Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
299
venv/Lib/site-packages/sklearn/datasets/_rcv1.py
Normal file
299
venv/Lib/site-packages/sklearn/datasets/_rcv1.py
Normal file
|
@ -0,0 +1,299 @@
|
|||
"""RCV1 dataset.
|
||||
|
||||
The dataset page is available at
|
||||
|
||||
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
|
||||
"""
|
||||
|
||||
# Author: Tom Dupre la Tour
|
||||
# License: BSD 3 clause
|
||||
|
||||
import logging
|
||||
|
||||
from os import remove, makedirs
|
||||
from os.path import exists, join
|
||||
from gzip import GzipFile
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
import joblib
|
||||
|
||||
from . import get_data_home
|
||||
from ._base import _pkl_filepath
|
||||
from ._base import _fetch_remote
|
||||
from ._base import RemoteFileMetadata
|
||||
from ._base import load_descr
|
||||
from ._svmlight_format_io import load_svmlight_files
|
||||
from ..utils import shuffle as shuffle_
|
||||
from ..utils import Bunch
|
||||
|
||||
|
||||
# The original vectorized data can be found at:
|
||||
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt0.dat.gz
|
||||
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt1.dat.gz
|
||||
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt2.dat.gz
|
||||
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt3.dat.gz
|
||||
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_train.dat.gz
|
||||
# while the original stemmed token files can be found
|
||||
# in the README, section B.12.i.:
|
||||
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
|
||||
XY_METADATA = (
|
||||
RemoteFileMetadata(
|
||||
url="https://ndownloader.figshare.com/files/5976069",
|
||||
checksum="ed40f7e418d10484091b059703eeb95ae3199fe042891dcec4be6696b9968374",
|
||||
filename="lyrl2004_vectors_test_pt0.dat.gz",
|
||||
),
|
||||
RemoteFileMetadata(
|
||||
url="https://ndownloader.figshare.com/files/5976066",
|
||||
checksum="87700668ae45d45d5ca1ef6ae9bd81ab0f5ec88cc95dcef9ae7838f727a13aa6",
|
||||
filename="lyrl2004_vectors_test_pt1.dat.gz",
|
||||
),
|
||||
RemoteFileMetadata(
|
||||
url="https://ndownloader.figshare.com/files/5976063",
|
||||
checksum="48143ac703cbe33299f7ae9f4995db49a258690f60e5debbff8995c34841c7f5",
|
||||
filename="lyrl2004_vectors_test_pt2.dat.gz",
|
||||
),
|
||||
RemoteFileMetadata(
|
||||
url="https://ndownloader.figshare.com/files/5976060",
|
||||
checksum="dfcb0d658311481523c6e6ca0c3f5a3e1d3d12cde5d7a8ce629a9006ec7dbb39",
|
||||
filename="lyrl2004_vectors_test_pt3.dat.gz",
|
||||
),
|
||||
RemoteFileMetadata(
|
||||
url="https://ndownloader.figshare.com/files/5976057",
|
||||
checksum="5468f656d0ba7a83afc7ad44841cf9a53048a5c083eedc005dcdb5cc768924ae",
|
||||
filename="lyrl2004_vectors_train.dat.gz",
|
||||
),
|
||||
)
|
||||
|
||||
# The original data can be found at:
|
||||
# http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a08-topic-qrels/rcv1-v2.topics.qrels.gz
|
||||
TOPICS_METADATA = RemoteFileMetadata(
|
||||
url="https://ndownloader.figshare.com/files/5976048",
|
||||
checksum="2a98e5e5d8b770bded93afc8930d88299474317fe14181aee1466cc754d0d1c1",
|
||||
filename="rcv1v2.topics.qrels.gz",
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def fetch_rcv1(
|
||||
*,
|
||||
data_home=None,
|
||||
subset="all",
|
||||
download_if_missing=True,
|
||||
random_state=None,
|
||||
shuffle=False,
|
||||
return_X_y=False,
|
||||
):
|
||||
"""Load the RCV1 multilabel dataset (classification).
|
||||
|
||||
Download it if necessary.
|
||||
|
||||
Version: RCV1-v2, vectors, full sets, topics multilabels.
|
||||
|
||||
================= =====================
|
||||
Classes 103
|
||||
Samples total 804414
|
||||
Dimensionality 47236
|
||||
Features real, between 0 and 1
|
||||
================= =====================
|
||||
|
||||
Read more in the :ref:`User Guide <rcv1_dataset>`.
|
||||
|
||||
.. versionadded:: 0.17
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data_home : str, default=None
|
||||
Specify another download and cache folder for the datasets. By default
|
||||
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
||||
|
||||
subset : {'train', 'test', 'all'}, default='all'
|
||||
Select the dataset to load: 'train' for the training set
|
||||
(23149 samples), 'test' for the test set (781265 samples),
|
||||
'all' for both, with the training samples first if shuffle is False.
|
||||
This follows the official LYRL2004 chronological split.
|
||||
|
||||
download_if_missing : bool, default=True
|
||||
If False, raise a IOError if the data is not locally available
|
||||
instead of trying to download the data from the source site.
|
||||
|
||||
random_state : int, RandomState instance or None, default=None
|
||||
Determines random number generation for dataset shuffling. Pass an int
|
||||
for reproducible output across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
shuffle : bool, default=False
|
||||
Whether to shuffle dataset.
|
||||
|
||||
return_X_y : bool, default=False
|
||||
If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch
|
||||
object. See below for more information about the `dataset.data` and
|
||||
`dataset.target` object.
|
||||
|
||||
.. versionadded:: 0.20
|
||||
|
||||
Returns
|
||||
-------
|
||||
dataset : :class:`~sklearn.utils.Bunch`
|
||||
Dictionary-like object. Returned only if `return_X_y` is False.
|
||||
`dataset` has the following attributes:
|
||||
|
||||
- data : sparse matrix of shape (804414, 47236), dtype=np.float64
|
||||
The array has 0.16% of non zero values. Will be of CSR format.
|
||||
- target : sparse matrix of shape (804414, 103), dtype=np.uint8
|
||||
Each sample has a value of 1 in its categories, and 0 in others.
|
||||
The array has 3.15% of non zero values. Will be of CSR format.
|
||||
- sample_id : ndarray of shape (804414,), dtype=np.uint32,
|
||||
Identification number of each sample, as ordered in dataset.data.
|
||||
- target_names : ndarray of shape (103,), dtype=object
|
||||
Names of each target (RCV1 topics), as ordered in dataset.target.
|
||||
- DESCR : str
|
||||
Description of the RCV1 dataset.
|
||||
|
||||
(data, target) : tuple
|
||||
A tuple consisting of `dataset.data` and `dataset.target`, as
|
||||
described above. Returned only if `return_X_y` is True.
|
||||
|
||||
.. versionadded:: 0.20
|
||||
"""
|
||||
N_SAMPLES = 804414
|
||||
N_FEATURES = 47236
|
||||
N_CATEGORIES = 103
|
||||
N_TRAIN = 23149
|
||||
|
||||
data_home = get_data_home(data_home=data_home)
|
||||
rcv1_dir = join(data_home, "RCV1")
|
||||
if download_if_missing:
|
||||
if not exists(rcv1_dir):
|
||||
makedirs(rcv1_dir)
|
||||
|
||||
samples_path = _pkl_filepath(rcv1_dir, "samples.pkl")
|
||||
sample_id_path = _pkl_filepath(rcv1_dir, "sample_id.pkl")
|
||||
sample_topics_path = _pkl_filepath(rcv1_dir, "sample_topics.pkl")
|
||||
topics_path = _pkl_filepath(rcv1_dir, "topics_names.pkl")
|
||||
|
||||
# load data (X) and sample_id
|
||||
if download_if_missing and (not exists(samples_path) or not exists(sample_id_path)):
|
||||
files = []
|
||||
for each in XY_METADATA:
|
||||
logger.info("Downloading %s" % each.url)
|
||||
file_path = _fetch_remote(each, dirname=rcv1_dir)
|
||||
files.append(GzipFile(filename=file_path))
|
||||
|
||||
Xy = load_svmlight_files(files, n_features=N_FEATURES)
|
||||
|
||||
# Training data is before testing data
|
||||
X = sp.vstack([Xy[8], Xy[0], Xy[2], Xy[4], Xy[6]]).tocsr()
|
||||
sample_id = np.hstack((Xy[9], Xy[1], Xy[3], Xy[5], Xy[7]))
|
||||
sample_id = sample_id.astype(np.uint32, copy=False)
|
||||
|
||||
joblib.dump(X, samples_path, compress=9)
|
||||
joblib.dump(sample_id, sample_id_path, compress=9)
|
||||
|
||||
# delete archives
|
||||
for f in files:
|
||||
f.close()
|
||||
remove(f.name)
|
||||
else:
|
||||
X = joblib.load(samples_path)
|
||||
sample_id = joblib.load(sample_id_path)
|
||||
|
||||
# load target (y), categories, and sample_id_bis
|
||||
if download_if_missing and (
|
||||
not exists(sample_topics_path) or not exists(topics_path)
|
||||
):
|
||||
logger.info("Downloading %s" % TOPICS_METADATA.url)
|
||||
topics_archive_path = _fetch_remote(TOPICS_METADATA, dirname=rcv1_dir)
|
||||
|
||||
# parse the target file
|
||||
n_cat = -1
|
||||
n_doc = -1
|
||||
doc_previous = -1
|
||||
y = np.zeros((N_SAMPLES, N_CATEGORIES), dtype=np.uint8)
|
||||
sample_id_bis = np.zeros(N_SAMPLES, dtype=np.int32)
|
||||
category_names = {}
|
||||
with GzipFile(filename=topics_archive_path, mode="rb") as f:
|
||||
for line in f:
|
||||
line_components = line.decode("ascii").split(" ")
|
||||
if len(line_components) == 3:
|
||||
cat, doc, _ = line_components
|
||||
if cat not in category_names:
|
||||
n_cat += 1
|
||||
category_names[cat] = n_cat
|
||||
|
||||
doc = int(doc)
|
||||
if doc != doc_previous:
|
||||
doc_previous = doc
|
||||
n_doc += 1
|
||||
sample_id_bis[n_doc] = doc
|
||||
y[n_doc, category_names[cat]] = 1
|
||||
|
||||
# delete archive
|
||||
remove(topics_archive_path)
|
||||
|
||||
# Samples in X are ordered with sample_id,
|
||||
# whereas in y, they are ordered with sample_id_bis.
|
||||
permutation = _find_permutation(sample_id_bis, sample_id)
|
||||
y = y[permutation, :]
|
||||
|
||||
# save category names in a list, with same order than y
|
||||
categories = np.empty(N_CATEGORIES, dtype=object)
|
||||
for k in category_names.keys():
|
||||
categories[category_names[k]] = k
|
||||
|
||||
# reorder categories in lexicographic order
|
||||
order = np.argsort(categories)
|
||||
categories = categories[order]
|
||||
y = sp.csr_matrix(y[:, order])
|
||||
|
||||
joblib.dump(y, sample_topics_path, compress=9)
|
||||
joblib.dump(categories, topics_path, compress=9)
|
||||
else:
|
||||
y = joblib.load(sample_topics_path)
|
||||
categories = joblib.load(topics_path)
|
||||
|
||||
if subset == "all":
|
||||
pass
|
||||
elif subset == "train":
|
||||
X = X[:N_TRAIN, :]
|
||||
y = y[:N_TRAIN, :]
|
||||
sample_id = sample_id[:N_TRAIN]
|
||||
elif subset == "test":
|
||||
X = X[N_TRAIN:, :]
|
||||
y = y[N_TRAIN:, :]
|
||||
sample_id = sample_id[N_TRAIN:]
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown subset parameter. Got '%s' instead of one"
|
||||
" of ('all', 'train', test')" % subset
|
||||
)
|
||||
|
||||
if shuffle:
|
||||
X, y, sample_id = shuffle_(X, y, sample_id, random_state=random_state)
|
||||
|
||||
fdescr = load_descr("rcv1.rst")
|
||||
|
||||
if return_X_y:
|
||||
return X, y
|
||||
|
||||
return Bunch(
|
||||
data=X, target=y, sample_id=sample_id, target_names=categories, DESCR=fdescr
|
||||
)
|
||||
|
||||
|
||||
def _inverse_permutation(p):
|
||||
"""Inverse permutation p."""
|
||||
n = p.size
|
||||
s = np.zeros(n, dtype=np.int32)
|
||||
i = np.arange(n, dtype=np.int32)
|
||||
np.put(s, p, i) # s[p] = i
|
||||
return s
|
||||
|
||||
|
||||
def _find_permutation(a, b):
|
||||
"""Find the permutation from a to b."""
|
||||
t = np.argsort(a)
|
||||
u = np.argsort(b)
|
||||
u_ = _inverse_permutation(u)
|
||||
return t[u_]
|
Loading…
Add table
Add a link
Reference in a new issue