Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
195
venv/Lib/site-packages/torch/cpu/__init__.py
Normal file
195
venv/Lib/site-packages/torch/cpu/__init__.py
Normal file
|
@ -0,0 +1,195 @@
|
|||
# mypy: allow-untyped-defs
|
||||
r"""
|
||||
This package implements abstractions found in ``torch.cuda``
|
||||
to facilitate writing device-agnostic code.
|
||||
"""
|
||||
|
||||
from contextlib import AbstractContextManager
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
from .. import device as _device
|
||||
from . import amp
|
||||
|
||||
|
||||
__all__ = [
|
||||
"is_available",
|
||||
"synchronize",
|
||||
"current_device",
|
||||
"current_stream",
|
||||
"stream",
|
||||
"set_device",
|
||||
"device_count",
|
||||
"Stream",
|
||||
"StreamContext",
|
||||
"Event",
|
||||
]
|
||||
|
||||
_device_t = Union[_device, str, int, None]
|
||||
|
||||
|
||||
def _is_avx2_supported() -> bool:
|
||||
r"""Returns a bool indicating if CPU supports AVX2."""
|
||||
return torch._C._cpu._is_avx2_supported()
|
||||
|
||||
|
||||
def _is_avx512_supported() -> bool:
|
||||
r"""Returns a bool indicating if CPU supports AVX512."""
|
||||
return torch._C._cpu._is_avx512_supported()
|
||||
|
||||
|
||||
def _is_avx512_bf16_supported() -> bool:
|
||||
r"""Returns a bool indicating if CPU supports AVX512_BF16."""
|
||||
return torch._C._cpu._is_avx512_bf16_supported()
|
||||
|
||||
|
||||
def _is_vnni_supported() -> bool:
|
||||
r"""Returns a bool indicating if CPU supports VNNI."""
|
||||
# Note: Currently, it only checks avx512_vnni, will add the support of avx2_vnni later.
|
||||
return torch._C._cpu._is_avx512_vnni_supported()
|
||||
|
||||
|
||||
def _is_amx_tile_supported() -> bool:
|
||||
r"""Returns a bool indicating if CPU supports AMX_TILE."""
|
||||
return torch._C._cpu._is_amx_tile_supported()
|
||||
|
||||
|
||||
def _is_amx_fp16_supported() -> bool:
|
||||
r"""Returns a bool indicating if CPU supports AMX FP16."""
|
||||
return torch._C._cpu._is_amx_fp16_supported()
|
||||
|
||||
|
||||
def _init_amx() -> bool:
|
||||
r"""Initializes AMX instructions."""
|
||||
return torch._C._cpu._init_amx()
|
||||
|
||||
|
||||
def is_available() -> bool:
|
||||
r"""Returns a bool indicating if CPU is currently available.
|
||||
|
||||
N.B. This function only exists to facilitate device-agnostic code
|
||||
|
||||
"""
|
||||
return True
|
||||
|
||||
|
||||
def synchronize(device: _device_t = None) -> None:
|
||||
r"""Waits for all kernels in all streams on the CPU device to complete.
|
||||
|
||||
Args:
|
||||
device (torch.device or int, optional): ignored, there's only one CPU device.
|
||||
|
||||
N.B. This function only exists to facilitate device-agnostic code.
|
||||
"""
|
||||
|
||||
|
||||
class Stream:
|
||||
"""
|
||||
N.B. This class only exists to facilitate device-agnostic code
|
||||
"""
|
||||
|
||||
def __init__(self, priority: int = -1) -> None:
|
||||
pass
|
||||
|
||||
def wait_stream(self, stream) -> None:
|
||||
pass
|
||||
|
||||
def record_event(self) -> None:
|
||||
pass
|
||||
|
||||
def wait_event(self, event) -> None:
|
||||
pass
|
||||
|
||||
|
||||
class Event:
|
||||
def query(self) -> bool:
|
||||
return True
|
||||
|
||||
def record(self, stream=None) -> None:
|
||||
pass
|
||||
|
||||
def synchronize(self) -> None:
|
||||
pass
|
||||
|
||||
def wait(self, stream=None) -> None:
|
||||
pass
|
||||
|
||||
|
||||
_default_cpu_stream = Stream()
|
||||
_current_stream = _default_cpu_stream
|
||||
|
||||
|
||||
def current_stream(device: _device_t = None) -> Stream:
|
||||
r"""Returns the currently selected :class:`Stream` for a given device.
|
||||
|
||||
Args:
|
||||
device (torch.device or int, optional): Ignored.
|
||||
|
||||
N.B. This function only exists to facilitate device-agnostic code
|
||||
|
||||
"""
|
||||
return _current_stream
|
||||
|
||||
|
||||
class StreamContext(AbstractContextManager):
|
||||
r"""Context-manager that selects a given stream.
|
||||
|
||||
N.B. This class only exists to facilitate device-agnostic code
|
||||
|
||||
"""
|
||||
|
||||
cur_stream: Optional[Stream]
|
||||
|
||||
def __init__(self, stream):
|
||||
self.stream = stream
|
||||
self.prev_stream = _default_cpu_stream
|
||||
|
||||
def __enter__(self):
|
||||
cur_stream = self.stream
|
||||
if cur_stream is None:
|
||||
return
|
||||
|
||||
global _current_stream
|
||||
self.prev_stream = _current_stream
|
||||
_current_stream = cur_stream
|
||||
|
||||
def __exit__(self, type: Any, value: Any, traceback: Any) -> None:
|
||||
cur_stream = self.stream
|
||||
if cur_stream is None:
|
||||
return
|
||||
|
||||
global _current_stream
|
||||
_current_stream = self.prev_stream
|
||||
|
||||
|
||||
def stream(stream: Stream) -> AbstractContextManager:
|
||||
r"""Wrapper around the Context-manager StreamContext that
|
||||
selects a given stream.
|
||||
|
||||
N.B. This function only exists to facilitate device-agnostic code
|
||||
"""
|
||||
return StreamContext(stream)
|
||||
|
||||
|
||||
def device_count() -> int:
|
||||
r"""Returns number of CPU devices (not cores). Always 1.
|
||||
|
||||
N.B. This function only exists to facilitate device-agnostic code
|
||||
"""
|
||||
return 1
|
||||
|
||||
|
||||
def set_device(device: _device_t) -> None:
|
||||
r"""Sets the current device, in CPU we do nothing.
|
||||
|
||||
N.B. This function only exists to facilitate device-agnostic code
|
||||
"""
|
||||
|
||||
|
||||
def current_device() -> str:
|
||||
r"""Returns current device for cpu. Always 'cpu'.
|
||||
|
||||
N.B. This function only exists to facilitate device-agnostic code
|
||||
"""
|
||||
return "cpu"
|
Binary file not shown.
2
venv/Lib/site-packages/torch/cpu/amp/__init__.py
Normal file
2
venv/Lib/site-packages/torch/cpu/amp/__init__.py
Normal file
|
@ -0,0 +1,2 @@
|
|||
from .autocast_mode import autocast
|
||||
from .grad_scaler import GradScaler
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
51
venv/Lib/site-packages/torch/cpu/amp/autocast_mode.py
Normal file
51
venv/Lib/site-packages/torch/cpu/amp/autocast_mode.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
# mypy: allow-untyped-defs
|
||||
from typing import Any
|
||||
from typing_extensions import deprecated
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
__all__ = ["autocast"]
|
||||
|
||||
|
||||
class autocast(torch.amp.autocast_mode.autocast):
|
||||
r"""
|
||||
See :class:`torch.autocast`.
|
||||
``torch.cpu.amp.autocast(args...)`` is deprecated. Please use ``torch.amp.autocast("cpu", args...)`` instead.
|
||||
"""
|
||||
|
||||
@deprecated(
|
||||
"`torch.cpu.amp.autocast(args...)` is deprecated. "
|
||||
"Please use `torch.amp.autocast('cpu', args...)` instead.",
|
||||
category=FutureWarning,
|
||||
)
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool = True,
|
||||
dtype: torch.dtype = torch.bfloat16,
|
||||
cache_enabled: bool = True,
|
||||
):
|
||||
if torch._jit_internal.is_scripting():
|
||||
self._enabled = enabled
|
||||
self.device = "cpu"
|
||||
self.fast_dtype = dtype
|
||||
return
|
||||
super().__init__(
|
||||
"cpu", enabled=enabled, dtype=dtype, cache_enabled=cache_enabled
|
||||
)
|
||||
|
||||
def __enter__(self):
|
||||
if torch._jit_internal.is_scripting():
|
||||
return self
|
||||
return super().__enter__()
|
||||
|
||||
# TODO: discuss a unified TorchScript-friendly API for autocast
|
||||
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any): # type: ignore[override]
|
||||
if torch._jit_internal.is_scripting():
|
||||
return
|
||||
return super().__exit__(exc_type, exc_val, exc_tb)
|
||||
|
||||
def __call__(self, func):
|
||||
if torch._jit_internal.is_scripting():
|
||||
return func
|
||||
return super().__call__(func)
|
35
venv/Lib/site-packages/torch/cpu/amp/grad_scaler.py
Normal file
35
venv/Lib/site-packages/torch/cpu/amp/grad_scaler.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
from typing_extensions import deprecated
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
__all__ = ["GradScaler"]
|
||||
|
||||
|
||||
class GradScaler(torch.amp.GradScaler):
|
||||
r"""
|
||||
See :class:`torch.amp.GradScaler`.
|
||||
``torch.cpu.amp.GradScaler(args...)`` is deprecated. Please use ``torch.amp.GradScaler("cpu", args...)`` instead.
|
||||
"""
|
||||
|
||||
@deprecated(
|
||||
"`torch.cpu.amp.GradScaler(args...)` is deprecated. "
|
||||
"Please use `torch.amp.GradScaler('cpu', args...)` instead.",
|
||||
category=FutureWarning,
|
||||
)
|
||||
def __init__(
|
||||
self,
|
||||
init_scale: float = 2.0**16,
|
||||
growth_factor: float = 2.0,
|
||||
backoff_factor: float = 0.5,
|
||||
growth_interval: int = 2000,
|
||||
enabled: bool = True,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
"cpu",
|
||||
init_scale=init_scale,
|
||||
growth_factor=growth_factor,
|
||||
backoff_factor=backoff_factor,
|
||||
growth_interval=growth_interval,
|
||||
enabled=enabled,
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue