|
||||
tmp.clip(0, np.inf, tmp)
|
||||
tmp.flat[:: n_samples + 1] = dA
|
||||
|
||||
# Damping
|
||||
tmp *= 1 - damping
|
||||
A *= damping
|
||||
A -= tmp
|
||||
|
||||
# Check for convergence
|
||||
E = (np.diag(A) + np.diag(R)) > 0
|
||||
e[:, it % convergence_iter] = E
|
||||
K = np.sum(E, axis=0)
|
||||
|
||||
if it >= convergence_iter:
|
||||
se = np.sum(e, axis=1)
|
||||
unconverged = np.sum((se == convergence_iter) + (se == 0)) != n_samples
|
||||
if (not unconverged and (K > 0)) or (it == max_iter):
|
||||
never_converged = False
|
||||
if verbose:
|
||||
print("Converged after %d iterations." % it)
|
||||
break
|
||||
else:
|
||||
never_converged = True
|
||||
if verbose:
|
||||
print("Did not converge")
|
||||
|
||||
I = np.flatnonzero(E)
|
||||
K = I.size # Identify exemplars
|
||||
|
||||
if K > 0:
|
||||
if never_converged:
|
||||
warnings.warn(
|
||||
"Affinity propagation did not converge, this model "
|
||||
"may return degenerate cluster centers and labels.",
|
||||
ConvergenceWarning,
|
||||
)
|
||||
c = np.argmax(S[:, I], axis=1)
|
||||
c[I] = np.arange(K) # Identify clusters
|
||||
# Refine the final set of exemplars and clusters and return results
|
||||
for k in range(K):
|
||||
ii = np.where(c == k)[0]
|
||||
j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0))
|
||||
I[k] = ii[j]
|
||||
|
||||
c = np.argmax(S[:, I], axis=1)
|
||||
c[I] = np.arange(K)
|
||||
labels = I[c]
|
||||
# Reduce labels to a sorted, gapless, list
|
||||
cluster_centers_indices = np.unique(labels)
|
||||
labels = np.searchsorted(cluster_centers_indices, labels)
|
||||
else:
|
||||
warnings.warn(
|
||||
"Affinity propagation did not converge and this model "
|
||||
"will not have any cluster centers.",
|
||||
ConvergenceWarning,
|
||||
)
|
||||
labels = np.array([-1] * n_samples)
|
||||
cluster_centers_indices = []
|
||||
|
||||
if return_n_iter:
|
||||
return cluster_centers_indices, labels, it + 1
|
||||
else:
|
||||
return cluster_centers_indices, labels
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Public API
|
||||
|
||||
|
||||
def affinity_propagation(
|
||||
S,
|
||||
*,
|
||||
preference=None,
|
||||
convergence_iter=15,
|
||||
max_iter=200,
|
||||
damping=0.5,
|
||||
copy=True,
|
||||
verbose=False,
|
||||
return_n_iter=False,
|
||||
random_state=None,
|
||||
):
|
||||
"""Perform Affinity Propagation Clustering of data.
|
||||
|
||||
Read more in the :ref:`User Guide <affinity_propagation>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
S : array-like of shape (n_samples, n_samples)
|
||||
Matrix of similarities between points.
|
||||
|
||||
preference : array-like of shape (n_samples,) or float, default=None
|
||||
Preferences for each point - points with larger values of
|
||||
preferences are more likely to be chosen as exemplars. The number of
|
||||
exemplars, i.e. of clusters, is influenced by the input preferences
|
||||
value. If the preferences are not passed as arguments, they will be
|
||||
set to the median of the input similarities (resulting in a moderate
|
||||
number of clusters). For a smaller amount of clusters, this can be set
|
||||
to the minimum value of the similarities.
|
||||
|
||||
convergence_iter : int, default=15
|
||||
Number of iterations with no change in the number
|
||||
of estimated clusters that stops the convergence.
|
||||
|
||||
max_iter : int, default=200
|
||||
Maximum number of iterations.
|
||||
|
||||
damping : float, default=0.5
|
||||
Damping factor between 0.5 and 1.
|
||||
|
||||
copy : bool, default=True
|
||||
If copy is False, the affinity matrix is modified inplace by the
|
||||
algorithm, for memory efficiency.
|
||||
|
||||
verbose : bool, default=False
|
||||
The verbosity level.
|
||||
|
||||
return_n_iter : bool, default=False
|
||||
Whether or not to return the number of iterations.
|
||||
|
||||
random_state : int, RandomState instance or None, default=None
|
||||
Pseudo-random number generator to control the starting state.
|
||||
Use an int for reproducible results across function calls.
|
||||
See the :term:`Glossary <random_state>`.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
this parameter was previously hardcoded as 0.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cluster_centers_indices : ndarray of shape (n_clusters,)
|
||||
Index of clusters centers.
|
||||
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels for each point.
|
||||
|
||||
n_iter : int
|
||||
Number of iterations run. Returned only if `return_n_iter` is
|
||||
set to True.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
|
||||
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
|
||||
|
||||
When the algorithm does not converge, it will still return a arrays of
|
||||
``cluster_center_indices`` and labels if there are any exemplars/clusters,
|
||||
however they may be degenerate and should be used with caution.
|
||||
|
||||
When all training samples have equal similarities and equal preferences,
|
||||
the assignment of cluster centers and labels depends on the preference.
|
||||
If the preference is smaller than the similarities, a single cluster center
|
||||
and label ``0`` for every sample will be returned. Otherwise, every
|
||||
training sample becomes its own cluster center and is assigned a unique
|
||||
label.
|
||||
|
||||
References
|
||||
----------
|
||||
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
|
||||
Between Data Points", Science Feb. 2007
|
||||
"""
|
||||
S = as_float_array(S, copy=copy)
|
||||
|
||||
estimator = AffinityPropagation(
|
||||
damping=damping,
|
||||
max_iter=max_iter,
|
||||
convergence_iter=convergence_iter,
|
||||
copy=False,
|
||||
preference=preference,
|
||||
affinity="precomputed",
|
||||
verbose=verbose,
|
||||
random_state=random_state,
|
||||
).fit(S)
|
||||
|
||||
if return_n_iter:
|
||||
return estimator.cluster_centers_indices_, estimator.labels_, estimator.n_iter_
|
||||
return estimator.cluster_centers_indices_, estimator.labels_
|
||||
|
||||
|
||||
class AffinityPropagation(ClusterMixin, BaseEstimator):
|
||||
"""Perform Affinity Propagation Clustering of data.
|
||||
|
||||
Read more in the :ref:`User Guide <affinity_propagation>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
damping : float, default=0.5
|
||||
Damping factor in the range `[0.5, 1.0)` is the extent to
|
||||
which the current value is maintained relative to
|
||||
incoming values (weighted 1 - damping). This in order
|
||||
to avoid numerical oscillations when updating these
|
||||
values (messages).
|
||||
|
||||
max_iter : int, default=200
|
||||
Maximum number of iterations.
|
||||
|
||||
convergence_iter : int, default=15
|
||||
Number of iterations with no change in the number
|
||||
of estimated clusters that stops the convergence.
|
||||
|
||||
copy : bool, default=True
|
||||
Make a copy of input data.
|
||||
|
||||
preference : array-like of shape (n_samples,) or float, default=None
|
||||
Preferences for each point - points with larger values of
|
||||
preferences are more likely to be chosen as exemplars. The number
|
||||
of exemplars, ie of clusters, is influenced by the input
|
||||
preferences value. If the preferences are not passed as arguments,
|
||||
they will be set to the median of the input similarities.
|
||||
|
||||
affinity : {'euclidean', 'precomputed'}, default='euclidean'
|
||||
Which affinity to use. At the moment 'precomputed' and
|
||||
``euclidean`` are supported. 'euclidean' uses the
|
||||
negative squared euclidean distance between points.
|
||||
|
||||
verbose : bool, default=False
|
||||
Whether to be verbose.
|
||||
|
||||
random_state : int, RandomState instance or None, default=None
|
||||
Pseudo-random number generator to control the starting state.
|
||||
Use an int for reproducible results across function calls.
|
||||
See the :term:`Glossary <random_state>`.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
this parameter was previously hardcoded as 0.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
cluster_centers_indices_ : ndarray of shape (n_clusters,)
|
||||
Indices of cluster centers.
|
||||
|
||||
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
||||
Cluster centers (if affinity != ``precomputed``).
|
||||
|
||||
labels_ : ndarray of shape (n_samples,)
|
||||
Labels of each point.
|
||||
|
||||
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
|
||||
Stores the affinity matrix used in ``fit``.
|
||||
|
||||
n_iter_ : int
|
||||
Number of iterations taken to converge.
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
See Also
|
||||
--------
|
||||
AgglomerativeClustering : Recursively merges the pair of
|
||||
clusters that minimally increases a given linkage distance.
|
||||
FeatureAgglomeration : Similar to AgglomerativeClustering,
|
||||
but recursively merges features instead of samples.
|
||||
KMeans : K-Means clustering.
|
||||
MiniBatchKMeans : Mini-Batch K-Means clustering.
|
||||
MeanShift : Mean shift clustering using a flat kernel.
|
||||
SpectralClustering : Apply clustering to a projection
|
||||
of the normalized Laplacian.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
|
||||
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
|
||||
|
||||
The algorithmic complexity of affinity propagation is quadratic
|
||||
in the number of points.
|
||||
|
||||
When the algorithm does not converge, it will still return a arrays of
|
||||
``cluster_center_indices`` and labels if there are any exemplars/clusters,
|
||||
however they may be degenerate and should be used with caution.
|
||||
|
||||
When ``fit`` does not converge, ``cluster_centers_`` is still populated
|
||||
however it may be degenerate. In such a case, proceed with caution.
|
||||
If ``fit`` does not converge and fails to produce any ``cluster_centers_``
|
||||
then ``predict`` will label every sample as ``-1``.
|
||||
|
||||
When all training samples have equal similarities and equal preferences,
|
||||
the assignment of cluster centers and labels depends on the preference.
|
||||
If the preference is smaller than the similarities, ``fit`` will result in
|
||||
a single cluster center and label ``0`` for every sample. Otherwise, every
|
||||
training sample becomes its own cluster center and is assigned a unique
|
||||
label.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
|
||||
Between Data Points", Science Feb. 2007
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import AffinityPropagation
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
||||
... [4, 2], [4, 4], [4, 0]])
|
||||
>>> clustering = AffinityPropagation(random_state=5).fit(X)
|
||||
>>> clustering
|
||||
AffinityPropagation(random_state=5)
|
||||
>>> clustering.labels_
|
||||
array([0, 0, 0, 1, 1, 1])
|
||||
>>> clustering.predict([[0, 0], [4, 4]])
|
||||
array([0, 1])
|
||||
>>> clustering.cluster_centers_
|
||||
array([[1, 2],
|
||||
[4, 2]])
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
"damping": [Interval(Real, 0.5, 1.0, closed="left")],
|
||||
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
||||
"convergence_iter": [Interval(Integral, 1, None, closed="left")],
|
||||
"copy": ["boolean"],
|
||||
"preference": [
|
||||
"array-like",
|
||||
Interval(Real, None, None, closed="neither"),
|
||||
None,
|
||||
],
|
||||
"affinity": [StrOptions({"euclidean", "precomputed"})],
|
||||
"verbose": ["verbose"],
|
||||
"random_state": ["random_state"],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
damping=0.5,
|
||||
max_iter=200,
|
||||
convergence_iter=15,
|
||||
copy=True,
|
||||
preference=None,
|
||||
affinity="euclidean",
|
||||
verbose=False,
|
||||
random_state=None,
|
||||
):
|
||||
|
||||
self.damping = damping
|
||||
self.max_iter = max_iter
|
||||
self.convergence_iter = convergence_iter
|
||||
self.copy = copy
|
||||
self.verbose = verbose
|
||||
self.preference = preference
|
||||
self.affinity = affinity
|
||||
self.random_state = random_state
|
||||
|
||||
def _more_tags(self):
|
||||
return {"pairwise": self.affinity == "precomputed"}
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the clustering from features, or affinity matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
||||
array-like of shape (n_samples, n_samples)
|
||||
Training instances to cluster, or similarities / affinities between
|
||||
instances if ``affinity='precomputed'``. If a sparse feature matrix
|
||||
is provided, it will be converted into a sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
Returns the instance itself.
|
||||
"""
|
||||
self._validate_params()
|
||||
|
||||
if self.affinity == "precomputed":
|
||||
accept_sparse = False
|
||||
else:
|
||||
accept_sparse = "csr"
|
||||
X = self._validate_data(X, accept_sparse=accept_sparse)
|
||||
if self.affinity == "precomputed":
|
||||
self.affinity_matrix_ = X.copy() if self.copy else X
|
||||
else: # self.affinity == "euclidean"
|
||||
self.affinity_matrix_ = -euclidean_distances(X, squared=True)
|
||||
|
||||
if self.affinity_matrix_.shape[0] != self.affinity_matrix_.shape[1]:
|
||||
raise ValueError(
|
||||
"The matrix of similarities must be a square array. "
|
||||
f"Got {self.affinity_matrix_.shape} instead."
|
||||
)
|
||||
|
||||
if self.preference is None:
|
||||
preference = np.median(self.affinity_matrix_)
|
||||
else:
|
||||
preference = self.preference
|
||||
preference = np.array(preference, copy=False)
|
||||
|
||||
random_state = check_random_state(self.random_state)
|
||||
|
||||
(
|
||||
self.cluster_centers_indices_,
|
||||
self.labels_,
|
||||
self.n_iter_,
|
||||
) = _affinity_propagation(
|
||||
self.affinity_matrix_,
|
||||
max_iter=self.max_iter,
|
||||
convergence_iter=self.convergence_iter,
|
||||
preference=preference,
|
||||
damping=self.damping,
|
||||
verbose=self.verbose,
|
||||
return_n_iter=True,
|
||||
random_state=random_state,
|
||||
)
|
||||
|
||||
if self.affinity != "precomputed":
|
||||
self.cluster_centers_ = X[self.cluster_centers_indices_].copy()
|
||||
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
"""Predict the closest cluster each sample in X belongs to.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
New data to predict. If a sparse matrix is provided, it will be
|
||||
converted into a sparse ``csr_matrix``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
X = self._validate_data(X, reset=False, accept_sparse="csr")
|
||||
if not hasattr(self, "cluster_centers_"):
|
||||
raise ValueError(
|
||||
"Predict method is not supported when affinity='precomputed'."
|
||||
)
|
||||
|
||||
if self.cluster_centers_.shape[0] > 0:
|
||||
with config_context(assume_finite=True):
|
||||
return pairwise_distances_argmin(X, self.cluster_centers_)
|
||||
else:
|
||||
warnings.warn(
|
||||
"This model does not have any cluster centers "
|
||||
"because affinity propagation did not converge. "
|
||||
"Labeling every sample as '-1'.",
|
||||
ConvergenceWarning,
|
||||
)
|
||||
return np.array([-1] * X.shape[0])
|
||||
|
||||
def fit_predict(self, X, y=None):
|
||||
"""Fit clustering from features/affinity matrix; return cluster labels.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
||||
array-like of shape (n_samples, n_samples)
|
||||
Training instances to cluster, or similarities / affinities between
|
||||
instances if ``affinity='precomputed'``. If a sparse feature matrix
|
||||
is provided, it will be converted into a sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels.
|
||||
"""
|
||||
return super().fit_predict(X, y)
|
1333
venv/Lib/site-packages/sklearn/cluster/_agglomerative.py
Normal file
1333
venv/Lib/site-packages/sklearn/cluster/_agglomerative.py
Normal file
File diff suppressed because it is too large
Load diff
628
venv/Lib/site-packages/sklearn/cluster/_bicluster.py
Normal file
628
venv/Lib/site-packages/sklearn/cluster/_bicluster.py
Normal file
|
@ -0,0 +1,628 @@
|
|||
"""Spectral biclustering algorithms."""
|
||||
# Authors : Kemal Eren
|
||||
# License: BSD 3 clause
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
from numbers import Integral
|
||||
|
||||
from scipy.linalg import norm
|
||||
from scipy.sparse import dia_matrix, issparse
|
||||
from scipy.sparse.linalg import eigsh, svds
|
||||
|
||||
from . import KMeans, MiniBatchKMeans
|
||||
from ..base import BaseEstimator, BiclusterMixin
|
||||
from ..utils import check_random_state
|
||||
from ..utils import check_scalar
|
||||
|
||||
from ..utils.extmath import make_nonnegative, randomized_svd, safe_sparse_dot
|
||||
|
||||
from ..utils.validation import assert_all_finite
|
||||
from ..utils._param_validation import Interval, StrOptions
|
||||
|
||||
|
||||
__all__ = ["SpectralCoclustering", "SpectralBiclustering"]
|
||||
|
||||
|
||||
def _scale_normalize(X):
|
||||
"""Normalize ``X`` by scaling rows and columns independently.
|
||||
|
||||
Returns the normalized matrix and the row and column scaling
|
||||
factors.
|
||||
"""
|
||||
X = make_nonnegative(X)
|
||||
row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze()
|
||||
col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze()
|
||||
row_diag = np.where(np.isnan(row_diag), 0, row_diag)
|
||||
col_diag = np.where(np.isnan(col_diag), 0, col_diag)
|
||||
if issparse(X):
|
||||
n_rows, n_cols = X.shape
|
||||
r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows))
|
||||
c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols))
|
||||
an = r * X * c
|
||||
else:
|
||||
an = row_diag[:, np.newaxis] * X * col_diag
|
||||
return an, row_diag, col_diag
|
||||
|
||||
|
||||
def _bistochastic_normalize(X, max_iter=1000, tol=1e-5):
|
||||
"""Normalize rows and columns of ``X`` simultaneously so that all
|
||||
rows sum to one constant and all columns sum to a different
|
||||
constant.
|
||||
"""
|
||||
# According to paper, this can also be done more efficiently with
|
||||
# deviation reduction and balancing algorithms.
|
||||
X = make_nonnegative(X)
|
||||
X_scaled = X
|
||||
for _ in range(max_iter):
|
||||
X_new, _, _ = _scale_normalize(X_scaled)
|
||||
if issparse(X):
|
||||
dist = norm(X_scaled.data - X.data)
|
||||
else:
|
||||
dist = norm(X_scaled - X_new)
|
||||
X_scaled = X_new
|
||||
if dist is not None and dist < tol:
|
||||
break
|
||||
return X_scaled
|
||||
|
||||
|
||||
def _log_normalize(X):
|
||||
"""Normalize ``X`` according to Kluger's log-interactions scheme."""
|
||||
X = make_nonnegative(X, min_value=1)
|
||||
if issparse(X):
|
||||
raise ValueError(
|
||||
"Cannot compute log of a sparse matrix,"
|
||||
" because log(x) diverges to -infinity as x"
|
||||
" goes to 0."
|
||||
)
|
||||
L = np.log(X)
|
||||
row_avg = L.mean(axis=1)[:, np.newaxis]
|
||||
col_avg = L.mean(axis=0)
|
||||
avg = L.mean()
|
||||
return L - row_avg - col_avg + avg
|
||||
|
||||
|
||||
class BaseSpectral(BiclusterMixin, BaseEstimator, metaclass=ABCMeta):
|
||||
"""Base class for spectral biclustering."""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
"svd_method": [StrOptions({"randomized", "arpack"})],
|
||||
"n_svd_vecs": [Interval(Integral, 0, None, closed="left"), None],
|
||||
"mini_batch": ["boolean"],
|
||||
"init": [StrOptions({"k-means++", "random"}), np.ndarray],
|
||||
"n_init": [Interval(Integral, 1, None, closed="left")],
|
||||
"random_state": ["random_state"],
|
||||
}
|
||||
|
||||
@abstractmethod
|
||||
def __init__(
|
||||
self,
|
||||
n_clusters=3,
|
||||
svd_method="randomized",
|
||||
n_svd_vecs=None,
|
||||
mini_batch=False,
|
||||
init="k-means++",
|
||||
n_init=10,
|
||||
random_state=None,
|
||||
):
|
||||
self.n_clusters = n_clusters
|
||||
self.svd_method = svd_method
|
||||
self.n_svd_vecs = n_svd_vecs
|
||||
self.mini_batch = mini_batch
|
||||
self.init = init
|
||||
self.n_init = n_init
|
||||
self.random_state = random_state
|
||||
|
||||
@abstractmethod
|
||||
def _check_parameters(self, n_samples):
|
||||
"""Validate parameters depending on the input data."""
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Create a biclustering for X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
y : Ignored
|
||||
Not used, present for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
SpectralBiclustering instance.
|
||||
"""
|
||||
self._validate_params()
|
||||
|
||||
X = self._validate_data(X, accept_sparse="csr", dtype=np.float64)
|
||||
self._check_parameters(X.shape[0])
|
||||
self._fit(X)
|
||||
return self
|
||||
|
||||
def _svd(self, array, n_components, n_discard):
|
||||
"""Returns first `n_components` left and right singular
|
||||
vectors u and v, discarding the first `n_discard`.
|
||||
"""
|
||||
if self.svd_method == "randomized":
|
||||
kwargs = {}
|
||||
if self.n_svd_vecs is not None:
|
||||
kwargs["n_oversamples"] = self.n_svd_vecs
|
||||
u, _, vt = randomized_svd(
|
||||
array, n_components, random_state=self.random_state, **kwargs
|
||||
)
|
||||
|
||||
elif self.svd_method == "arpack":
|
||||
u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs)
|
||||
if np.any(np.isnan(vt)):
|
||||
# some eigenvalues of A * A.T are negative, causing
|
||||
# sqrt() to be np.nan. This causes some vectors in vt
|
||||
# to be np.nan.
|
||||
A = safe_sparse_dot(array.T, array)
|
||||
random_state = check_random_state(self.random_state)
|
||||
# initialize with [-1,1] as in ARPACK
|
||||
v0 = random_state.uniform(-1, 1, A.shape[0])
|
||||
_, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0)
|
||||
vt = v.T
|
||||
if np.any(np.isnan(u)):
|
||||
A = safe_sparse_dot(array, array.T)
|
||||
random_state = check_random_state(self.random_state)
|
||||
# initialize with [-1,1] as in ARPACK
|
||||
v0 = random_state.uniform(-1, 1, A.shape[0])
|
||||
_, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0)
|
||||
|
||||
assert_all_finite(u)
|
||||
assert_all_finite(vt)
|
||||
u = u[:, n_discard:]
|
||||
vt = vt[n_discard:]
|
||||
return u, vt.T
|
||||
|
||||
def _k_means(self, data, n_clusters):
|
||||
if self.mini_batch:
|
||||
model = MiniBatchKMeans(
|
||||
n_clusters,
|
||||
init=self.init,
|
||||
n_init=self.n_init,
|
||||
random_state=self.random_state,
|
||||
)
|
||||
else:
|
||||
model = KMeans(
|
||||
n_clusters,
|
||||
init=self.init,
|
||||
n_init=self.n_init,
|
||||
random_state=self.random_state,
|
||||
)
|
||||
model.fit(data)
|
||||
centroid = model.cluster_centers_
|
||||
labels = model.labels_
|
||||
return centroid, labels
|
||||
|
||||
def _more_tags(self):
|
||||
return {
|
||||
"_xfail_checks": {
|
||||
"check_estimators_dtypes": "raises nan error",
|
||||
"check_fit2d_1sample": "_scale_normalize fails",
|
||||
"check_fit2d_1feature": "raises apply_along_axis error",
|
||||
"check_estimator_sparse_data": "does not fail gracefully",
|
||||
"check_methods_subset_invariance": "empty array passed inside",
|
||||
"check_dont_overwrite_parameters": "empty array passed inside",
|
||||
"check_fit2d_predict1d": "empty array passed inside",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class SpectralCoclustering(BaseSpectral):
|
||||
"""Spectral Co-Clustering algorithm (Dhillon, 2001).
|
||||
|
||||
Clusters rows and columns of an array `X` to solve the relaxed
|
||||
normalized cut of the bipartite graph created from `X` as follows:
|
||||
the edge between row vertex `i` and column vertex `j` has weight
|
||||
`X[i, j]`.
|
||||
|
||||
The resulting bicluster structure is block-diagonal, since each
|
||||
row and each column belongs to exactly one bicluster.
|
||||
|
||||
Supports sparse matrices, as long as they are nonnegative.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_coclustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_clusters : int, default=3
|
||||
The number of biclusters to find.
|
||||
|
||||
svd_method : {'randomized', 'arpack'}, default='randomized'
|
||||
Selects the algorithm for finding singular vectors. May be
|
||||
'randomized' or 'arpack'. If 'randomized', use
|
||||
:func:`sklearn.utils.extmath.randomized_svd`, which may be faster
|
||||
for large matrices. If 'arpack', use
|
||||
:func:`scipy.sparse.linalg.svds`, which is more accurate, but
|
||||
possibly slower in some cases.
|
||||
|
||||
n_svd_vecs : int, default=None
|
||||
Number of vectors to use in calculating the SVD. Corresponds
|
||||
to `ncv` when `svd_method=arpack` and `n_oversamples` when
|
||||
`svd_method` is 'randomized`.
|
||||
|
||||
mini_batch : bool, default=False
|
||||
Whether to use mini-batch k-means, which is faster but may get
|
||||
different results.
|
||||
|
||||
init : {'k-means++', 'random'}, or ndarray of shape \
|
||||
(n_clusters, n_features), default='k-means++'
|
||||
Method for initialization of k-means algorithm; defaults to
|
||||
'k-means++'.
|
||||
|
||||
n_init : int, default=10
|
||||
Number of random initializations that are tried with the
|
||||
k-means algorithm.
|
||||
|
||||
If mini-batch k-means is used, the best initialization is
|
||||
chosen and the algorithm runs once. Otherwise, the algorithm
|
||||
is run for each initialization and the best solution chosen.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used for randomizing the singular value decomposition and the k-means
|
||||
initialization. Use an int to make the randomness deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
rows_ : array-like of shape (n_row_clusters, n_rows)
|
||||
Results of the clustering. `rows[i, r]` is True if
|
||||
cluster `i` contains row `r`. Available only after calling ``fit``.
|
||||
|
||||
columns_ : array-like of shape (n_column_clusters, n_columns)
|
||||
Results of the clustering, like `rows`.
|
||||
|
||||
row_labels_ : array-like of shape (n_rows,)
|
||||
The bicluster label of each row.
|
||||
|
||||
column_labels_ : array-like of shape (n_cols,)
|
||||
The bicluster label of each column.
|
||||
|
||||
biclusters_ : tuple of two ndarrays
|
||||
The tuple contains the `rows_` and `columns_` arrays.
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
See Also
|
||||
--------
|
||||
SpectralBiclustering : Partitions rows and columns under the assumption
|
||||
that the data has an underlying checkerboard structure.
|
||||
|
||||
References
|
||||
----------
|
||||
* :doi:`Dhillon, Inderjit S, 2001. Co-clustering documents and words using
|
||||
bipartite spectral graph partitioning.
|
||||
<10.1145/502512.502550>`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import SpectralCoclustering
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X)
|
||||
>>> clustering.row_labels_ #doctest: +SKIP
|
||||
array([0, 1, 1, 0, 0, 0], dtype=int32)
|
||||
>>> clustering.column_labels_ #doctest: +SKIP
|
||||
array([0, 0], dtype=int32)
|
||||
>>> clustering
|
||||
SpectralCoclustering(n_clusters=2, random_state=0)
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
**BaseSpectral._parameter_constraints,
|
||||
"n_clusters": [Interval(Integral, 1, None, closed="left")],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_clusters=3,
|
||||
*,
|
||||
svd_method="randomized",
|
||||
n_svd_vecs=None,
|
||||
mini_batch=False,
|
||||
init="k-means++",
|
||||
n_init=10,
|
||||
random_state=None,
|
||||
):
|
||||
super().__init__(
|
||||
n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, random_state
|
||||
)
|
||||
|
||||
def _check_parameters(self, n_samples):
|
||||
if self.n_clusters > n_samples:
|
||||
raise ValueError(
|
||||
f"n_clusters should be <= n_samples={n_samples}. Got"
|
||||
f" {self.n_clusters} instead."
|
||||
)
|
||||
|
||||
def _fit(self, X):
|
||||
normalized_data, row_diag, col_diag = _scale_normalize(X)
|
||||
n_sv = 1 + int(np.ceil(np.log2(self.n_clusters)))
|
||||
u, v = self._svd(normalized_data, n_sv, n_discard=1)
|
||||
z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v))
|
||||
|
||||
_, labels = self._k_means(z, self.n_clusters)
|
||||
|
||||
n_rows = X.shape[0]
|
||||
self.row_labels_ = labels[:n_rows]
|
||||
self.column_labels_ = labels[n_rows:]
|
||||
|
||||
self.rows_ = np.vstack([self.row_labels_ == c for c in range(self.n_clusters)])
|
||||
self.columns_ = np.vstack(
|
||||
[self.column_labels_ == c for c in range(self.n_clusters)]
|
||||
)
|
||||
|
||||
|
||||
class SpectralBiclustering(BaseSpectral):
|
||||
"""Spectral biclustering (Kluger, 2003).
|
||||
|
||||
Partitions rows and columns under the assumption that the data has
|
||||
an underlying checkerboard structure. For instance, if there are
|
||||
two row partitions and three column partitions, each row will
|
||||
belong to three biclusters, and each column will belong to two
|
||||
biclusters. The outer product of the corresponding row and column
|
||||
label vectors gives this checkerboard structure.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_biclustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_clusters : int or tuple (n_row_clusters, n_column_clusters), default=3
|
||||
The number of row and column clusters in the checkerboard
|
||||
structure.
|
||||
|
||||
method : {'bistochastic', 'scale', 'log'}, default='bistochastic'
|
||||
Method of normalizing and converting singular vectors into
|
||||
biclusters. May be one of 'scale', 'bistochastic', or 'log'.
|
||||
The authors recommend using 'log'. If the data is sparse,
|
||||
however, log normalization will not work, which is why the
|
||||
default is 'bistochastic'.
|
||||
|
||||
.. warning::
|
||||
if `method='log'`, the data must not be sparse.
|
||||
|
||||
n_components : int, default=6
|
||||
Number of singular vectors to check.
|
||||
|
||||
n_best : int, default=3
|
||||
Number of best singular vectors to which to project the data
|
||||
for clustering.
|
||||
|
||||
svd_method : {'randomized', 'arpack'}, default='randomized'
|
||||
Selects the algorithm for finding singular vectors. May be
|
||||
'randomized' or 'arpack'. If 'randomized', uses
|
||||
:func:`~sklearn.utils.extmath.randomized_svd`, which may be faster
|
||||
for large matrices. If 'arpack', uses
|
||||
`scipy.sparse.linalg.svds`, which is more accurate, but
|
||||
possibly slower in some cases.
|
||||
|
||||
n_svd_vecs : int, default=None
|
||||
Number of vectors to use in calculating the SVD. Corresponds
|
||||
to `ncv` when `svd_method=arpack` and `n_oversamples` when
|
||||
`svd_method` is 'randomized`.
|
||||
|
||||
mini_batch : bool, default=False
|
||||
Whether to use mini-batch k-means, which is faster but may get
|
||||
different results.
|
||||
|
||||
init : {'k-means++', 'random'} or ndarray of shape (n_clusters, n_features), \
|
||||
default='k-means++'
|
||||
Method for initialization of k-means algorithm; defaults to
|
||||
'k-means++'.
|
||||
|
||||
n_init : int, default=10
|
||||
Number of random initializations that are tried with the
|
||||
k-means algorithm.
|
||||
|
||||
If mini-batch k-means is used, the best initialization is
|
||||
chosen and the algorithm runs once. Otherwise, the algorithm
|
||||
is run for each initialization and the best solution chosen.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used for randomizing the singular value decomposition and the k-means
|
||||
initialization. Use an int to make the randomness deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
rows_ : array-like of shape (n_row_clusters, n_rows)
|
||||
Results of the clustering. `rows[i, r]` is True if
|
||||
cluster `i` contains row `r`. Available only after calling ``fit``.
|
||||
|
||||
columns_ : array-like of shape (n_column_clusters, n_columns)
|
||||
Results of the clustering, like `rows`.
|
||||
|
||||
row_labels_ : array-like of shape (n_rows,)
|
||||
Row partition labels.
|
||||
|
||||
column_labels_ : array-like of shape (n_cols,)
|
||||
Column partition labels.
|
||||
|
||||
biclusters_ : tuple of two ndarrays
|
||||
The tuple contains the `rows_` and `columns_` arrays.
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
See Also
|
||||
--------
|
||||
SpectralCoclustering : Spectral Co-Clustering algorithm (Dhillon, 2001).
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
* :doi:`Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray
|
||||
data: coclustering genes and conditions.
|
||||
<10.1101/gr.648603>`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import SpectralBiclustering
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = SpectralBiclustering(n_clusters=2, random_state=0).fit(X)
|
||||
>>> clustering.row_labels_
|
||||
array([1, 1, 1, 0, 0, 0], dtype=int32)
|
||||
>>> clustering.column_labels_
|
||||
array([0, 1], dtype=int32)
|
||||
>>> clustering
|
||||
SpectralBiclustering(n_clusters=2, random_state=0)
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
**BaseSpectral._parameter_constraints,
|
||||
"n_clusters": [Interval(Integral, 1, None, closed="left"), tuple],
|
||||
"method": [StrOptions({"bistochastic", "scale", "log"})],
|
||||
"n_components": [Interval(Integral, 1, None, closed="left")],
|
||||
"n_best": [Interval(Integral, 1, None, closed="left")],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_clusters=3,
|
||||
*,
|
||||
method="bistochastic",
|
||||
n_components=6,
|
||||
n_best=3,
|
||||
svd_method="randomized",
|
||||
n_svd_vecs=None,
|
||||
mini_batch=False,
|
||||
init="k-means++",
|
||||
n_init=10,
|
||||
random_state=None,
|
||||
):
|
||||
super().__init__(
|
||||
n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, random_state
|
||||
)
|
||||
self.method = method
|
||||
self.n_components = n_components
|
||||
self.n_best = n_best
|
||||
|
||||
def _check_parameters(self, n_samples):
|
||||
if isinstance(self.n_clusters, Integral):
|
||||
if self.n_clusters > n_samples:
|
||||
raise ValueError(
|
||||
f"n_clusters should be <= n_samples={n_samples}. Got"
|
||||
f" {self.n_clusters} instead."
|
||||
)
|
||||
else: # tuple
|
||||
try:
|
||||
n_row_clusters, n_column_clusters = self.n_clusters
|
||||
check_scalar(
|
||||
n_row_clusters,
|
||||
"n_row_clusters",
|
||||
target_type=Integral,
|
||||
min_val=1,
|
||||
max_val=n_samples,
|
||||
)
|
||||
check_scalar(
|
||||
n_column_clusters,
|
||||
"n_column_clusters",
|
||||
target_type=Integral,
|
||||
min_val=1,
|
||||
max_val=n_samples,
|
||||
)
|
||||
except (ValueError, TypeError) as e:
|
||||
raise ValueError(
|
||||
"Incorrect parameter n_clusters has value:"
|
||||
f" {self.n_clusters}. It should either be a single integer"
|
||||
" or an iterable with two integers:"
|
||||
" (n_row_clusters, n_column_clusters)"
|
||||
" And the values are should be in the"
|
||||
" range: (1, n_samples)"
|
||||
) from e
|
||||
|
||||
if self.n_best > self.n_components:
|
||||
raise ValueError(
|
||||
f"n_best={self.n_best} must be <= n_components={self.n_components}."
|
||||
)
|
||||
|
||||
def _fit(self, X):
|
||||
n_sv = self.n_components
|
||||
if self.method == "bistochastic":
|
||||
normalized_data = _bistochastic_normalize(X)
|
||||
n_sv += 1
|
||||
elif self.method == "scale":
|
||||
normalized_data, _, _ = _scale_normalize(X)
|
||||
n_sv += 1
|
||||
elif self.method == "log":
|
||||
normalized_data = _log_normalize(X)
|
||||
n_discard = 0 if self.method == "log" else 1
|
||||
u, v = self._svd(normalized_data, n_sv, n_discard)
|
||||
ut = u.T
|
||||
vt = v.T
|
||||
|
||||
try:
|
||||
n_row_clusters, n_col_clusters = self.n_clusters
|
||||
except TypeError:
|
||||
n_row_clusters = n_col_clusters = self.n_clusters
|
||||
|
||||
best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters)
|
||||
|
||||
best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters)
|
||||
|
||||
self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters)
|
||||
|
||||
self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters)
|
||||
|
||||
self.rows_ = np.vstack(
|
||||
[
|
||||
self.row_labels_ == label
|
||||
for label in range(n_row_clusters)
|
||||
for _ in range(n_col_clusters)
|
||||
]
|
||||
)
|
||||
self.columns_ = np.vstack(
|
||||
[
|
||||
self.column_labels_ == label
|
||||
for _ in range(n_row_clusters)
|
||||
for label in range(n_col_clusters)
|
||||
]
|
||||
)
|
||||
|
||||
def _fit_best_piecewise(self, vectors, n_best, n_clusters):
|
||||
"""Find the ``n_best`` vectors that are best approximated by piecewise
|
||||
constant vectors.
|
||||
|
||||
The piecewise vectors are found by k-means; the best is chosen
|
||||
according to Euclidean distance.
|
||||
|
||||
"""
|
||||
|
||||
def make_piecewise(v):
|
||||
centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters)
|
||||
return centroid[labels].ravel()
|
||||
|
||||
piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors)
|
||||
dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors))
|
||||
result = vectors[np.argsort(dists)[:n_best]]
|
||||
return result
|
||||
|
||||
def _project_and_cluster(self, data, vectors, n_clusters):
|
||||
"""Project ``data`` to ``vectors`` and cluster the result."""
|
||||
projected = safe_sparse_dot(data, vectors)
|
||||
_, labels = self._k_means(projected, n_clusters)
|
||||
return labels
|
742
venv/Lib/site-packages/sklearn/cluster/_birch.py
Normal file
742
venv/Lib/site-packages/sklearn/cluster/_birch.py
Normal file
|
@ -0,0 +1,742 @@
|
|||
# Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com>
|
||||
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
|
||||
# Joel Nothman <joel.nothman@gmail.com>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import warnings
|
||||
import numpy as np
|
||||
from numbers import Integral, Real
|
||||
from scipy import sparse
|
||||
from math import sqrt
|
||||
|
||||
from ..metrics import pairwise_distances_argmin
|
||||
from ..metrics.pairwise import euclidean_distances
|
||||
from ..base import (
|
||||
TransformerMixin,
|
||||
ClusterMixin,
|
||||
BaseEstimator,
|
||||
ClassNamePrefixFeaturesOutMixin,
|
||||
)
|
||||
from ..utils.extmath import row_norms
|
||||
from ..utils._param_validation import Interval
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..exceptions import ConvergenceWarning
|
||||
from . import AgglomerativeClustering
|
||||
from .._config import config_context
|
||||
|
||||
|
||||
def _iterate_sparse_X(X):
|
||||
"""This little hack returns a densified row when iterating over a sparse
|
||||
matrix, instead of constructing a sparse matrix for every row that is
|
||||
expensive.
|
||||
"""
|
||||
n_samples = X.shape[0]
|
||||
X_indices = X.indices
|
||||
X_data = X.data
|
||||
X_indptr = X.indptr
|
||||
|
||||
for i in range(n_samples):
|
||||
row = np.zeros(X.shape[1])
|
||||
startptr, endptr = X_indptr[i], X_indptr[i + 1]
|
||||
nonzero_indices = X_indices[startptr:endptr]
|
||||
row[nonzero_indices] = X_data[startptr:endptr]
|
||||
yield row
|
||||
|
||||
|
||||
def _split_node(node, threshold, branching_factor):
|
||||
"""The node has to be split if there is no place for a new subcluster
|
||||
in the node.
|
||||
1. Two empty nodes and two empty subclusters are initialized.
|
||||
2. The pair of distant subclusters are found.
|
||||
3. The properties of the empty subclusters and nodes are updated
|
||||
according to the nearest distance between the subclusters to the
|
||||
pair of distant subclusters.
|
||||
4. The two nodes are set as children to the two subclusters.
|
||||
"""
|
||||
new_subcluster1 = _CFSubcluster()
|
||||
new_subcluster2 = _CFSubcluster()
|
||||
new_node1 = _CFNode(
|
||||
threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=node.is_leaf,
|
||||
n_features=node.n_features,
|
||||
dtype=node.init_centroids_.dtype,
|
||||
)
|
||||
new_node2 = _CFNode(
|
||||
threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=node.is_leaf,
|
||||
n_features=node.n_features,
|
||||
dtype=node.init_centroids_.dtype,
|
||||
)
|
||||
new_subcluster1.child_ = new_node1
|
||||
new_subcluster2.child_ = new_node2
|
||||
|
||||
if node.is_leaf:
|
||||
if node.prev_leaf_ is not None:
|
||||
node.prev_leaf_.next_leaf_ = new_node1
|
||||
new_node1.prev_leaf_ = node.prev_leaf_
|
||||
new_node1.next_leaf_ = new_node2
|
||||
new_node2.prev_leaf_ = new_node1
|
||||
new_node2.next_leaf_ = node.next_leaf_
|
||||
if node.next_leaf_ is not None:
|
||||
node.next_leaf_.prev_leaf_ = new_node2
|
||||
|
||||
dist = euclidean_distances(
|
||||
node.centroids_, Y_norm_squared=node.squared_norm_, squared=True
|
||||
)
|
||||
n_clusters = dist.shape[0]
|
||||
|
||||
farthest_idx = np.unravel_index(dist.argmax(), (n_clusters, n_clusters))
|
||||
node1_dist, node2_dist = dist[(farthest_idx,)]
|
||||
|
||||
node1_closer = node1_dist < node2_dist
|
||||
# make sure node1 is closest to itself even if all distances are equal.
|
||||
# This can only happen when all node.centroids_ are duplicates leading to all
|
||||
# distances between centroids being zero.
|
||||
node1_closer[farthest_idx[0]] = True
|
||||
|
||||
for idx, subcluster in enumerate(node.subclusters_):
|
||||
if node1_closer[idx]:
|
||||
new_node1.append_subcluster(subcluster)
|
||||
new_subcluster1.update(subcluster)
|
||||
else:
|
||||
new_node2.append_subcluster(subcluster)
|
||||
new_subcluster2.update(subcluster)
|
||||
return new_subcluster1, new_subcluster2
|
||||
|
||||
|
||||
class _CFNode:
|
||||
"""Each node in a CFTree is called a CFNode.
|
||||
|
||||
The CFNode can have a maximum of branching_factor
|
||||
number of CFSubclusters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
threshold : float
|
||||
Threshold needed for a new subcluster to enter a CFSubcluster.
|
||||
|
||||
branching_factor : int
|
||||
Maximum number of CF subclusters in each node.
|
||||
|
||||
is_leaf : bool
|
||||
We need to know if the CFNode is a leaf or not, in order to
|
||||
retrieve the final subclusters.
|
||||
|
||||
n_features : int
|
||||
The number of features.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
subclusters_ : list
|
||||
List of subclusters for a particular CFNode.
|
||||
|
||||
prev_leaf_ : _CFNode
|
||||
Useful only if is_leaf is True.
|
||||
|
||||
next_leaf_ : _CFNode
|
||||
next_leaf. Useful only if is_leaf is True.
|
||||
the final subclusters.
|
||||
|
||||
init_centroids_ : ndarray of shape (branching_factor + 1, n_features)
|
||||
Manipulate ``init_centroids_`` throughout rather than centroids_ since
|
||||
the centroids are just a view of the ``init_centroids_`` .
|
||||
|
||||
init_sq_norm_ : ndarray of shape (branching_factor + 1,)
|
||||
manipulate init_sq_norm_ throughout. similar to ``init_centroids_``.
|
||||
|
||||
centroids_ : ndarray of shape (branching_factor + 1, n_features)
|
||||
View of ``init_centroids_``.
|
||||
|
||||
squared_norm_ : ndarray of shape (branching_factor + 1,)
|
||||
View of ``init_sq_norm_``.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *, threshold, branching_factor, is_leaf, n_features, dtype):
|
||||
self.threshold = threshold
|
||||
self.branching_factor = branching_factor
|
||||
self.is_leaf = is_leaf
|
||||
self.n_features = n_features
|
||||
|
||||
# The list of subclusters, centroids and squared norms
|
||||
# to manipulate throughout.
|
||||
self.subclusters_ = []
|
||||
self.init_centroids_ = np.zeros((branching_factor + 1, n_features), dtype=dtype)
|
||||
self.init_sq_norm_ = np.zeros((branching_factor + 1), dtype)
|
||||
self.squared_norm_ = []
|
||||
self.prev_leaf_ = None
|
||||
self.next_leaf_ = None
|
||||
|
||||
def append_subcluster(self, subcluster):
|
||||
n_samples = len(self.subclusters_)
|
||||
self.subclusters_.append(subcluster)
|
||||
self.init_centroids_[n_samples] = subcluster.centroid_
|
||||
self.init_sq_norm_[n_samples] = subcluster.sq_norm_
|
||||
|
||||
# Keep centroids and squared norm as views. In this way
|
||||
# if we change init_centroids and init_sq_norm_, it is
|
||||
# sufficient,
|
||||
self.centroids_ = self.init_centroids_[: n_samples + 1, :]
|
||||
self.squared_norm_ = self.init_sq_norm_[: n_samples + 1]
|
||||
|
||||
def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2):
|
||||
"""Remove a subcluster from a node and update it with the
|
||||
split subclusters.
|
||||
"""
|
||||
ind = self.subclusters_.index(subcluster)
|
||||
self.subclusters_[ind] = new_subcluster1
|
||||
self.init_centroids_[ind] = new_subcluster1.centroid_
|
||||
self.init_sq_norm_[ind] = new_subcluster1.sq_norm_
|
||||
self.append_subcluster(new_subcluster2)
|
||||
|
||||
def insert_cf_subcluster(self, subcluster):
|
||||
"""Insert a new subcluster into the node."""
|
||||
if not self.subclusters_:
|
||||
self.append_subcluster(subcluster)
|
||||
return False
|
||||
|
||||
threshold = self.threshold
|
||||
branching_factor = self.branching_factor
|
||||
# We need to find the closest subcluster among all the
|
||||
# subclusters so that we can insert our new subcluster.
|
||||
dist_matrix = np.dot(self.centroids_, subcluster.centroid_)
|
||||
dist_matrix *= -2.0
|
||||
dist_matrix += self.squared_norm_
|
||||
closest_index = np.argmin(dist_matrix)
|
||||
closest_subcluster = self.subclusters_[closest_index]
|
||||
|
||||
# If the subcluster has a child, we need a recursive strategy.
|
||||
if closest_subcluster.child_ is not None:
|
||||
split_child = closest_subcluster.child_.insert_cf_subcluster(subcluster)
|
||||
|
||||
if not split_child:
|
||||
# If it is determined that the child need not be split, we
|
||||
# can just update the closest_subcluster
|
||||
closest_subcluster.update(subcluster)
|
||||
self.init_centroids_[closest_index] = self.subclusters_[
|
||||
closest_index
|
||||
].centroid_
|
||||
self.init_sq_norm_[closest_index] = self.subclusters_[
|
||||
closest_index
|
||||
].sq_norm_
|
||||
return False
|
||||
|
||||
# things not too good. we need to redistribute the subclusters in
|
||||
# our child node, and add a new subcluster in the parent
|
||||
# subcluster to accommodate the new child.
|
||||
else:
|
||||
new_subcluster1, new_subcluster2 = _split_node(
|
||||
closest_subcluster.child_,
|
||||
threshold,
|
||||
branching_factor,
|
||||
)
|
||||
self.update_split_subclusters(
|
||||
closest_subcluster, new_subcluster1, new_subcluster2
|
||||
)
|
||||
|
||||
if len(self.subclusters_) > self.branching_factor:
|
||||
return True
|
||||
return False
|
||||
|
||||
# good to go!
|
||||
else:
|
||||
merged = closest_subcluster.merge_subcluster(subcluster, self.threshold)
|
||||
if merged:
|
||||
self.init_centroids_[closest_index] = closest_subcluster.centroid_
|
||||
self.init_sq_norm_[closest_index] = closest_subcluster.sq_norm_
|
||||
return False
|
||||
|
||||
# not close to any other subclusters, and we still
|
||||
# have space, so add.
|
||||
elif len(self.subclusters_) < self.branching_factor:
|
||||
self.append_subcluster(subcluster)
|
||||
return False
|
||||
|
||||
# We do not have enough space nor is it closer to an
|
||||
# other subcluster. We need to split.
|
||||
else:
|
||||
self.append_subcluster(subcluster)
|
||||
return True
|
||||
|
||||
|
||||
class _CFSubcluster:
|
||||
"""Each subcluster in a CFNode is called a CFSubcluster.
|
||||
|
||||
A CFSubcluster can have a CFNode has its child.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
linear_sum : ndarray of shape (n_features,), default=None
|
||||
Sample. This is kept optional to allow initialization of empty
|
||||
subclusters.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
n_samples_ : int
|
||||
Number of samples that belong to each subcluster.
|
||||
|
||||
linear_sum_ : ndarray
|
||||
Linear sum of all the samples in a subcluster. Prevents holding
|
||||
all sample data in memory.
|
||||
|
||||
squared_sum_ : float
|
||||
Sum of the squared l2 norms of all samples belonging to a subcluster.
|
||||
|
||||
centroid_ : ndarray of shape (branching_factor + 1, n_features)
|
||||
Centroid of the subcluster. Prevent recomputing of centroids when
|
||||
``CFNode.centroids_`` is called.
|
||||
|
||||
child_ : _CFNode
|
||||
Child Node of the subcluster. Once a given _CFNode is set as the child
|
||||
of the _CFNode, it is set to ``self.child_``.
|
||||
|
||||
sq_norm_ : ndarray of shape (branching_factor + 1,)
|
||||
Squared norm of the subcluster. Used to prevent recomputing when
|
||||
pairwise minimum distances are computed.
|
||||
"""
|
||||
|
||||
def __init__(self, *, linear_sum=None):
|
||||
if linear_sum is None:
|
||||
self.n_samples_ = 0
|
||||
self.squared_sum_ = 0.0
|
||||
self.centroid_ = self.linear_sum_ = 0
|
||||
else:
|
||||
self.n_samples_ = 1
|
||||
self.centroid_ = self.linear_sum_ = linear_sum
|
||||
self.squared_sum_ = self.sq_norm_ = np.dot(
|
||||
self.linear_sum_, self.linear_sum_
|
||||
)
|
||||
self.child_ = None
|
||||
|
||||
def update(self, subcluster):
|
||||
self.n_samples_ += subcluster.n_samples_
|
||||
self.linear_sum_ += subcluster.linear_sum_
|
||||
self.squared_sum_ += subcluster.squared_sum_
|
||||
self.centroid_ = self.linear_sum_ / self.n_samples_
|
||||
self.sq_norm_ = np.dot(self.centroid_, self.centroid_)
|
||||
|
||||
def merge_subcluster(self, nominee_cluster, threshold):
|
||||
"""Check if a cluster is worthy enough to be merged. If
|
||||
yes then merge.
|
||||
"""
|
||||
new_ss = self.squared_sum_ + nominee_cluster.squared_sum_
|
||||
new_ls = self.linear_sum_ + nominee_cluster.linear_sum_
|
||||
new_n = self.n_samples_ + nominee_cluster.n_samples_
|
||||
new_centroid = (1 / new_n) * new_ls
|
||||
new_sq_norm = np.dot(new_centroid, new_centroid)
|
||||
|
||||
# The squared radius of the cluster is defined:
|
||||
# r^2 = sum_i ||x_i - c||^2 / n
|
||||
# with x_i the n points assigned to the cluster and c its centroid:
|
||||
# c = sum_i x_i / n
|
||||
# This can be expanded to:
|
||||
# r^2 = sum_i ||x_i||^2 / n - 2 < sum_i x_i / n, c> + n ||c||^2 / n
|
||||
# and therefore simplifies to:
|
||||
# r^2 = sum_i ||x_i||^2 / n - ||c||^2
|
||||
sq_radius = new_ss / new_n - new_sq_norm
|
||||
|
||||
if sq_radius <= threshold**2:
|
||||
(
|
||||
self.n_samples_,
|
||||
self.linear_sum_,
|
||||
self.squared_sum_,
|
||||
self.centroid_,
|
||||
self.sq_norm_,
|
||||
) = (new_n, new_ls, new_ss, new_centroid, new_sq_norm)
|
||||
return True
|
||||
return False
|
||||
|
||||
@property
|
||||
def radius(self):
|
||||
"""Return radius of the subcluster"""
|
||||
# Because of numerical issues, this could become negative
|
||||
sq_radius = self.squared_sum_ / self.n_samples_ - self.sq_norm_
|
||||
return sqrt(max(0, sq_radius))
|
||||
|
||||
|
||||
class Birch(
|
||||
ClassNamePrefixFeaturesOutMixin, ClusterMixin, TransformerMixin, BaseEstimator
|
||||
):
|
||||
"""Implements the BIRCH clustering algorithm.
|
||||
|
||||
It is a memory-efficient, online-learning algorithm provided as an
|
||||
alternative to :class:`MiniBatchKMeans`. It constructs a tree
|
||||
data structure with the cluster centroids being read off the leaf.
|
||||
These can be either the final cluster centroids or can be provided as input
|
||||
to another clustering algorithm such as :class:`AgglomerativeClustering`.
|
||||
|
||||
Read more in the :ref:`User Guide <birch>`.
|
||||
|
||||
.. versionadded:: 0.16
|
||||
|
||||
Parameters
|
||||
----------
|
||||
threshold : float, default=0.5
|
||||
The radius of the subcluster obtained by merging a new sample and the
|
||||
closest subcluster should be lesser than the threshold. Otherwise a new
|
||||
subcluster is started. Setting this value to be very low promotes
|
||||
splitting and vice-versa.
|
||||
|
||||
branching_factor : int, default=50
|
||||
Maximum number of CF subclusters in each node. If a new samples enters
|
||||
such that the number of subclusters exceed the branching_factor then
|
||||
that node is split into two nodes with the subclusters redistributed
|
||||
in each. The parent subcluster of that node is removed and two new
|
||||
subclusters are added as parents of the 2 split nodes.
|
||||
|
||||
n_clusters : int, instance of sklearn.cluster model or None, default=3
|
||||
Number of clusters after the final clustering step, which treats the
|
||||
subclusters from the leaves as new samples.
|
||||
|
||||
- `None` : the final clustering step is not performed and the
|
||||
subclusters are returned as they are.
|
||||
|
||||
- :mod:`sklearn.cluster` Estimator : If a model is provided, the model
|
||||
is fit treating the subclusters as new samples and the initial data
|
||||
is mapped to the label of the closest subcluster.
|
||||
|
||||
- `int` : the model fit is :class:`AgglomerativeClustering` with
|
||||
`n_clusters` set to be equal to the int.
|
||||
|
||||
compute_labels : bool, default=True
|
||||
Whether or not to compute labels for each fit.
|
||||
|
||||
copy : bool, default=True
|
||||
Whether or not to make a copy of the given data. If set to False,
|
||||
the initial data will be overwritten.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
root_ : _CFNode
|
||||
Root of the CFTree.
|
||||
|
||||
dummy_leaf_ : _CFNode
|
||||
Start pointer to all the leaves.
|
||||
|
||||
subcluster_centers_ : ndarray
|
||||
Centroids of all subclusters read directly from the leaves.
|
||||
|
||||
subcluster_labels_ : ndarray
|
||||
Labels assigned to the centroids of the subclusters after
|
||||
they are clustered globally.
|
||||
|
||||
labels_ : ndarray of shape (n_samples,)
|
||||
Array of labels assigned to the input data.
|
||||
if partial_fit is used instead of fit, they are assigned to the
|
||||
last batch of data.
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
See Also
|
||||
--------
|
||||
MiniBatchKMeans : Alternative implementation that does incremental updates
|
||||
of the centers' positions using mini-batches.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The tree data structure consists of nodes with each node consisting of
|
||||
a number of subclusters. The maximum number of subclusters in a node
|
||||
is determined by the branching factor. Each subcluster maintains a
|
||||
linear sum, squared sum and the number of samples in that subcluster.
|
||||
In addition, each subcluster can also have a node as its child, if the
|
||||
subcluster is not a member of a leaf node.
|
||||
|
||||
For a new point entering the root, it is merged with the subcluster closest
|
||||
to it and the linear sum, squared sum and the number of samples of that
|
||||
subcluster are updated. This is done recursively till the properties of
|
||||
the leaf node are updated.
|
||||
|
||||
References
|
||||
----------
|
||||
* Tian Zhang, Raghu Ramakrishnan, Maron Livny
|
||||
BIRCH: An efficient data clustering method for large databases.
|
||||
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
|
||||
|
||||
* Roberto Perdisci
|
||||
JBirch - Java implementation of BIRCH clustering algorithm
|
||||
https://code.google.com/archive/p/jbirch
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import Birch
|
||||
>>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]]
|
||||
>>> brc = Birch(n_clusters=None)
|
||||
>>> brc.fit(X)
|
||||
Birch(n_clusters=None)
|
||||
>>> brc.predict(X)
|
||||
array([0, 0, 0, 1, 1, 1])
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
"threshold": [Interval(Real, 0.0, None, closed="neither")],
|
||||
"branching_factor": [Interval(Integral, 1, None, closed="neither")],
|
||||
"n_clusters": [None, ClusterMixin, Interval(Integral, 1, None, closed="left")],
|
||||
"compute_labels": ["boolean"],
|
||||
"copy": ["boolean"],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
threshold=0.5,
|
||||
branching_factor=50,
|
||||
n_clusters=3,
|
||||
compute_labels=True,
|
||||
copy=True,
|
||||
):
|
||||
self.threshold = threshold
|
||||
self.branching_factor = branching_factor
|
||||
self.n_clusters = n_clusters
|
||||
self.compute_labels = compute_labels
|
||||
self.copy = copy
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""
|
||||
Build a CF Tree for the input data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
Fitted estimator.
|
||||
"""
|
||||
|
||||
self._validate_params()
|
||||
|
||||
return self._fit(X, partial=False)
|
||||
|
||||
def _fit(self, X, partial):
|
||||
has_root = getattr(self, "root_", None)
|
||||
first_call = not (partial and has_root)
|
||||
|
||||
X = self._validate_data(
|
||||
X,
|
||||
accept_sparse="csr",
|
||||
copy=self.copy,
|
||||
reset=first_call,
|
||||
dtype=[np.float64, np.float32],
|
||||
)
|
||||
threshold = self.threshold
|
||||
branching_factor = self.branching_factor
|
||||
|
||||
n_samples, n_features = X.shape
|
||||
|
||||
# If partial_fit is called for the first time or fit is called, we
|
||||
# start a new tree.
|
||||
if first_call:
|
||||
# The first root is the leaf. Manipulate this object throughout.
|
||||
self.root_ = _CFNode(
|
||||
threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=True,
|
||||
n_features=n_features,
|
||||
dtype=X.dtype,
|
||||
)
|
||||
|
||||
# To enable getting back subclusters.
|
||||
self.dummy_leaf_ = _CFNode(
|
||||
threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=True,
|
||||
n_features=n_features,
|
||||
dtype=X.dtype,
|
||||
)
|
||||
self.dummy_leaf_.next_leaf_ = self.root_
|
||||
self.root_.prev_leaf_ = self.dummy_leaf_
|
||||
|
||||
# Cannot vectorize. Enough to convince to use cython.
|
||||
if not sparse.issparse(X):
|
||||
iter_func = iter
|
||||
else:
|
||||
iter_func = _iterate_sparse_X
|
||||
|
||||
for sample in iter_func(X):
|
||||
subcluster = _CFSubcluster(linear_sum=sample)
|
||||
split = self.root_.insert_cf_subcluster(subcluster)
|
||||
|
||||
if split:
|
||||
new_subcluster1, new_subcluster2 = _split_node(
|
||||
self.root_, threshold, branching_factor
|
||||
)
|
||||
del self.root_
|
||||
self.root_ = _CFNode(
|
||||
threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=False,
|
||||
n_features=n_features,
|
||||
dtype=X.dtype,
|
||||
)
|
||||
self.root_.append_subcluster(new_subcluster1)
|
||||
self.root_.append_subcluster(new_subcluster2)
|
||||
|
||||
centroids = np.concatenate([leaf.centroids_ for leaf in self._get_leaves()])
|
||||
self.subcluster_centers_ = centroids
|
||||
self._n_features_out = self.subcluster_centers_.shape[0]
|
||||
|
||||
self._global_clustering(X)
|
||||
return self
|
||||
|
||||
def _get_leaves(self):
|
||||
"""
|
||||
Retrieve the leaves of the CF Node.
|
||||
|
||||
Returns
|
||||
-------
|
||||
leaves : list of shape (n_leaves,)
|
||||
List of the leaf nodes.
|
||||
"""
|
||||
leaf_ptr = self.dummy_leaf_.next_leaf_
|
||||
leaves = []
|
||||
while leaf_ptr is not None:
|
||||
leaves.append(leaf_ptr)
|
||||
leaf_ptr = leaf_ptr.next_leaf_
|
||||
return leaves
|
||||
|
||||
def partial_fit(self, X=None, y=None):
|
||||
"""
|
||||
Online learning. Prevents rebuilding of CFTree from scratch.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), \
|
||||
default=None
|
||||
Input data. If X is not provided, only the global clustering
|
||||
step is done.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
Fitted estimator.
|
||||
"""
|
||||
self._validate_params()
|
||||
|
||||
if X is None:
|
||||
# Perform just the final global clustering step.
|
||||
self._global_clustering()
|
||||
return self
|
||||
else:
|
||||
return self._fit(X, partial=True)
|
||||
|
||||
def _check_fit(self, X):
|
||||
check_is_fitted(self)
|
||||
|
||||
if (
|
||||
hasattr(self, "subcluster_centers_")
|
||||
and X.shape[1] != self.subcluster_centers_.shape[1]
|
||||
):
|
||||
raise ValueError(
|
||||
"Training data and predicted data do not have same number of features."
|
||||
)
|
||||
|
||||
def predict(self, X):
|
||||
"""
|
||||
Predict data using the ``centroids_`` of subclusters.
|
||||
|
||||
Avoid computation of the row norms of X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape(n_samples,)
|
||||
Labelled data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
||||
return self._predict(X)
|
||||
|
||||
def _predict(self, X):
|
||||
"""Predict data using the ``centroids_`` of subclusters."""
|
||||
kwargs = {"Y_norm_squared": self._subcluster_norms}
|
||||
|
||||
with config_context(assume_finite=True):
|
||||
argmin = pairwise_distances_argmin(
|
||||
X, self.subcluster_centers_, metric_kwargs=kwargs
|
||||
)
|
||||
return self.subcluster_labels_[argmin]
|
||||
|
||||
def transform(self, X):
|
||||
"""
|
||||
Transform X into subcluster centroids dimension.
|
||||
|
||||
Each dimension represents the distance from the sample point to each
|
||||
cluster centroid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_trans : {array-like, sparse matrix} of shape (n_samples, n_clusters)
|
||||
Transformed data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
||||
with config_context(assume_finite=True):
|
||||
return euclidean_distances(X, self.subcluster_centers_)
|
||||
|
||||
def _global_clustering(self, X=None):
|
||||
"""
|
||||
Global clustering for the subclusters obtained after fitting
|
||||
"""
|
||||
clusterer = self.n_clusters
|
||||
centroids = self.subcluster_centers_
|
||||
compute_labels = (X is not None) and self.compute_labels
|
||||
|
||||
# Preprocessing for the global clustering.
|
||||
not_enough_centroids = False
|
||||
if isinstance(clusterer, Integral):
|
||||
clusterer = AgglomerativeClustering(n_clusters=self.n_clusters)
|
||||
# There is no need to perform the global clustering step.
|
||||
if len(centroids) < self.n_clusters:
|
||||
not_enough_centroids = True
|
||||
|
||||
# To use in predict to avoid recalculation.
|
||||
self._subcluster_norms = row_norms(self.subcluster_centers_, squared=True)
|
||||
|
||||
if clusterer is None or not_enough_centroids:
|
||||
self.subcluster_labels_ = np.arange(len(centroids))
|
||||
if not_enough_centroids:
|
||||
warnings.warn(
|
||||
"Number of subclusters found (%d) by BIRCH is less "
|
||||
"than (%d). Decrease the threshold."
|
||||
% (len(centroids), self.n_clusters),
|
||||
ConvergenceWarning,
|
||||
)
|
||||
else:
|
||||
# The global clustering step that clusters the subclusters of
|
||||
# the leaves. It assumes the centroids of the subclusters as
|
||||
# samples and finds the final centroids.
|
||||
self.subcluster_labels_ = clusterer.fit_predict(self.subcluster_centers_)
|
||||
|
||||
if compute_labels:
|
||||
self.labels_ = self._predict(X)
|
||||
|
||||
def _more_tags(self):
|
||||
return {"preserves_dtype": [np.float64, np.float32]}
|
523
venv/Lib/site-packages/sklearn/cluster/_bisect_k_means.py
Normal file
523
venv/Lib/site-packages/sklearn/cluster/_bisect_k_means.py
Normal file
|
@ -0,0 +1,523 @@
|
|||
"""Bisecting K-means clustering."""
|
||||
# Author: Michal Krawczyk <mkrwczyk.1@gmail.com>
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
|
||||
from ._kmeans import _BaseKMeans
|
||||
from ._kmeans import _kmeans_single_elkan
|
||||
from ._kmeans import _kmeans_single_lloyd
|
||||
from ._kmeans import _labels_inertia_threadpool_limit
|
||||
from ._k_means_common import _inertia_dense
|
||||
from ._k_means_common import _inertia_sparse
|
||||
from ..utils.extmath import row_norms
|
||||
from ..utils._openmp_helpers import _openmp_effective_n_threads
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.validation import _check_sample_weight
|
||||
from ..utils.validation import check_random_state
|
||||
from ..utils._param_validation import StrOptions
|
||||
|
||||
|
||||
class _BisectingTree:
|
||||
"""Tree structure representing the hierarchical clusters of BisectingKMeans."""
|
||||
|
||||
def __init__(self, center, indices, score):
|
||||
"""Create a new cluster node in the tree.
|
||||
|
||||
The node holds the center of this cluster and the indices of the data points
|
||||
that belong to it.
|
||||
"""
|
||||
self.center = center
|
||||
self.indices = indices
|
||||
self.score = score
|
||||
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def split(self, labels, centers, scores):
|
||||
"""Split the cluster node into two subclusters."""
|
||||
self.left = _BisectingTree(
|
||||
indices=self.indices[labels == 0], center=centers[0], score=scores[0]
|
||||
)
|
||||
self.right = _BisectingTree(
|
||||
indices=self.indices[labels == 1], center=centers[1], score=scores[1]
|
||||
)
|
||||
|
||||
# reset the indices attribute to save memory
|
||||
self.indices = None
|
||||
|
||||
def get_cluster_to_bisect(self):
|
||||
"""Return the cluster node to bisect next.
|
||||
|
||||
It's based on the score of the cluster, which can be either the number of
|
||||
data points assigned to that cluster or the inertia of that cluster
|
||||
(see `bisecting_strategy` for details).
|
||||
"""
|
||||
max_score = None
|
||||
|
||||
for cluster_leaf in self.iter_leaves():
|
||||
if max_score is None or cluster_leaf.score > max_score:
|
||||
max_score = cluster_leaf.score
|
||||
best_cluster_leaf = cluster_leaf
|
||||
|
||||
return best_cluster_leaf
|
||||
|
||||
def iter_leaves(self):
|
||||
"""Iterate over all the cluster leaves in the tree."""
|
||||
if self.left is None:
|
||||
yield self
|
||||
else:
|
||||
yield from self.left.iter_leaves()
|
||||
yield from self.right.iter_leaves()
|
||||
|
||||
|
||||
class BisectingKMeans(_BaseKMeans):
|
||||
"""Bisecting K-Means clustering.
|
||||
|
||||
Read more in the :ref:`User Guide <bisect_k_means>`.
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_clusters : int, default=8
|
||||
The number of clusters to form as well as the number of
|
||||
centroids to generate.
|
||||
|
||||
init : {'k-means++', 'random'} or callable, default='random'
|
||||
Method for initialization:
|
||||
|
||||
'k-means++' : selects initial cluster centers for k-mean
|
||||
clustering in a smart way to speed up convergence. See section
|
||||
Notes in k_init for more details.
|
||||
|
||||
'random': choose `n_clusters` observations (rows) at random from data
|
||||
for the initial centroids.
|
||||
|
||||
If a callable is passed, it should take arguments X, n_clusters and a
|
||||
random state and return an initialization.
|
||||
|
||||
n_init : int, default=1
|
||||
Number of time the inner k-means algorithm will be run with different
|
||||
centroid seeds in each bisection.
|
||||
That will result producing for each bisection best output of n_init
|
||||
consecutive runs in terms of inertia.
|
||||
|
||||
random_state : int, RandomState instance or None, default=None
|
||||
Determines random number generation for centroid initialization
|
||||
in inner K-Means. Use an int to make the randomness deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
max_iter : int, default=300
|
||||
Maximum number of iterations of the inner k-means algorithm at each
|
||||
bisection.
|
||||
|
||||
verbose : int, default=0
|
||||
Verbosity mode.
|
||||
|
||||
tol : float, default=1e-4
|
||||
Relative tolerance with regards to Frobenius norm of the difference
|
||||
in the cluster centers of two consecutive iterations to declare
|
||||
convergence. Used in inner k-means algorithm at each bisection to pick
|
||||
best possible clusters.
|
||||
|
||||
copy_x : bool, default=True
|
||||
When pre-computing distances it is more numerically accurate to center
|
||||
the data first. If copy_x is True (default), then the original data is
|
||||
not modified. If False, the original data is modified, and put back
|
||||
before the function returns, but small numerical differences may be
|
||||
introduced by subtracting and then adding the data mean. Note that if
|
||||
the original data is not C-contiguous, a copy will be made even if
|
||||
copy_x is False. If the original data is sparse, but not in CSR format,
|
||||
a copy will be made even if copy_x is False.
|
||||
|
||||
algorithm : {"lloyd", "elkan"}, default="lloyd"
|
||||
Inner K-means algorithm used in bisection.
|
||||
The classical EM-style algorithm is `"lloyd"`.
|
||||
The `"elkan"` variation can be more efficient on some datasets with
|
||||
well-defined clusters, by using the triangle inequality. However it's
|
||||
more memory intensive due to the allocation of an extra array of shape
|
||||
`(n_samples, n_clusters)`.
|
||||
|
||||
bisecting_strategy : {"biggest_inertia", "largest_cluster"},\
|
||||
default="biggest_inertia"
|
||||
Defines how bisection should be performed:
|
||||
|
||||
- "biggest_inertia" means that BisectingKMeans will always check
|
||||
all calculated cluster for cluster with biggest SSE
|
||||
(Sum of squared errors) and bisect it. This approach concentrates on
|
||||
precision, but may be costly in terms of execution time (especially for
|
||||
larger amount of data points).
|
||||
|
||||
- "largest_cluster" - BisectingKMeans will always split cluster with
|
||||
largest amount of points assigned to it from all clusters
|
||||
previously calculated. That should work faster than picking by SSE
|
||||
('biggest_inertia') and may produce similar results in most cases.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
||||
Coordinates of cluster centers. If the algorithm stops before fully
|
||||
converging (see ``tol`` and ``max_iter``), these will not be
|
||||
consistent with ``labels_``.
|
||||
|
||||
labels_ : ndarray of shape (n_samples,)
|
||||
Labels of each point.
|
||||
|
||||
inertia_ : float
|
||||
Sum of squared distances of samples to their closest cluster center,
|
||||
weighted by the sample weights if provided.
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
See Also
|
||||
--------
|
||||
KMeans : Original implementation of K-Means algorithm.
|
||||
|
||||
Notes
|
||||
-----
|
||||
It might be inefficient when n_cluster is less than 3, due to unnecessary
|
||||
calculations for that case.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import BisectingKMeans
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
||||
... [10, 2], [10, 4], [10, 0],
|
||||
... [10, 6], [10, 8], [10, 10]])
|
||||
>>> bisect_means = BisectingKMeans(n_clusters=3, random_state=0).fit(X)
|
||||
>>> bisect_means.labels_
|
||||
array([2, 2, 2, 0, 0, 0, 1, 1, 1], dtype=int32)
|
||||
>>> bisect_means.predict([[0, 0], [12, 3]])
|
||||
array([2, 0], dtype=int32)
|
||||
>>> bisect_means.cluster_centers_
|
||||
array([[10., 2.],
|
||||
[10., 8.],
|
||||
[ 1., 2.]])
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
**_BaseKMeans._parameter_constraints,
|
||||
"init": [StrOptions({"k-means++", "random"}), callable],
|
||||
"copy_x": ["boolean"],
|
||||
"algorithm": [StrOptions({"lloyd", "elkan"})],
|
||||
"bisecting_strategy": [StrOptions({"biggest_inertia", "largest_cluster"})],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_clusters=8,
|
||||
*,
|
||||
init="random",
|
||||
n_init=1,
|
||||
random_state=None,
|
||||
max_iter=300,
|
||||
verbose=0,
|
||||
tol=1e-4,
|
||||
copy_x=True,
|
||||
algorithm="lloyd",
|
||||
bisecting_strategy="biggest_inertia",
|
||||
):
|
||||
|
||||
super().__init__(
|
||||
n_clusters=n_clusters,
|
||||
init=init,
|
||||
max_iter=max_iter,
|
||||
verbose=verbose,
|
||||
random_state=random_state,
|
||||
tol=tol,
|
||||
n_init=n_init,
|
||||
)
|
||||
|
||||
self.copy_x = copy_x
|
||||
self.algorithm = algorithm
|
||||
self.bisecting_strategy = bisecting_strategy
|
||||
|
||||
def _warn_mkl_vcomp(self, n_active_threads):
|
||||
"""Warn when vcomp and mkl are both present"""
|
||||
warnings.warn(
|
||||
"BisectingKMeans is known to have a memory leak on Windows "
|
||||
"with MKL, when there are less chunks than available "
|
||||
"threads. You can avoid it by setting the environment"
|
||||
f" variable OMP_NUM_THREADS={n_active_threads}."
|
||||
)
|
||||
|
||||
def _inertia_per_cluster(self, X, centers, labels, sample_weight):
|
||||
"""Calculate the sum of squared errors (inertia) per cluster.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
|
||||
The input samples.
|
||||
|
||||
centers : ndarray of shape (n_clusters, n_features)
|
||||
The cluster centers.
|
||||
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Index of the cluster each sample belongs to.
|
||||
|
||||
sample_weight : ndarray of shape (n_samples,)
|
||||
The weights for each observation in X.
|
||||
|
||||
Returns
|
||||
-------
|
||||
inertia_per_cluster : ndarray of shape (n_clusters,)
|
||||
Sum of squared errors (inertia) for each cluster.
|
||||
"""
|
||||
_inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense
|
||||
|
||||
inertia_per_cluster = np.empty(centers.shape[1])
|
||||
for label in range(centers.shape[0]):
|
||||
inertia_per_cluster[label] = _inertia(
|
||||
X, sample_weight, centers, labels, self._n_threads, single_label=label
|
||||
)
|
||||
|
||||
return inertia_per_cluster
|
||||
|
||||
def _bisect(self, X, x_squared_norms, sample_weight, cluster_to_bisect):
|
||||
"""Split a cluster into 2 subsclusters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
|
||||
Training instances to cluster.
|
||||
|
||||
x_squared_norms : ndarray of shape (n_samples,)
|
||||
Squared euclidean norm of each data point.
|
||||
|
||||
sample_weight : ndarray of shape (n_samples,)
|
||||
The weights for each observation in X.
|
||||
|
||||
cluster_to_bisect : _BisectingTree node object
|
||||
The cluster node to split.
|
||||
"""
|
||||
X = X[cluster_to_bisect.indices]
|
||||
x_squared_norms = x_squared_norms[cluster_to_bisect.indices]
|
||||
sample_weight = sample_weight[cluster_to_bisect.indices]
|
||||
|
||||
best_inertia = None
|
||||
|
||||
# Split samples in X into 2 clusters.
|
||||
# Repeating `n_init` times to obtain best clusters
|
||||
for _ in range(self.n_init):
|
||||
centers_init = self._init_centroids(
|
||||
X, x_squared_norms, self.init, self._random_state, n_centroids=2
|
||||
)
|
||||
|
||||
labels, inertia, centers, _ = self._kmeans_single(
|
||||
X,
|
||||
sample_weight,
|
||||
centers_init,
|
||||
max_iter=self.max_iter,
|
||||
verbose=self.verbose,
|
||||
tol=self.tol,
|
||||
n_threads=self._n_threads,
|
||||
)
|
||||
|
||||
# allow small tolerance on the inertia to accommodate for
|
||||
# non-deterministic rounding errors due to parallel computation
|
||||
if best_inertia is None or inertia < best_inertia * (1 - 1e-6):
|
||||
best_labels = labels
|
||||
best_centers = centers
|
||||
best_inertia = inertia
|
||||
|
||||
if self.verbose:
|
||||
print(f"New centroids from bisection: {best_centers}")
|
||||
|
||||
if self.bisecting_strategy == "biggest_inertia":
|
||||
scores = self._inertia_per_cluster(
|
||||
X, best_centers, best_labels, sample_weight
|
||||
)
|
||||
else: # bisecting_strategy == "largest_cluster"
|
||||
# Using minlength to make sure that we have the counts for both labels even
|
||||
# if all samples are labelled 0.
|
||||
scores = np.bincount(best_labels, minlength=2)
|
||||
|
||||
cluster_to_bisect.split(best_labels, best_centers, scores)
|
||||
|
||||
def fit(self, X, y=None, sample_weight=None):
|
||||
"""Compute bisecting k-means clustering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
|
||||
Training instances to cluster.
|
||||
|
||||
.. note:: The data will be converted to C ordering,
|
||||
which will cause a memory copy
|
||||
if the given data is not C-contiguous.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
The weights for each observation in X. If None, all observations
|
||||
are assigned equal weight.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
Fitted estimator.
|
||||
"""
|
||||
self._validate_params()
|
||||
|
||||
X = self._validate_data(
|
||||
X,
|
||||
accept_sparse="csr",
|
||||
dtype=[np.float64, np.float32],
|
||||
order="C",
|
||||
copy=self.copy_x,
|
||||
accept_large_sparse=False,
|
||||
)
|
||||
|
||||
self._check_params_vs_input(X)
|
||||
|
||||
self._random_state = check_random_state(self.random_state)
|
||||
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
||||
self._n_threads = _openmp_effective_n_threads()
|
||||
|
||||
if self.algorithm == "lloyd" or self.n_clusters == 1:
|
||||
self._kmeans_single = _kmeans_single_lloyd
|
||||
self._check_mkl_vcomp(X, X.shape[0])
|
||||
else:
|
||||
self._kmeans_single = _kmeans_single_elkan
|
||||
|
||||
# Subtract of mean of X for more accurate distance computations
|
||||
if not sp.issparse(X):
|
||||
self._X_mean = X.mean(axis=0)
|
||||
X -= self._X_mean
|
||||
|
||||
# Initialize the hierarchical clusters tree
|
||||
self._bisecting_tree = _BisectingTree(
|
||||
indices=np.arange(X.shape[0]),
|
||||
center=X.mean(axis=0),
|
||||
score=0,
|
||||
)
|
||||
|
||||
x_squared_norms = row_norms(X, squared=True)
|
||||
|
||||
for _ in range(self.n_clusters - 1):
|
||||
# Chose cluster to bisect
|
||||
cluster_to_bisect = self._bisecting_tree.get_cluster_to_bisect()
|
||||
|
||||
# Split this cluster into 2 subclusters
|
||||
self._bisect(X, x_squared_norms, sample_weight, cluster_to_bisect)
|
||||
|
||||
# Aggregate final labels and centers from the bisecting tree
|
||||
self.labels_ = np.full(X.shape[0], -1, dtype=np.int32)
|
||||
self.cluster_centers_ = np.empty((self.n_clusters, X.shape[1]), dtype=X.dtype)
|
||||
|
||||
for i, cluster_node in enumerate(self._bisecting_tree.iter_leaves()):
|
||||
self.labels_[cluster_node.indices] = i
|
||||
self.cluster_centers_[i] = cluster_node.center
|
||||
cluster_node.label = i # label final clusters for future prediction
|
||||
cluster_node.indices = None # release memory
|
||||
|
||||
# Restore original data
|
||||
if not sp.issparse(X):
|
||||
X += self._X_mean
|
||||
self.cluster_centers_ += self._X_mean
|
||||
|
||||
_inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense
|
||||
self.inertia_ = _inertia(
|
||||
X, sample_weight, self.cluster_centers_, self.labels_, self._n_threads
|
||||
)
|
||||
|
||||
self._n_features_out = self.cluster_centers_.shape[0]
|
||||
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
"""Predict which cluster each sample in X belongs to.
|
||||
|
||||
Prediction is made by going down the hierarchical tree
|
||||
in searching of closest leaf cluster.
|
||||
|
||||
In the vector quantization literature, `cluster_centers_` is called
|
||||
the code book and each value returned by `predict` is the index of
|
||||
the closest code in the code book.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
New data to predict.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Index of the cluster each sample belongs to.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = self._check_test_data(X)
|
||||
x_squared_norms = row_norms(X, squared=True)
|
||||
|
||||
# sample weights are unused but necessary in cython helpers
|
||||
sample_weight = np.ones_like(x_squared_norms)
|
||||
|
||||
labels = self._predict_recursive(X, sample_weight, self._bisecting_tree)
|
||||
|
||||
return labels
|
||||
|
||||
def _predict_recursive(self, X, sample_weight, cluster_node):
|
||||
"""Predict recursively by going down the hierarchical tree.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
|
||||
The data points, currently assigned to `cluster_node`, to predict between
|
||||
the subclusters of this node.
|
||||
|
||||
sample_weight : ndarray of shape (n_samples,)
|
||||
The weights for each observation in X.
|
||||
|
||||
cluster_node : _BisectingTree node object
|
||||
The cluster node of the hierarchical tree.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Index of the cluster each sample belongs to.
|
||||
"""
|
||||
if cluster_node.left is None:
|
||||
# This cluster has no subcluster. Labels are just the label of the cluster.
|
||||
return np.full(X.shape[0], cluster_node.label, dtype=np.int32)
|
||||
|
||||
# Determine if data points belong to the left or right subcluster
|
||||
centers = np.vstack((cluster_node.left.center, cluster_node.right.center))
|
||||
if hasattr(self, "_X_mean"):
|
||||
centers += self._X_mean
|
||||
|
||||
cluster_labels = _labels_inertia_threadpool_limit(
|
||||
X,
|
||||
sample_weight,
|
||||
centers,
|
||||
self._n_threads,
|
||||
return_inertia=False,
|
||||
)
|
||||
mask = cluster_labels == 0
|
||||
|
||||
# Compute the labels for each subset of the data points.
|
||||
labels = np.full(X.shape[0], -1, dtype=np.int32)
|
||||
|
||||
labels[mask] = self._predict_recursive(
|
||||
X[mask], sample_weight[mask], cluster_node.left
|
||||
)
|
||||
|
||||
labels[~mask] = self._predict_recursive(
|
||||
X[~mask], sample_weight[~mask], cluster_node.right
|
||||
)
|
||||
|
||||
return labels
|
||||
|
||||
def _more_tags(self):
|
||||
return {"preserves_dtype": [np.float64, np.float32]}
|
450
venv/Lib/site-packages/sklearn/cluster/_dbscan.py
Normal file
450
venv/Lib/site-packages/sklearn/cluster/_dbscan.py
Normal file
|
@ -0,0 +1,450 @@
|
|||
"""
|
||||
DBSCAN: Density-Based Spatial Clustering of Applications with Noise
|
||||
"""
|
||||
|
||||
# Author: Robert Layton <robertlayton@gmail.com>
|
||||
# Joel Nothman <joel.nothman@gmail.com>
|
||||
# Lars Buitinck
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
import warnings
|
||||
from numbers import Integral, Real
|
||||
|
||||
import numpy as np
|
||||
from scipy import sparse
|
||||
|
||||
from ..metrics.pairwise import _VALID_METRICS
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..utils.validation import _check_sample_weight
|
||||
from ..utils._param_validation import Interval, StrOptions
|
||||
from ..neighbors import NearestNeighbors
|
||||
from ._dbscan_inner import dbscan_inner
|
||||
|
||||
|
||||
def dbscan(
|
||||
X,
|
||||
eps=0.5,
|
||||
*,
|
||||
min_samples=5,
|
||||
metric="minkowski",
|
||||
metric_params=None,
|
||||
algorithm="auto",
|
||||
leaf_size=30,
|
||||
p=2,
|
||||
sample_weight=None,
|
||||
n_jobs=None,
|
||||
):
|
||||
"""Perform DBSCAN clustering from vector array or distance matrix.
|
||||
|
||||
Read more in the :ref:`User Guide <dbscan>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse (CSR) matrix} of shape (n_samples, n_features) or \
|
||||
(n_samples, n_samples)
|
||||
A feature array, or array of distances between samples if
|
||||
``metric='precomputed'``.
|
||||
|
||||
eps : float, default=0.5
|
||||
The maximum distance between two samples for one to be considered
|
||||
as in the neighborhood of the other. This is not a maximum bound
|
||||
on the distances of points within a cluster. This is the most
|
||||
important DBSCAN parameter to choose appropriately for your data set
|
||||
and distance function.
|
||||
|
||||
min_samples : int, default=5
|
||||
The number of samples (or total weight) in a neighborhood for a point
|
||||
to be considered as a core point. This includes the point itself.
|
||||
|
||||
metric : str or callable, default='minkowski'
|
||||
The metric to use when calculating distance between instances in a
|
||||
feature array. If metric is a string or callable, it must be one of
|
||||
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
|
||||
its metric parameter.
|
||||
If metric is "precomputed", X is assumed to be a distance matrix and
|
||||
must be square during fit.
|
||||
X may be a :term:`sparse graph <sparse graph>`,
|
||||
in which case only "nonzero" elements may be considered neighbors.
|
||||
|
||||
metric_params : dict, default=None
|
||||
Additional keyword arguments for the metric function.
|
||||
|
||||
.. versionadded:: 0.19
|
||||
|
||||
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
||||
The algorithm to be used by the NearestNeighbors module
|
||||
to compute pointwise distances and find nearest neighbors.
|
||||
See NearestNeighbors module documentation for details.
|
||||
|
||||
leaf_size : int, default=30
|
||||
Leaf size passed to BallTree or cKDTree. This can affect the speed
|
||||
of the construction and query, as well as the memory required
|
||||
to store the tree. The optimal value depends
|
||||
on the nature of the problem.
|
||||
|
||||
p : float, default=2
|
||||
The power of the Minkowski metric to be used to calculate distance
|
||||
between points.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Weight of each sample, such that a sample with a weight of at least
|
||||
``min_samples`` is by itself a core sample; a sample with negative
|
||||
weight may inhibit its eps-neighbor from being core.
|
||||
Note that weights are absolute, and default to 1.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of parallel jobs to run for neighbors search. ``None`` means
|
||||
1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means
|
||||
using all processors. See :term:`Glossary <n_jobs>` for more details.
|
||||
If precomputed distance are used, parallel execution is not available
|
||||
and thus n_jobs will have no effect.
|
||||
|
||||
Returns
|
||||
-------
|
||||
core_samples : ndarray of shape (n_core_samples,)
|
||||
Indices of core samples.
|
||||
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels for each point. Noisy samples are given the label -1.
|
||||
|
||||
See Also
|
||||
--------
|
||||
DBSCAN : An estimator interface for this clustering algorithm.
|
||||
OPTICS : A similar estimator interface clustering at multiple values of
|
||||
eps. Our implementation is optimized for memory usage.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_dbscan.py
|
||||
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
|
||||
|
||||
This implementation bulk-computes all neighborhood queries, which increases
|
||||
the memory complexity to O(n.d) where d is the average number of neighbors,
|
||||
while original DBSCAN had memory complexity O(n). It may attract a higher
|
||||
memory complexity when querying these nearest neighborhoods, depending
|
||||
on the ``algorithm``.
|
||||
|
||||
One way to avoid the query complexity is to pre-compute sparse
|
||||
neighborhoods in chunks using
|
||||
:func:`NearestNeighbors.radius_neighbors_graph
|
||||
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
|
||||
``mode='distance'``, then using ``metric='precomputed'`` here.
|
||||
|
||||
Another way to reduce memory and computation time is to remove
|
||||
(near-)duplicate points and use ``sample_weight`` instead.
|
||||
|
||||
:func:`cluster.optics <sklearn.cluster.optics>` provides a similar
|
||||
clustering with lower memory usage.
|
||||
|
||||
References
|
||||
----------
|
||||
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, `"A Density-Based
|
||||
Algorithm for Discovering Clusters in Large Spatial Databases with Noise"
|
||||
<https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf>`_.
|
||||
In: Proceedings of the 2nd International Conference on Knowledge Discovery
|
||||
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
|
||||
|
||||
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017).
|
||||
:doi:`"DBSCAN revisited, revisited: why and how you should (still) use DBSCAN."
|
||||
<10.1145/3068335>`
|
||||
ACM Transactions on Database Systems (TODS), 42(3), 19.
|
||||
"""
|
||||
|
||||
est = DBSCAN(
|
||||
eps=eps,
|
||||
min_samples=min_samples,
|
||||
metric=metric,
|
||||
metric_params=metric_params,
|
||||
algorithm=algorithm,
|
||||
leaf_size=leaf_size,
|
||||
p=p,
|
||||
n_jobs=n_jobs,
|
||||
)
|
||||
est.fit(X, sample_weight=sample_weight)
|
||||
return est.core_sample_indices_, est.labels_
|
||||
|
||||
|
||||
class DBSCAN(ClusterMixin, BaseEstimator):
|
||||
"""Perform DBSCAN clustering from vector array or distance matrix.
|
||||
|
||||
DBSCAN - Density-Based Spatial Clustering of Applications with Noise.
|
||||
Finds core samples of high density and expands clusters from them.
|
||||
Good for data which contains clusters of similar density.
|
||||
|
||||
Read more in the :ref:`User Guide <dbscan>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
eps : float, default=0.5
|
||||
The maximum distance between two samples for one to be considered
|
||||
as in the neighborhood of the other. This is not a maximum bound
|
||||
on the distances of points within a cluster. This is the most
|
||||
important DBSCAN parameter to choose appropriately for your data set
|
||||
and distance function.
|
||||
|
||||
min_samples : int, default=5
|
||||
The number of samples (or total weight) in a neighborhood for a point
|
||||
to be considered as a core point. This includes the point itself.
|
||||
|
||||
metric : str, or callable, default='euclidean'
|
||||
The metric to use when calculating distance between instances in a
|
||||
feature array. If metric is a string or callable, it must be one of
|
||||
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
|
||||
its metric parameter.
|
||||
If metric is "precomputed", X is assumed to be a distance matrix and
|
||||
must be square. X may be a :term:`sparse graph`, in which
|
||||
case only "nonzero" elements may be considered neighbors for DBSCAN.
|
||||
|
||||
.. versionadded:: 0.17
|
||||
metric *precomputed* to accept precomputed sparse matrix.
|
||||
|
||||
metric_params : dict, default=None
|
||||
Additional keyword arguments for the metric function.
|
||||
|
||||
.. versionadded:: 0.19
|
||||
|
||||
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
||||
The algorithm to be used by the NearestNeighbors module
|
||||
to compute pointwise distances and find nearest neighbors.
|
||||
See NearestNeighbors module documentation for details.
|
||||
|
||||
leaf_size : int, default=30
|
||||
Leaf size passed to BallTree or cKDTree. This can affect the speed
|
||||
of the construction and query, as well as the memory required
|
||||
to store the tree. The optimal value depends
|
||||
on the nature of the problem.
|
||||
|
||||
p : float, default=None
|
||||
The power of the Minkowski metric to be used to calculate distance
|
||||
between points. If None, then ``p=2`` (equivalent to the Euclidean
|
||||
distance).
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of parallel jobs to run.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
core_sample_indices_ : ndarray of shape (n_core_samples,)
|
||||
Indices of core samples.
|
||||
|
||||
components_ : ndarray of shape (n_core_samples, n_features)
|
||||
Copy of each core sample found by training.
|
||||
|
||||
labels_ : ndarray of shape (n_samples)
|
||||
Cluster labels for each point in the dataset given to fit().
|
||||
Noisy samples are given the label -1.
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
See Also
|
||||
--------
|
||||
OPTICS : A similar clustering at multiple values of eps. Our implementation
|
||||
is optimized for memory usage.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_dbscan.py
|
||||
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
|
||||
|
||||
This implementation bulk-computes all neighborhood queries, which increases
|
||||
the memory complexity to O(n.d) where d is the average number of neighbors,
|
||||
while original DBSCAN had memory complexity O(n). It may attract a higher
|
||||
memory complexity when querying these nearest neighborhoods, depending
|
||||
on the ``algorithm``.
|
||||
|
||||
One way to avoid the query complexity is to pre-compute sparse
|
||||
neighborhoods in chunks using
|
||||
:func:`NearestNeighbors.radius_neighbors_graph
|
||||
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
|
||||
``mode='distance'``, then using ``metric='precomputed'`` here.
|
||||
|
||||
Another way to reduce memory and computation time is to remove
|
||||
(near-)duplicate points and use ``sample_weight`` instead.
|
||||
|
||||
:class:`cluster.OPTICS` provides a similar clustering with lower memory
|
||||
usage.
|
||||
|
||||
References
|
||||
----------
|
||||
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, `"A Density-Based
|
||||
Algorithm for Discovering Clusters in Large Spatial Databases with Noise"
|
||||
<https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf>`_.
|
||||
In: Proceedings of the 2nd International Conference on Knowledge Discovery
|
||||
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
|
||||
|
||||
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017).
|
||||
:doi:`"DBSCAN revisited, revisited: why and how you should (still) use DBSCAN."
|
||||
<10.1145/3068335>`
|
||||
ACM Transactions on Database Systems (TODS), 42(3), 19.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import DBSCAN
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 2], [2, 2], [2, 3],
|
||||
... [8, 7], [8, 8], [25, 80]])
|
||||
>>> clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
||||
>>> clustering.labels_
|
||||
array([ 0, 0, 0, 1, 1, -1])
|
||||
>>> clustering
|
||||
DBSCAN(eps=3, min_samples=2)
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
"eps": [Interval(Real, 0.0, None, closed="neither")],
|
||||
"min_samples": [Interval(Integral, 1, None, closed="left")],
|
||||
"metric": [
|
||||
StrOptions(set(_VALID_METRICS) | {"precomputed"}),
|
||||
callable,
|
||||
],
|
||||
"metric_params": [dict, None],
|
||||
"algorithm": [StrOptions({"auto", "ball_tree", "kd_tree", "brute"})],
|
||||
"leaf_size": [Interval(Integral, 1, None, closed="left")],
|
||||
"p": [Interval(Real, 0.0, None, closed="left"), None],
|
||||
"n_jobs": [Integral, None],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
eps=0.5,
|
||||
*,
|
||||
min_samples=5,
|
||||
metric="euclidean",
|
||||
metric_params=None,
|
||||
algorithm="auto",
|
||||
leaf_size=30,
|
||||
p=None,
|
||||
n_jobs=None,
|
||||
):
|
||||
self.eps = eps
|
||||
self.min_samples = min_samples
|
||||
self.metric = metric
|
||||
self.metric_params = metric_params
|
||||
self.algorithm = algorithm
|
||||
self.leaf_size = leaf_size
|
||||
self.p = p
|
||||
self.n_jobs = n_jobs
|
||||
|
||||
def fit(self, X, y=None, sample_weight=None):
|
||||
"""Perform DBSCAN clustering from features, or distance matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
||||
(n_samples, n_samples)
|
||||
Training instances to cluster, or distances between instances if
|
||||
``metric='precomputed'``. If a sparse matrix is provided, it will
|
||||
be converted into a sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Weight of each sample, such that a sample with a weight of at least
|
||||
``min_samples`` is by itself a core sample; a sample with a
|
||||
negative weight may inhibit its eps-neighbor from being core.
|
||||
Note that weights are absolute, and default to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns a fitted instance of self.
|
||||
"""
|
||||
self._validate_params()
|
||||
|
||||
X = self._validate_data(X, accept_sparse="csr")
|
||||
|
||||
if sample_weight is not None:
|
||||
sample_weight = _check_sample_weight(sample_weight, X)
|
||||
|
||||
# Calculate neighborhood for all samples. This leaves the original
|
||||
# point in, which needs to be considered later (i.e. point i is in the
|
||||
# neighborhood of point i. While True, its useless information)
|
||||
if self.metric == "precomputed" and sparse.issparse(X):
|
||||
# set the diagonal to explicit values, as a point is its own
|
||||
# neighbor
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", sparse.SparseEfficiencyWarning)
|
||||
X.setdiag(X.diagonal()) # XXX: modifies X's internals in-place
|
||||
|
||||
neighbors_model = NearestNeighbors(
|
||||
radius=self.eps,
|
||||
algorithm=self.algorithm,
|
||||
leaf_size=self.leaf_size,
|
||||
metric=self.metric,
|
||||
metric_params=self.metric_params,
|
||||
p=self.p,
|
||||
n_jobs=self.n_jobs,
|
||||
)
|
||||
neighbors_model.fit(X)
|
||||
# This has worst case O(n^2) memory complexity
|
||||
neighborhoods = neighbors_model.radius_neighbors(X, return_distance=False)
|
||||
|
||||
if sample_weight is None:
|
||||
n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods])
|
||||
else:
|
||||
n_neighbors = np.array(
|
||||
[np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]
|
||||
)
|
||||
|
||||
# Initially, all samples are noise.
|
||||
labels = np.full(X.shape[0], -1, dtype=np.intp)
|
||||
|
||||
# A list of all core samples found.
|
||||
core_samples = np.asarray(n_neighbors >= self.min_samples, dtype=np.uint8)
|
||||
dbscan_inner(core_samples, neighborhoods, labels)
|
||||
|
||||
self.core_sample_indices_ = np.where(core_samples)[0]
|
||||
self.labels_ = labels
|
||||
|
||||
if len(self.core_sample_indices_):
|
||||
# fix for scipy sparse indexing issue
|
||||
self.components_ = X[self.core_sample_indices_].copy()
|
||||
else:
|
||||
# no core samples
|
||||
self.components_ = np.empty((0, X.shape[1]))
|
||||
return self
|
||||
|
||||
def fit_predict(self, X, y=None, sample_weight=None):
|
||||
"""Compute clusters from a data or distance matrix and predict labels.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
||||
(n_samples, n_samples)
|
||||
Training instances to cluster, or distances between instances if
|
||||
``metric='precomputed'``. If a sparse matrix is provided, it will
|
||||
be converted into a sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Weight of each sample, such that a sample with a weight of at least
|
||||
``min_samples`` is by itself a core sample; a sample with a
|
||||
negative weight may inhibit its eps-neighbor from being core.
|
||||
Note that weights are absolute, and default to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels. Noisy samples are given the label -1.
|
||||
"""
|
||||
self.fit(X, sample_weight=sample_weight)
|
||||
return self.labels_
|
||||
|
||||
def _more_tags(self):
|
||||
return {"pairwise": self.metric == "precomputed"}
|
Binary file not shown.
|
@ -0,0 +1,75 @@
|
|||
"""
|
||||
Feature agglomeration. Base classes and functions for performing feature
|
||||
agglomeration.
|
||||
"""
|
||||
# Author: V. Michel, A. Gramfort
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..base import TransformerMixin
|
||||
from ..utils.validation import check_is_fitted
|
||||
from scipy.sparse import issparse
|
||||
|
||||
###############################################################################
|
||||
# Mixin class for feature agglomeration.
|
||||
|
||||
|
||||
class AgglomerationTransform(TransformerMixin):
|
||||
"""
|
||||
A class for feature agglomeration via the transform interface.
|
||||
"""
|
||||
|
||||
def transform(self, X):
|
||||
"""
|
||||
Transform a new matrix using the built clustering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or \
|
||||
(n_samples, n_samples)
|
||||
A M by N array of M observations in N dimensions or a length
|
||||
M array of M one-dimensional observations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,)
|
||||
The pooled values for each feature cluster.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = self._validate_data(X, reset=False)
|
||||
if self.pooling_func == np.mean and not issparse(X):
|
||||
size = np.bincount(self.labels_)
|
||||
n_samples = X.shape[0]
|
||||
# a fast way to compute the mean of grouped features
|
||||
nX = np.array(
|
||||
[np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)]
|
||||
)
|
||||
else:
|
||||
nX = [
|
||||
self.pooling_func(X[:, self.labels_ == l], axis=1)
|
||||
for l in np.unique(self.labels_)
|
||||
]
|
||||
nX = np.array(nX).T
|
||||
return nX
|
||||
|
||||
def inverse_transform(self, Xred):
|
||||
"""
|
||||
Inverse the transformation and return a vector of size `n_features`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Xred : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||||
The values to be assigned to each cluster of samples.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : ndarray of shape (n_samples, n_features) or (n_features,)
|
||||
A vector of size `n_samples` with the values of `Xred` assigned to
|
||||
each of the cluster of samples.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
unil, inverse = np.unique(self.labels_, return_inverse=True)
|
||||
return Xred[..., inverse]
|
Binary file not shown.
Binary file not shown.
19
venv/Lib/site-packages/sklearn/cluster/_k_means_common.pxd
Normal file
19
venv/Lib/site-packages/sklearn/cluster/_k_means_common.pxd
Normal file
|
@ -0,0 +1,19 @@
|
|||
from cython cimport floating
|
||||
|
||||
|
||||
cdef floating _euclidean_dense_dense(floating*, floating*, int, bint) nogil
|
||||
|
||||
cdef floating _euclidean_sparse_dense(floating[::1], int[::1], floating[::1],
|
||||
floating, bint) nogil
|
||||
|
||||
cpdef void _relocate_empty_clusters_dense(
|
||||
floating[:, ::1], floating[::1], floating[:, ::1],
|
||||
floating[:, ::1], floating[::1], int[::1])
|
||||
|
||||
cpdef void _relocate_empty_clusters_sparse(
|
||||
floating[::1], int[::1], int[::1], floating[::1], floating[:, ::1],
|
||||
floating[:, ::1], floating[::1], int[::1])
|
||||
|
||||
cdef void _average_centers(floating[:, ::1], floating[::1])
|
||||
|
||||
cdef void _center_shift(floating[:, ::1], floating[:, ::1], floating[::1])
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
2247
venv/Lib/site-packages/sklearn/cluster/_kmeans.py
Normal file
2247
venv/Lib/site-packages/sklearn/cluster/_kmeans.py
Normal file
File diff suppressed because it is too large
Load diff
536
venv/Lib/site-packages/sklearn/cluster/_mean_shift.py
Normal file
536
venv/Lib/site-packages/sklearn/cluster/_mean_shift.py
Normal file
|
@ -0,0 +1,536 @@
|
|||
"""Mean shift clustering algorithm.
|
||||
|
||||
Mean shift clustering aims to discover *blobs* in a smooth density of
|
||||
samples. It is a centroid based algorithm, which works by updating candidates
|
||||
for centroids to be the mean of the points within a given region. These
|
||||
candidates are then filtered in a post-processing stage to eliminate
|
||||
near-duplicates to form the final set of centroids.
|
||||
|
||||
Seeding is performed using a binning technique for scalability.
|
||||
"""
|
||||
|
||||
# Authors: Conrad Lee <conradlee@gmail.com>
|
||||
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||||
# Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||||
# Martino Sorbaro <martino.sorbaro@ed.ac.uk>
|
||||
|
||||
import numpy as np
|
||||
import warnings
|
||||
from numbers import Integral, Real
|
||||
|
||||
from collections import defaultdict
|
||||
from ..utils._param_validation import Interval
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.parallel import delayed, Parallel
|
||||
from ..utils import check_random_state, gen_batches, check_array
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..neighbors import NearestNeighbors
|
||||
from ..metrics.pairwise import pairwise_distances_argmin
|
||||
from .._config import config_context
|
||||
|
||||
|
||||
def estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0, n_jobs=None):
|
||||
"""Estimate the bandwidth to use with the mean-shift algorithm.
|
||||
|
||||
That this function takes time at least quadratic in n_samples. For large
|
||||
datasets, it's wise to set that parameter to a small value.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Input points.
|
||||
|
||||
quantile : float, default=0.3
|
||||
Should be between [0, 1]
|
||||
0.5 means that the median of all pairwise distances is used.
|
||||
|
||||
n_samples : int, default=None
|
||||
The number of samples to use. If not given, all samples are used.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
The generator used to randomly select the samples from input points
|
||||
for bandwidth estimation. Use an int to make the randomness
|
||||
deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of parallel jobs to run for neighbors search.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bandwidth : float
|
||||
The bandwidth parameter.
|
||||
"""
|
||||
X = check_array(X)
|
||||
|
||||
random_state = check_random_state(random_state)
|
||||
if n_samples is not None:
|
||||
idx = random_state.permutation(X.shape[0])[:n_samples]
|
||||
X = X[idx]
|
||||
n_neighbors = int(X.shape[0] * quantile)
|
||||
if n_neighbors < 1: # cannot fit NearestNeighbors with n_neighbors = 0
|
||||
n_neighbors = 1
|
||||
nbrs = NearestNeighbors(n_neighbors=n_neighbors, n_jobs=n_jobs)
|
||||
nbrs.fit(X)
|
||||
|
||||
bandwidth = 0.0
|
||||
for batch in gen_batches(len(X), 500):
|
||||
d, _ = nbrs.kneighbors(X[batch, :], return_distance=True)
|
||||
bandwidth += np.max(d, axis=1).sum()
|
||||
|
||||
return bandwidth / X.shape[0]
|
||||
|
||||
|
||||
# separate function for each seed's iterative loop
|
||||
def _mean_shift_single_seed(my_mean, X, nbrs, max_iter):
|
||||
# For each seed, climb gradient until convergence or max_iter
|
||||
bandwidth = nbrs.get_params()["radius"]
|
||||
stop_thresh = 1e-3 * bandwidth # when mean has converged
|
||||
completed_iterations = 0
|
||||
while True:
|
||||
# Find mean of points within bandwidth
|
||||
i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0]
|
||||
points_within = X[i_nbrs]
|
||||
if len(points_within) == 0:
|
||||
break # Depending on seeding strategy this condition may occur
|
||||
my_old_mean = my_mean # save the old mean
|
||||
my_mean = np.mean(points_within, axis=0)
|
||||
# If converged or at max_iter, adds the cluster
|
||||
if (
|
||||
np.linalg.norm(my_mean - my_old_mean) < stop_thresh
|
||||
or completed_iterations == max_iter
|
||||
):
|
||||
break
|
||||
completed_iterations += 1
|
||||
return tuple(my_mean), len(points_within), completed_iterations
|
||||
|
||||
|
||||
def mean_shift(
|
||||
X,
|
||||
*,
|
||||
bandwidth=None,
|
||||
seeds=None,
|
||||
bin_seeding=False,
|
||||
min_bin_freq=1,
|
||||
cluster_all=True,
|
||||
max_iter=300,
|
||||
n_jobs=None,
|
||||
):
|
||||
"""Perform mean shift clustering of data using a flat kernel.
|
||||
|
||||
Read more in the :ref:`User Guide <mean_shift>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
bandwidth : float, default=None
|
||||
Kernel bandwidth.
|
||||
|
||||
If bandwidth is not given, it is determined using a heuristic based on
|
||||
the median of all pairwise distances. This will take quadratic time in
|
||||
the number of samples. The sklearn.cluster.estimate_bandwidth function
|
||||
can be used to do this more efficiently.
|
||||
|
||||
seeds : array-like of shape (n_seeds, n_features) or None
|
||||
Point used as initial kernel locations. If None and bin_seeding=False,
|
||||
each data point is used as a seed. If None and bin_seeding=True,
|
||||
see bin_seeding.
|
||||
|
||||
bin_seeding : bool, default=False
|
||||
If true, initial kernel locations are not locations of all
|
||||
points, but rather the location of the discretized version of
|
||||
points, where points are binned onto a grid whose coarseness
|
||||
corresponds to the bandwidth. Setting this option to True will speed
|
||||
up the algorithm because fewer seeds will be initialized.
|
||||
Ignored if seeds argument is not None.
|
||||
|
||||
min_bin_freq : int, default=1
|
||||
To speed up the algorithm, accept only those bins with at least
|
||||
min_bin_freq points as seeds.
|
||||
|
||||
cluster_all : bool, default=True
|
||||
If true, then all points are clustered, even those orphans that are
|
||||
not within any kernel. Orphans are assigned to the nearest kernel.
|
||||
If false, then orphans are given cluster label -1.
|
||||
|
||||
max_iter : int, default=300
|
||||
Maximum number of iterations, per seed point before the clustering
|
||||
operation terminates (for that seed point), if has not converged yet.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of jobs to use for the computation. The following tasks benefit
|
||||
from the parallelization:
|
||||
|
||||
- The search of nearest neighbors for bandwidth estimation and label
|
||||
assignments. See the details in the docstring of the
|
||||
``NearestNeighbors`` class.
|
||||
- Hill-climbing optimization for all seeds.
|
||||
|
||||
See :term:`Glossary <n_jobs>` for more details.
|
||||
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
.. versionadded:: 0.17
|
||||
Parallel Execution using *n_jobs*.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
||||
cluster_centers : ndarray of shape (n_clusters, n_features)
|
||||
Coordinates of cluster centers.
|
||||
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels for each point.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_mean_shift.py
|
||||
<sphx_glr_auto_examples_cluster_plot_mean_shift.py>`.
|
||||
"""
|
||||
model = MeanShift(
|
||||
bandwidth=bandwidth,
|
||||
seeds=seeds,
|
||||
min_bin_freq=min_bin_freq,
|
||||
bin_seeding=bin_seeding,
|
||||
cluster_all=cluster_all,
|
||||
n_jobs=n_jobs,
|
||||
max_iter=max_iter,
|
||||
).fit(X)
|
||||
return model.cluster_centers_, model.labels_
|
||||
|
||||
|
||||
def get_bin_seeds(X, bin_size, min_bin_freq=1):
|
||||
"""Find seeds for mean_shift.
|
||||
|
||||
Finds seeds by first binning data onto a grid whose lines are
|
||||
spaced bin_size apart, and then choosing those bins with at least
|
||||
min_bin_freq points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Input points, the same points that will be used in mean_shift.
|
||||
|
||||
bin_size : float
|
||||
Controls the coarseness of the binning. Smaller values lead
|
||||
to more seeding (which is computationally more expensive). If you're
|
||||
not sure how to set this, set it to the value of the bandwidth used
|
||||
in clustering.mean_shift.
|
||||
|
||||
min_bin_freq : int, default=1
|
||||
Only bins with at least min_bin_freq will be selected as seeds.
|
||||
Raising this value decreases the number of seeds found, which
|
||||
makes mean_shift computationally cheaper.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bin_seeds : array-like of shape (n_samples, n_features)
|
||||
Points used as initial kernel positions in clustering.mean_shift.
|
||||
"""
|
||||
if bin_size == 0:
|
||||
return X
|
||||
|
||||
# Bin points
|
||||
bin_sizes = defaultdict(int)
|
||||
for point in X:
|
||||
binned_point = np.round(point / bin_size)
|
||||
bin_sizes[tuple(binned_point)] += 1
|
||||
|
||||
# Select only those bins as seeds which have enough members
|
||||
bin_seeds = np.array(
|
||||
[point for point, freq in bin_sizes.items() if freq >= min_bin_freq],
|
||||
dtype=np.float32,
|
||||
)
|
||||
if len(bin_seeds) == len(X):
|
||||
warnings.warn(
|
||||
"Binning data failed with provided bin_size=%f, using data points as seeds."
|
||||
% bin_size
|
||||
)
|
||||
return X
|
||||
bin_seeds = bin_seeds * bin_size
|
||||
return bin_seeds
|
||||
|
||||
|
||||
class MeanShift(ClusterMixin, BaseEstimator):
|
||||
"""Mean shift clustering using a flat kernel.
|
||||
|
||||
Mean shift clustering aims to discover "blobs" in a smooth density of
|
||||
samples. It is a centroid-based algorithm, which works by updating
|
||||
candidates for centroids to be the mean of the points within a given
|
||||
region. These candidates are then filtered in a post-processing stage to
|
||||
eliminate near-duplicates to form the final set of centroids.
|
||||
|
||||
Seeding is performed using a binning technique for scalability.
|
||||
|
||||
Read more in the :ref:`User Guide <mean_shift>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bandwidth : float, default=None
|
||||
Bandwidth used in the flat kernel.
|
||||
|
||||
If not given, the bandwidth is estimated using
|
||||
sklearn.cluster.estimate_bandwidth; see the documentation for that
|
||||
function for hints on scalability (see also the Notes, below).
|
||||
|
||||
seeds : array-like of shape (n_samples, n_features), default=None
|
||||
Seeds used to initialize kernels. If not set,
|
||||
the seeds are calculated by clustering.get_bin_seeds
|
||||
with bandwidth as the grid size and default values for
|
||||
other parameters.
|
||||
|
||||
bin_seeding : bool, default=False
|
||||
If true, initial kernel locations are not locations of all
|
||||
points, but rather the location of the discretized version of
|
||||
points, where points are binned onto a grid whose coarseness
|
||||
corresponds to the bandwidth. Setting this option to True will speed
|
||||
up the algorithm because fewer seeds will be initialized.
|
||||
The default value is False.
|
||||
Ignored if seeds argument is not None.
|
||||
|
||||
min_bin_freq : int, default=1
|
||||
To speed up the algorithm, accept only those bins with at least
|
||||
min_bin_freq points as seeds.
|
||||
|
||||
cluster_all : bool, default=True
|
||||
If true, then all points are clustered, even those orphans that are
|
||||
not within any kernel. Orphans are assigned to the nearest kernel.
|
||||
If false, then orphans are given cluster label -1.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of jobs to use for the computation. The following tasks benefit
|
||||
from the parallelization:
|
||||
|
||||
- The search of nearest neighbors for bandwidth estimation and label
|
||||
assignments. See the details in the docstring of the
|
||||
``NearestNeighbors`` class.
|
||||
- Hill-climbing optimization for all seeds.
|
||||
|
||||
See :term:`Glossary <n_jobs>` for more details.
|
||||
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
max_iter : int, default=300
|
||||
Maximum number of iterations, per seed point before the clustering
|
||||
operation terminates (for that seed point), if has not converged yet.
|
||||
|
||||
.. versionadded:: 0.22
|
||||
|
||||
Attributes
|
||||
----------
|
||||
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
||||
Coordinates of cluster centers.
|
||||
|
||||
labels_ : ndarray of shape (n_samples,)
|
||||
Labels of each point.
|
||||
|
||||
n_iter_ : int
|
||||
Maximum number of iterations performed on each seed.
|
||||
|
||||
.. versionadded:: 0.22
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
See Also
|
||||
--------
|
||||
KMeans : K-Means clustering.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
Scalability:
|
||||
|
||||
Because this implementation uses a flat kernel and
|
||||
a Ball Tree to look up members of each kernel, the complexity will tend
|
||||
towards O(T*n*log(n)) in lower dimensions, with n the number of samples
|
||||
and T the number of points. In higher dimensions the complexity will
|
||||
tend towards O(T*n^2).
|
||||
|
||||
Scalability can be boosted by using fewer seeds, for example by using
|
||||
a higher value of min_bin_freq in the get_bin_seeds function.
|
||||
|
||||
Note that the estimate_bandwidth function is much less scalable than the
|
||||
mean shift algorithm and will be the bottleneck if it is used.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward
|
||||
feature space analysis". IEEE Transactions on Pattern Analysis and
|
||||
Machine Intelligence. 2002. pp. 603-619.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import MeanShift
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = MeanShift(bandwidth=2).fit(X)
|
||||
>>> clustering.labels_
|
||||
array([1, 1, 1, 0, 0, 0])
|
||||
>>> clustering.predict([[0, 0], [5, 5]])
|
||||
array([1, 0])
|
||||
>>> clustering
|
||||
MeanShift(bandwidth=2)
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
"bandwidth": [Interval(Real, 0, None, closed="neither"), None],
|
||||
"seeds": ["array-like", None],
|
||||
"bin_seeding": ["boolean"],
|
||||
"min_bin_freq": [Interval(Integral, 1, None, closed="left")],
|
||||
"cluster_all": ["boolean"],
|
||||
"n_jobs": [Integral, None],
|
||||
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
bandwidth=None,
|
||||
seeds=None,
|
||||
bin_seeding=False,
|
||||
min_bin_freq=1,
|
||||
cluster_all=True,
|
||||
n_jobs=None,
|
||||
max_iter=300,
|
||||
):
|
||||
self.bandwidth = bandwidth
|
||||
self.seeds = seeds
|
||||
self.bin_seeding = bin_seeding
|
||||
self.cluster_all = cluster_all
|
||||
self.min_bin_freq = min_bin_freq
|
||||
self.n_jobs = n_jobs
|
||||
self.max_iter = max_iter
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Perform clustering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Samples to cluster.
|
||||
|
||||
y : Ignored
|
||||
Not used, present for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Fitted instance.
|
||||
"""
|
||||
self._validate_params()
|
||||
X = self._validate_data(X)
|
||||
bandwidth = self.bandwidth
|
||||
if bandwidth is None:
|
||||
bandwidth = estimate_bandwidth(X, n_jobs=self.n_jobs)
|
||||
|
||||
seeds = self.seeds
|
||||
if seeds is None:
|
||||
if self.bin_seeding:
|
||||
seeds = get_bin_seeds(X, bandwidth, self.min_bin_freq)
|
||||
else:
|
||||
seeds = X
|
||||
n_samples, n_features = X.shape
|
||||
center_intensity_dict = {}
|
||||
|
||||
# We use n_jobs=1 because this will be used in nested calls under
|
||||
# parallel calls to _mean_shift_single_seed so there is no need for
|
||||
# for further parallelism.
|
||||
nbrs = NearestNeighbors(radius=bandwidth, n_jobs=1).fit(X)
|
||||
|
||||
# execute iterations on all seeds in parallel
|
||||
all_res = Parallel(n_jobs=self.n_jobs)(
|
||||
delayed(_mean_shift_single_seed)(seed, X, nbrs, self.max_iter)
|
||||
for seed in seeds
|
||||
)
|
||||
# copy results in a dictionary
|
||||
for i in range(len(seeds)):
|
||||
if all_res[i][1]: # i.e. len(points_within) > 0
|
||||
center_intensity_dict[all_res[i][0]] = all_res[i][1]
|
||||
|
||||
self.n_iter_ = max([x[2] for x in all_res])
|
||||
|
||||
if not center_intensity_dict:
|
||||
# nothing near seeds
|
||||
raise ValueError(
|
||||
"No point was within bandwidth=%f of any seed. Try a different seeding"
|
||||
" strategy or increase the bandwidth."
|
||||
% bandwidth
|
||||
)
|
||||
|
||||
# POST PROCESSING: remove near duplicate points
|
||||
# If the distance between two kernels is less than the bandwidth,
|
||||
# then we have to remove one because it is a duplicate. Remove the
|
||||
# one with fewer points.
|
||||
|
||||
sorted_by_intensity = sorted(
|
||||
center_intensity_dict.items(),
|
||||
key=lambda tup: (tup[1], tup[0]),
|
||||
reverse=True,
|
||||
)
|
||||
sorted_centers = np.array([tup[0] for tup in sorted_by_intensity])
|
||||
unique = np.ones(len(sorted_centers), dtype=bool)
|
||||
nbrs = NearestNeighbors(radius=bandwidth, n_jobs=self.n_jobs).fit(
|
||||
sorted_centers
|
||||
)
|
||||
for i, center in enumerate(sorted_centers):
|
||||
if unique[i]:
|
||||
neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[
|
||||
0
|
||||
]
|
||||
unique[neighbor_idxs] = 0
|
||||
unique[i] = 1 # leave the current point as unique
|
||||
cluster_centers = sorted_centers[unique]
|
||||
|
||||
# ASSIGN LABELS: a point belongs to the cluster that it is closest to
|
||||
nbrs = NearestNeighbors(n_neighbors=1, n_jobs=self.n_jobs).fit(cluster_centers)
|
||||
labels = np.zeros(n_samples, dtype=int)
|
||||
distances, idxs = nbrs.kneighbors(X)
|
||||
if self.cluster_all:
|
||||
labels = idxs.flatten()
|
||||
else:
|
||||
labels.fill(-1)
|
||||
bool_selector = distances.flatten() <= bandwidth
|
||||
labels[bool_selector] = idxs.flatten()[bool_selector]
|
||||
|
||||
self.cluster_centers_, self.labels_ = cluster_centers, labels
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
"""Predict the closest cluster each sample in X belongs to.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
New data to predict.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Index of the cluster each sample belongs to.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
X = self._validate_data(X, reset=False)
|
||||
with config_context(assume_finite=True):
|
||||
return pairwise_distances_argmin(X, self.cluster_centers_)
|
1050
venv/Lib/site-packages/sklearn/cluster/_optics.py
Normal file
1050
venv/Lib/site-packages/sklearn/cluster/_optics.py
Normal file
File diff suppressed because it is too large
Load diff
791
venv/Lib/site-packages/sklearn/cluster/_spectral.py
Normal file
791
venv/Lib/site-packages/sklearn/cluster/_spectral.py
Normal file
|
@ -0,0 +1,791 @@
|
|||
"""Algorithms for spectral clustering"""
|
||||
|
||||
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||||
# Brian Cheung
|
||||
# Wei LI <kuantkid@gmail.com>
|
||||
# Andrew Knyazev <Andrew.Knyazev@ucdenver.edu>
|
||||
# License: BSD 3 clause
|
||||
|
||||
from numbers import Integral, Real
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy.linalg import LinAlgError, qr, svd
|
||||
from scipy.sparse import csc_matrix
|
||||
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..utils._param_validation import Interval, StrOptions
|
||||
from ..utils import check_random_state, as_float_array
|
||||
from ..metrics.pairwise import pairwise_kernels, KERNEL_PARAMS
|
||||
from ..neighbors import kneighbors_graph, NearestNeighbors
|
||||
from ..manifold import spectral_embedding
|
||||
from ._kmeans import k_means
|
||||
|
||||
|
||||
def cluster_qr(vectors):
|
||||
"""Find the discrete partition closest to the eigenvector embedding.
|
||||
|
||||
This implementation was proposed in [1]_.
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vectors : array-like, shape: (n_samples, n_clusters)
|
||||
The embedding space of the samples.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array of integers, shape: n_samples
|
||||
The cluster labels of vectors.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
|
||||
Anil Damle, Victor Minden, Lexing Ying
|
||||
<10.1093/imaiai/iay008>`
|
||||
|
||||
"""
|
||||
|
||||
k = vectors.shape[1]
|
||||
_, _, piv = qr(vectors.T, pivoting=True)
|
||||
ut, _, v = svd(vectors[piv[:k], :].T)
|
||||
vectors = abs(np.dot(vectors, np.dot(ut, v.conj())))
|
||||
return vectors.argmax(axis=1)
|
||||
|
||||
|
||||
def discretize(
|
||||
vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None
|
||||
):
|
||||
"""Search for a partition matrix which is closest to the eigenvector embedding.
|
||||
|
||||
This implementation was proposed in [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vectors : array-like of shape (n_samples, n_clusters)
|
||||
The embedding space of the samples.
|
||||
|
||||
copy : bool, default=True
|
||||
Whether to copy vectors, or perform in-place normalization.
|
||||
|
||||
max_svd_restarts : int, default=30
|
||||
Maximum number of attempts to restart SVD if convergence fails
|
||||
|
||||
n_iter_max : int, default=30
|
||||
Maximum number of iterations to attempt in rotation and partition
|
||||
matrix search if machine precision convergence is not reached
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Determines random number generation for rotation matrix initialization.
|
||||
Use an int to make the randomness deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array of integers, shape: n_samples
|
||||
The labels of the clusters.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
.. [1] `Multiclass spectral clustering, 2003
|
||||
Stella X. Yu, Jianbo Shi
|
||||
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The eigenvector embedding is used to iteratively search for the
|
||||
closest discrete partition. First, the eigenvector embedding is
|
||||
normalized to the space of partition matrices. An optimal discrete
|
||||
partition matrix closest to this normalized embedding multiplied by
|
||||
an initial rotation is calculated. Fixing this discrete partition
|
||||
matrix, an optimal rotation matrix is calculated. These two
|
||||
calculations are performed until convergence. The discrete partition
|
||||
matrix is returned as the clustering solution. Used in spectral
|
||||
clustering, this method tends to be faster and more robust to random
|
||||
initialization than k-means.
|
||||
|
||||
"""
|
||||
|
||||
random_state = check_random_state(random_state)
|
||||
|
||||
vectors = as_float_array(vectors, copy=copy)
|
||||
|
||||
eps = np.finfo(float).eps
|
||||
n_samples, n_components = vectors.shape
|
||||
|
||||
# Normalize the eigenvectors to an equal length of a vector of ones.
|
||||
# Reorient the eigenvectors to point in the negative direction with respect
|
||||
# to the first element. This may have to do with constraining the
|
||||
# eigenvectors to lie in a specific quadrant to make the discretization
|
||||
# search easier.
|
||||
norm_ones = np.sqrt(n_samples)
|
||||
for i in range(vectors.shape[1]):
|
||||
vectors[:, i] = (vectors[:, i] / np.linalg.norm(vectors[:, i])) * norm_ones
|
||||
if vectors[0, i] != 0:
|
||||
vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i])
|
||||
|
||||
# Normalize the rows of the eigenvectors. Samples should lie on the unit
|
||||
# hypersphere centered at the origin. This transforms the samples in the
|
||||
# embedding space to the space of partition matrices.
|
||||
vectors = vectors / np.sqrt((vectors**2).sum(axis=1))[:, np.newaxis]
|
||||
|
||||
svd_restarts = 0
|
||||
has_converged = False
|
||||
|
||||
# If there is an exception we try to randomize and rerun SVD again
|
||||
# do this max_svd_restarts times.
|
||||
while (svd_restarts < max_svd_restarts) and not has_converged:
|
||||
|
||||
# Initialize first column of rotation matrix with a row of the
|
||||
# eigenvectors
|
||||
rotation = np.zeros((n_components, n_components))
|
||||
rotation[:, 0] = vectors[random_state.randint(n_samples), :].T
|
||||
|
||||
# To initialize the rest of the rotation matrix, find the rows
|
||||
# of the eigenvectors that are as orthogonal to each other as
|
||||
# possible
|
||||
c = np.zeros(n_samples)
|
||||
for j in range(1, n_components):
|
||||
# Accumulate c to ensure row is as orthogonal as possible to
|
||||
# previous picks as well as current one
|
||||
c += np.abs(np.dot(vectors, rotation[:, j - 1]))
|
||||
rotation[:, j] = vectors[c.argmin(), :].T
|
||||
|
||||
last_objective_value = 0.0
|
||||
n_iter = 0
|
||||
|
||||
while not has_converged:
|
||||
n_iter += 1
|
||||
|
||||
t_discrete = np.dot(vectors, rotation)
|
||||
|
||||
labels = t_discrete.argmax(axis=1)
|
||||
vectors_discrete = csc_matrix(
|
||||
(np.ones(len(labels)), (np.arange(0, n_samples), labels)),
|
||||
shape=(n_samples, n_components),
|
||||
)
|
||||
|
||||
t_svd = vectors_discrete.T * vectors
|
||||
|
||||
try:
|
||||
U, S, Vh = np.linalg.svd(t_svd)
|
||||
except LinAlgError:
|
||||
svd_restarts += 1
|
||||
print("SVD did not converge, randomizing and trying again")
|
||||
break
|
||||
|
||||
ncut_value = 2.0 * (n_samples - S.sum())
|
||||
if (abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max):
|
||||
has_converged = True
|
||||
else:
|
||||
# otherwise calculate rotation and continue
|
||||
last_objective_value = ncut_value
|
||||
rotation = np.dot(Vh.T, U.T)
|
||||
|
||||
if not has_converged:
|
||||
raise LinAlgError("SVD did not converge")
|
||||
return labels
|
||||
|
||||
|
||||
def spectral_clustering(
|
||||
affinity,
|
||||
*,
|
||||
n_clusters=8,
|
||||
n_components=None,
|
||||
eigen_solver=None,
|
||||
random_state=None,
|
||||
n_init=10,
|
||||
eigen_tol="auto",
|
||||
assign_labels="kmeans",
|
||||
verbose=False,
|
||||
):
|
||||
"""Apply clustering to a projection of the normalized Laplacian.
|
||||
|
||||
In practice Spectral Clustering is very useful when the structure of
|
||||
the individual clusters is highly non-convex or more generally when
|
||||
a measure of the center and spread of the cluster is not a suitable
|
||||
description of the complete cluster. For instance, when clusters are
|
||||
nested circles on the 2D plane.
|
||||
|
||||
If affinity is the adjacency matrix of a graph, this method can be
|
||||
used to find normalized graph cuts [1]_, [2]_.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_clustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
affinity : {array-like, sparse matrix} of shape (n_samples, n_samples)
|
||||
The affinity matrix describing the relationship of the samples to
|
||||
embed. **Must be symmetric**.
|
||||
|
||||
Possible examples:
|
||||
- adjacency matrix of a graph,
|
||||
- heat kernel of the pairwise distance matrix of the samples,
|
||||
- symmetric k-nearest neighbours connectivity matrix of the samples.
|
||||
|
||||
n_clusters : int, default=None
|
||||
Number of clusters to extract.
|
||||
|
||||
n_components : int, default=n_clusters
|
||||
Number of eigenvectors to use for the spectral embedding.
|
||||
|
||||
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
|
||||
The eigenvalue decomposition method. If None then ``'arpack'`` is used.
|
||||
See [4]_ for more details regarding ``'lobpcg'``.
|
||||
Eigensolver ``'amg'`` runs ``'lobpcg'`` with optional
|
||||
Algebraic MultiGrid preconditioning and requires pyamg to be installed.
|
||||
It can be faster on very large sparse problems [6]_ and [7]_.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
A pseudo random number generator used for the initialization
|
||||
of the lobpcg eigenvectors decomposition when `eigen_solver ==
|
||||
'amg'`, and for the K-Means initialization. Use an int to make
|
||||
the results deterministic across calls (See
|
||||
:term:`Glossary <random_state>`).
|
||||
|
||||
.. note::
|
||||
When using `eigen_solver == 'amg'`,
|
||||
it is necessary to also fix the global numpy seed with
|
||||
`np.random.seed(int)` to get deterministic results. See
|
||||
https://github.com/pyamg/pyamg/issues/139 for further
|
||||
information.
|
||||
|
||||
n_init : int, default=10
|
||||
Number of time the k-means algorithm will be run with different
|
||||
centroid seeds. The final results will be the best output of n_init
|
||||
consecutive runs in terms of inertia. Only used if
|
||||
``assign_labels='kmeans'``.
|
||||
|
||||
eigen_tol : float, default="auto"
|
||||
Stopping criterion for eigendecomposition of the Laplacian matrix.
|
||||
If `eigen_tol="auto"` then the passed tolerance will depend on the
|
||||
`eigen_solver`:
|
||||
|
||||
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
|
||||
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
|
||||
`eigen_tol=None` which configures the underlying `lobpcg` solver to
|
||||
automatically resolve the value according to their heuristics. See,
|
||||
:func:`scipy.sparse.linalg.lobpcg` for details.
|
||||
|
||||
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
|
||||
values of `tol<1e-5` may lead to convergence issues and should be
|
||||
avoided.
|
||||
|
||||
.. versionadded:: 1.2
|
||||
Added 'auto' option.
|
||||
|
||||
assign_labels : {'kmeans', 'discretize', 'cluster_qr'}, default='kmeans'
|
||||
The strategy to use to assign labels in the embedding
|
||||
space. There are three ways to assign labels after the Laplacian
|
||||
embedding. k-means can be applied and is a popular choice. But it can
|
||||
also be sensitive to initialization. Discretization is another
|
||||
approach which is less sensitive to random initialization [3]_.
|
||||
The cluster_qr method [5]_ directly extracts clusters from eigenvectors
|
||||
in spectral clustering. In contrast to k-means and discretization, cluster_qr
|
||||
has no tuning parameters and is not an iterative method, yet may outperform
|
||||
k-means and discretization in terms of both quality and speed.
|
||||
|
||||
.. versionchanged:: 1.1
|
||||
Added new labeling method 'cluster_qr'.
|
||||
|
||||
verbose : bool, default=False
|
||||
Verbosity mode.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array of integers, shape: n_samples
|
||||
The labels of the clusters.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The graph should contain only one connected component, elsewhere
|
||||
the results make little sense.
|
||||
|
||||
This algorithm solves the normalized cut for `k=2`: it is a
|
||||
normalized spectral clustering.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
.. [1] :doi:`Normalized cuts and image segmentation, 2000
|
||||
Jianbo Shi, Jitendra Malik
|
||||
<10.1109/34.868688>`
|
||||
|
||||
.. [2] :doi:`A Tutorial on Spectral Clustering, 2007
|
||||
Ulrike von Luxburg
|
||||
<10.1007/s11222-007-9033-z>`
|
||||
|
||||
.. [3] `Multiclass spectral clustering, 2003
|
||||
Stella X. Yu, Jianbo Shi
|
||||
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
|
||||
|
||||
.. [4] :doi:`Toward the Optimal Preconditioned Eigensolver:
|
||||
Locally Optimal Block Preconditioned Conjugate Gradient Method, 2001
|
||||
A. V. Knyazev
|
||||
SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
|
||||
<10.1137/S1064827500366124>`
|
||||
|
||||
.. [5] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
|
||||
Anil Damle, Victor Minden, Lexing Ying
|
||||
<10.1093/imaiai/iay008>`
|
||||
|
||||
.. [6] :doi:`Multiscale Spectral Image Segmentation Multiscale preconditioning
|
||||
for computing eigenvalues of graph Laplacians in image segmentation, 2006
|
||||
Andrew Knyazev
|
||||
<10.13140/RG.2.2.35280.02565>`
|
||||
|
||||
.. [7] :doi:`Preconditioned spectral clustering for stochastic block partition
|
||||
streaming graph challenge (Preliminary version at arXiv.)
|
||||
David Zhuzhunashvili, Andrew Knyazev
|
||||
<10.1109/HPEC.2017.8091045>`
|
||||
"""
|
||||
if assign_labels not in ("kmeans", "discretize", "cluster_qr"):
|
||||
raise ValueError(
|
||||
"The 'assign_labels' parameter should be "
|
||||
"'kmeans' or 'discretize', or 'cluster_qr', "
|
||||
f"but {assign_labels!r} was given"
|
||||
)
|
||||
if isinstance(affinity, np.matrix):
|
||||
raise TypeError(
|
||||
"spectral_clustering does not support passing in affinity as an "
|
||||
"np.matrix. Please convert to a numpy array with np.asarray. For "
|
||||
"more information see: "
|
||||
"https://numpy.org/doc/stable/reference/generated/numpy.matrix.html", # noqa
|
||||
)
|
||||
|
||||
random_state = check_random_state(random_state)
|
||||
n_components = n_clusters if n_components is None else n_components
|
||||
|
||||
# We now obtain the real valued solution matrix to the
|
||||
# relaxed Ncut problem, solving the eigenvalue problem
|
||||
# L_sym x = lambda x and recovering u = D^-1/2 x.
|
||||
# The first eigenvector is constant only for fully connected graphs
|
||||
# and should be kept for spectral clustering (drop_first = False)
|
||||
# See spectral_embedding documentation.
|
||||
maps = spectral_embedding(
|
||||
affinity,
|
||||
n_components=n_components,
|
||||
eigen_solver=eigen_solver,
|
||||
random_state=random_state,
|
||||
eigen_tol=eigen_tol,
|
||||
drop_first=False,
|
||||
)
|
||||
if verbose:
|
||||
print(f"Computing label assignment using {assign_labels}")
|
||||
|
||||
if assign_labels == "kmeans":
|
||||
_, labels, _ = k_means(
|
||||
maps, n_clusters, random_state=random_state, n_init=n_init, verbose=verbose
|
||||
)
|
||||
elif assign_labels == "cluster_qr":
|
||||
labels = cluster_qr(maps)
|
||||
else:
|
||||
labels = discretize(maps, random_state=random_state)
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
class SpectralClustering(ClusterMixin, BaseEstimator):
|
||||
"""Apply clustering to a projection of the normalized Laplacian.
|
||||
|
||||
In practice Spectral Clustering is very useful when the structure of
|
||||
the individual clusters is highly non-convex, or more generally when
|
||||
a measure of the center and spread of the cluster is not a suitable
|
||||
description of the complete cluster, such as when clusters are
|
||||
nested circles on the 2D plane.
|
||||
|
||||
If the affinity matrix is the adjacency matrix of a graph, this method
|
||||
can be used to find normalized graph cuts [1]_, [2]_.
|
||||
|
||||
When calling ``fit``, an affinity matrix is constructed using either
|
||||
a kernel function such the Gaussian (aka RBF) kernel with Euclidean
|
||||
distance ``d(X, X)``::
|
||||
|
||||
np.exp(-gamma * d(X,X) ** 2)
|
||||
|
||||
or a k-nearest neighbors connectivity matrix.
|
||||
|
||||
Alternatively, a user-provided affinity matrix can be specified by
|
||||
setting ``affinity='precomputed'``.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_clustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_clusters : int, default=8
|
||||
The dimension of the projection subspace.
|
||||
|
||||
eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None
|
||||
The eigenvalue decomposition strategy to use. AMG requires pyamg
|
||||
to be installed. It can be faster on very large, sparse problems,
|
||||
but may also lead to instabilities. If None, then ``'arpack'`` is
|
||||
used. See [4]_ for more details regarding `'lobpcg'`.
|
||||
|
||||
n_components : int, default=None
|
||||
Number of eigenvectors to use for the spectral embedding. If None,
|
||||
defaults to `n_clusters`.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
A pseudo random number generator used for the initialization
|
||||
of the lobpcg eigenvectors decomposition when `eigen_solver ==
|
||||
'amg'`, and for the K-Means initialization. Use an int to make
|
||||
the results deterministic across calls (See
|
||||
:term:`Glossary <random_state>`).
|
||||
|
||||
.. note::
|
||||
When using `eigen_solver == 'amg'`,
|
||||
it is necessary to also fix the global numpy seed with
|
||||
`np.random.seed(int)` to get deterministic results. See
|
||||
https://github.com/pyamg/pyamg/issues/139 for further
|
||||
information.
|
||||
|
||||
n_init : int, default=10
|
||||
Number of time the k-means algorithm will be run with different
|
||||
centroid seeds. The final results will be the best output of n_init
|
||||
consecutive runs in terms of inertia. Only used if
|
||||
``assign_labels='kmeans'``.
|
||||
|
||||
gamma : float, default=1.0
|
||||
Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels.
|
||||
Ignored for ``affinity='nearest_neighbors'``.
|
||||
|
||||
affinity : str or callable, default='rbf'
|
||||
How to construct the affinity matrix.
|
||||
- 'nearest_neighbors': construct the affinity matrix by computing a
|
||||
graph of nearest neighbors.
|
||||
- 'rbf': construct the affinity matrix using a radial basis function
|
||||
(RBF) kernel.
|
||||
- 'precomputed': interpret ``X`` as a precomputed affinity matrix,
|
||||
where larger values indicate greater similarity between instances.
|
||||
- 'precomputed_nearest_neighbors': interpret ``X`` as a sparse graph
|
||||
of precomputed distances, and construct a binary affinity matrix
|
||||
from the ``n_neighbors`` nearest neighbors of each instance.
|
||||
- one of the kernels supported by
|
||||
:func:`~sklearn.metrics.pairwise_kernels`.
|
||||
|
||||
Only kernels that produce similarity scores (non-negative values that
|
||||
increase with similarity) should be used. This property is not checked
|
||||
by the clustering algorithm.
|
||||
|
||||
n_neighbors : int, default=10
|
||||
Number of neighbors to use when constructing the affinity matrix using
|
||||
the nearest neighbors method. Ignored for ``affinity='rbf'``.
|
||||
|
||||
eigen_tol : float, default="auto"
|
||||
Stopping criterion for eigendecomposition of the Laplacian matrix.
|
||||
If `eigen_tol="auto"` then the passed tolerance will depend on the
|
||||
`eigen_solver`:
|
||||
|
||||
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
|
||||
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
|
||||
`eigen_tol=None` which configures the underlying `lobpcg` solver to
|
||||
automatically resolve the value according to their heuristics. See,
|
||||
:func:`scipy.sparse.linalg.lobpcg` for details.
|
||||
|
||||
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
|
||||
values of `tol<1e-5` may lead to convergence issues and should be
|
||||
avoided.
|
||||
|
||||
.. versionadded:: 1.2
|
||||
Added 'auto' option.
|
||||
|
||||
assign_labels : {'kmeans', 'discretize', 'cluster_qr'}, default='kmeans'
|
||||
The strategy for assigning labels in the embedding space. There are two
|
||||
ways to assign labels after the Laplacian embedding. k-means is a
|
||||
popular choice, but it can be sensitive to initialization.
|
||||
Discretization is another approach which is less sensitive to random
|
||||
initialization [3]_.
|
||||
The cluster_qr method [5]_ directly extract clusters from eigenvectors
|
||||
in spectral clustering. In contrast to k-means and discretization, cluster_qr
|
||||
has no tuning parameters and runs no iterations, yet may outperform
|
||||
k-means and discretization in terms of both quality and speed.
|
||||
|
||||
.. versionchanged:: 1.1
|
||||
Added new labeling method 'cluster_qr'.
|
||||
|
||||
degree : float, default=3
|
||||
Degree of the polynomial kernel. Ignored by other kernels.
|
||||
|
||||
coef0 : float, default=1
|
||||
Zero coefficient for polynomial and sigmoid kernels.
|
||||
Ignored by other kernels.
|
||||
|
||||
kernel_params : dict of str to any, default=None
|
||||
Parameters (keyword arguments) and values for kernel passed as
|
||||
callable object. Ignored by other kernels.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of parallel jobs to run when `affinity='nearest_neighbors'`
|
||||
or `affinity='precomputed_nearest_neighbors'`. The neighbors search
|
||||
will be done in parallel.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
verbose : bool, default=False
|
||||
Verbosity mode.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
Attributes
|
||||
----------
|
||||
affinity_matrix_ : array-like of shape (n_samples, n_samples)
|
||||
Affinity matrix used for clustering. Available only after calling
|
||||
``fit``.
|
||||
|
||||
labels_ : ndarray of shape (n_samples,)
|
||||
Labels of each point
|
||||
|
||||
n_features_in_ : int
|
||||
Number of features seen during :term:`fit`.
|
||||
|
||||
.. versionadded:: 0.24
|
||||
|
||||
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||||
Names of features seen during :term:`fit`. Defined only when `X`
|
||||
has feature names that are all strings.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
See Also
|
||||
--------
|
||||
sklearn.cluster.KMeans : K-Means clustering.
|
||||
sklearn.cluster.DBSCAN : Density-Based Spatial Clustering of
|
||||
Applications with Noise.
|
||||
|
||||
Notes
|
||||
-----
|
||||
A distance matrix for which 0 indicates identical elements and high values
|
||||
indicate very dissimilar elements can be transformed into an affinity /
|
||||
similarity matrix that is well-suited for the algorithm by
|
||||
applying the Gaussian (aka RBF, heat) kernel::
|
||||
|
||||
np.exp(- dist_matrix ** 2 / (2. * delta ** 2))
|
||||
|
||||
where ``delta`` is a free parameter representing the width of the Gaussian
|
||||
kernel.
|
||||
|
||||
An alternative is to take a symmetric version of the k-nearest neighbors
|
||||
connectivity matrix of the points.
|
||||
|
||||
If the pyamg package is installed, it is used: this greatly
|
||||
speeds up computation.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] :doi:`Normalized cuts and image segmentation, 2000
|
||||
Jianbo Shi, Jitendra Malik
|
||||
<10.1109/34.868688>`
|
||||
|
||||
.. [2] :doi:`A Tutorial on Spectral Clustering, 2007
|
||||
Ulrike von Luxburg
|
||||
<10.1007/s11222-007-9033-z>`
|
||||
|
||||
.. [3] `Multiclass spectral clustering, 2003
|
||||
Stella X. Yu, Jianbo Shi
|
||||
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
|
||||
|
||||
.. [4] :doi:`Toward the Optimal Preconditioned Eigensolver:
|
||||
Locally Optimal Block Preconditioned Conjugate Gradient Method, 2001
|
||||
A. V. Knyazev
|
||||
SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
|
||||
<10.1137/S1064827500366124>`
|
||||
|
||||
.. [5] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
|
||||
Anil Damle, Victor Minden, Lexing Ying
|
||||
<10.1093/imaiai/iay008>`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import SpectralClustering
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = SpectralClustering(n_clusters=2,
|
||||
... assign_labels='discretize',
|
||||
... random_state=0).fit(X)
|
||||
>>> clustering.labels_
|
||||
array([1, 1, 1, 0, 0, 0])
|
||||
>>> clustering
|
||||
SpectralClustering(assign_labels='discretize', n_clusters=2,
|
||||
random_state=0)
|
||||
"""
|
||||
|
||||
_parameter_constraints: dict = {
|
||||
"n_clusters": [Interval(Integral, 1, None, closed="left")],
|
||||
"eigen_solver": [StrOptions({"arpack", "lobpcg", "amg"}), None],
|
||||
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
||||
"random_state": ["random_state"],
|
||||
"n_init": [Interval(Integral, 1, None, closed="left")],
|
||||
"gamma": [Interval(Real, 0, None, closed="left")],
|
||||
"affinity": [
|
||||
callable,
|
||||
StrOptions(
|
||||
set(KERNEL_PARAMS)
|
||||
| {"nearest_neighbors", "precomputed", "precomputed_nearest_neighbors"}
|
||||
),
|
||||
],
|
||||
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
||||
"eigen_tol": [
|
||||
Interval(Real, 0.0, None, closed="left"),
|
||||
StrOptions({"auto"}),
|
||||
],
|
||||
"assign_labels": [StrOptions({"kmeans", "discretize", "cluster_qr"})],
|
||||
"degree": [Interval(Integral, 0, None, closed="left")],
|
||||
"coef0": [Interval(Real, None, None, closed="neither")],
|
||||
"kernel_params": [dict, None],
|
||||
"n_jobs": [Integral, None],
|
||||
"verbose": ["verbose"],
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_clusters=8,
|
||||
*,
|
||||
eigen_solver=None,
|
||||
n_components=None,
|
||||
random_state=None,
|
||||
n_init=10,
|
||||
gamma=1.0,
|
||||
affinity="rbf",
|
||||
n_neighbors=10,
|
||||
eigen_tol="auto",
|
||||
assign_labels="kmeans",
|
||||
degree=3,
|
||||
coef0=1,
|
||||
kernel_params=None,
|
||||
n_jobs=None,
|
||||
verbose=False,
|
||||
):
|
||||
self.n_clusters = n_clusters
|
||||
self.eigen_solver = eigen_solver
|
||||
self.n_components = n_components
|
||||
self.random_state = random_state
|
||||
self.n_init = n_init
|
||||
self.gamma = gamma
|
||||
self.affinity = affinity
|
||||
self.n_neighbors = n_neighbors
|
||||
self.eigen_tol = eigen_tol
|
||||
self.assign_labels = assign_labels
|
||||
self.degree = degree
|
||||
self.coef0 = coef0
|
||||
self.kernel_params = kernel_params
|
||||
self.n_jobs = n_jobs
|
||||
self.verbose = verbose
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Perform spectral clustering from features, or affinity matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
||||
(n_samples, n_samples)
|
||||
Training instances to cluster, similarities / affinities between
|
||||
instances if ``affinity='precomputed'``, or distances between
|
||||
instances if ``affinity='precomputed_nearest_neighbors``. If a
|
||||
sparse matrix is provided in a format other than ``csr_matrix``,
|
||||
``csc_matrix``, or ``coo_matrix``, it will be converted into a
|
||||
sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
A fitted instance of the estimator.
|
||||
"""
|
||||
self._validate_params()
|
||||
|
||||
X = self._validate_data(
|
||||
X,
|
||||
accept_sparse=["csr", "csc", "coo"],
|
||||
dtype=np.float64,
|
||||
ensure_min_samples=2,
|
||||
)
|
||||
allow_squared = self.affinity in [
|
||||
"precomputed",
|
||||
"precomputed_nearest_neighbors",
|
||||
]
|
||||
if X.shape[0] == X.shape[1] and not allow_squared:
|
||||
warnings.warn(
|
||||
"The spectral clustering API has changed. ``fit``"
|
||||
"now constructs an affinity matrix from data. To use"
|
||||
" a custom affinity matrix, "
|
||||
"set ``affinity=precomputed``."
|
||||
)
|
||||
|
||||
if self.affinity == "nearest_neighbors":
|
||||
connectivity = kneighbors_graph(
|
||||
X, n_neighbors=self.n_neighbors, include_self=True, n_jobs=self.n_jobs
|
||||
)
|
||||
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
|
||||
elif self.affinity == "precomputed_nearest_neighbors":
|
||||
estimator = NearestNeighbors(
|
||||
n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed"
|
||||
).fit(X)
|
||||
connectivity = estimator.kneighbors_graph(X=X, mode="connectivity")
|
||||
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
|
||||
elif self.affinity == "precomputed":
|
||||
self.affinity_matrix_ = X
|
||||
else:
|
||||
params = self.kernel_params
|
||||
if params is None:
|
||||
params = {}
|
||||
if not callable(self.affinity):
|
||||
params["gamma"] = self.gamma
|
||||
params["degree"] = self.degree
|
||||
params["coef0"] = self.coef0
|
||||
self.affinity_matrix_ = pairwise_kernels(
|
||||
X, metric=self.affinity, filter_params=True, **params
|
||||
)
|
||||
|
||||
random_state = check_random_state(self.random_state)
|
||||
self.labels_ = spectral_clustering(
|
||||
self.affinity_matrix_,
|
||||
n_clusters=self.n_clusters,
|
||||
n_components=self.n_components,
|
||||
eigen_solver=self.eigen_solver,
|
||||
random_state=random_state,
|
||||
n_init=self.n_init,
|
||||
eigen_tol=self.eigen_tol,
|
||||
assign_labels=self.assign_labels,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
return self
|
||||
|
||||
def fit_predict(self, X, y=None):
|
||||
"""Perform spectral clustering on `X` and return cluster labels.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
||||
(n_samples, n_samples)
|
||||
Training instances to cluster, similarities / affinities between
|
||||
instances if ``affinity='precomputed'``, or distances between
|
||||
instances if ``affinity='precomputed_nearest_neighbors``. If a
|
||||
sparse matrix is provided in a format other than ``csr_matrix``,
|
||||
``csc_matrix``, or ``coo_matrix``, it will be converted into a
|
||||
sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels.
|
||||
"""
|
||||
return super().fit_predict(X, y)
|
||||
|
||||
def _more_tags(self):
|
||||
return {
|
||||
"pairwise": self.affinity
|
||||
in ["precomputed", "precomputed_nearest_neighbors"]
|
||||
}
|
0
venv/Lib/site-packages/sklearn/cluster/tests/__init__.py
Normal file
0
venv/Lib/site-packages/sklearn/cluster/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
38
venv/Lib/site-packages/sklearn/cluster/tests/common.py
Normal file
38
venv/Lib/site-packages/sklearn/cluster/tests/common.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
"""
|
||||
Common utilities for testing clustering.
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Generate sample data
|
||||
|
||||
|
||||
def generate_clustered_data(
|
||||
seed=0, n_clusters=3, n_features=2, n_samples_per_cluster=20, std=0.4
|
||||
):
|
||||
prng = np.random.RandomState(seed)
|
||||
|
||||
# the data is voluntary shifted away from zero to check clustering
|
||||
# algorithm robustness with regards to non centered data
|
||||
means = (
|
||||
np.array(
|
||||
[
|
||||
[1, 1, 1, 0],
|
||||
[-1, -1, 0, 1],
|
||||
[1, -1, 1, 1],
|
||||
[-1, 1, 1, 0],
|
||||
]
|
||||
)
|
||||
+ 10
|
||||
)
|
||||
|
||||
X = np.empty((0, n_features))
|
||||
for i in range(n_clusters):
|
||||
X = np.r_[
|
||||
X,
|
||||
means[i][:n_features] + std * prng.randn(n_samples_per_cluster, n_features),
|
||||
]
|
||||
return X
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue