Adding all project files

This commit is contained in:
Martina Burlando 2025-08-02 02:00:33 +02:00
parent 6c9e127bdc
commit cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions

View file

@ -0,0 +1,12 @@
from .fsdp2_mem_tracker import FSDPMemTracker
from .mem_tracker import MemTracker
from .memory_tracker import MemoryTracker
from .mod_tracker import ModTracker
from .runtime_estimator import RuntimeEstimator
from .sac_estimator import (
MSPS,
SACEstimator,
SACGreedyOrderMeta,
SACStats,
SACTradeOffStats,
)

View file

@ -0,0 +1,33 @@
import warnings
import torch
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
def get_untyped_storages(t: torch.Tensor) -> set[torch.UntypedStorage]:
"""
Recursively extracts untyped storages from a tensor or its subclasses.
Args:
t (torch.Tensor): The tensor to extract storages from.
Returns:
Set[torch.UntypedStorage]: A set of untyped storages.
"""
unflattened_tensors = [t]
flattened_tensor_storages = set()
while len(unflattened_tensors) > 0:
obj = unflattened_tensors.pop()
if is_traceable_wrapper_subclass(obj):
attrs, _ = obj.__tensor_flatten__() # type: ignore[attr-defined]
unflattened_tensors.extend([getattr(obj, attr) for attr in attrs])
else:
if not hasattr(obj, "untyped_storage"):
warnings.warn(
f"Expected a tensor or a traceable wrapper-subclass of tensor, but got {type(obj)}",
category=UserWarning,
stacklevel=2,
)
else:
flattened_tensor_storages.add(obj.untyped_storage())
return flattened_tensor_storages

View file

@ -0,0 +1,307 @@
import random
from typing import Any
import torch
from torch._C._distributed_c10d import (
_resolve_process_group,
FakeWork,
ProcessGroup,
Work,
)
from torch.utils._pytree import tree_map_only
torch.distributed.batch_isend_irecv
c10d = torch.ops.c10d
_c10d_functional = torch.ops._c10d_functional
_c10d_functional_autograd = torch.ops._c10d_functional_autograd
_dtensor = torch.ops._dtensor
used_ids: set[int] = set()
def generate_unique_id() -> int:
while True:
new_id = random.randint(1, 10**9)
if new_id not in used_ids:
used_ids.add(new_id)
return new_id
# Function to create and return FakeWork object
def create_fakework(args, return_first_arg=True): # type: ignore[no-untyped-def]
work = FakeWork()
work.seq_id = generate_unique_id()
fakework_script_obj = work.boxed()
return (args[0], fakework_script_obj) if return_first_arg else fakework_script_obj
# Dictionary mapping collective operations to their meta functions
# All 20 ops from torch.csrc.distributed.c10d.Ops.cpp are included
# _DEPRECATED_META_FUNCTIONS = {
# "allreduce_coalesced_": lambda *args: create_fakework(args, return_first_arg=False),
# "allgather_coalesced_": lambda *args: create_fakework(args, return_first_arg=False),
# "allgather_into_tensor_coalesced_": lambda *args: create_fakework(args, return_first_arg=False),
# "reduce_scatter_tensor_coalesced_": lambda *args: create_fakework(args, return_first_arg=False),
# }
_META_FUNCTIONS = {
"broadcast_": lambda *args: create_fakework(args),
"allreduce_": lambda *args: create_fakework(args),
"allgather_": lambda *args: create_fakework(args),
"_allgather_base_": lambda *args: create_fakework(args),
"reduce_scatter_": lambda *args: create_fakework(args),
"_reduce_scatter_base_": lambda *args: create_fakework(args),
"reduce_": lambda *args: create_fakework(args, return_first_arg=False),
"gather_": lambda *args: create_fakework(args, return_first_arg=False),
"scatter_": lambda *args: create_fakework(args),
"alltoall_": lambda *args: create_fakework(args),
"alltoall_base_": lambda *args: create_fakework(args, return_first_arg=False),
"barrier": lambda *args: create_fakework(args, return_first_arg=False),
"monitored_barrier_": lambda *args: None,
"send": lambda *args: create_fakework(args, return_first_arg=False),
"recv_": lambda *args: create_fakework(args, return_first_arg=False),
"recv_any_source_": lambda *args: create_fakework(args, return_first_arg=False),
}
if not torch._running_with_deploy():
lib_impl = torch.library.Library("c10d", "IMPL") # noqa: TOR901
for op, meta_func in _META_FUNCTIONS.items():
lib_impl.impl(op, meta_func, "Meta")
# List of collective operation functions including functional collectives
# Note: The following collectives might be deprecated soon hence not adding them
# depcreated_non_functional_collectives = [
# c10d.allreduce_coalesced_.default,
# c10d.reduce_scatter_tensor_coalesced_.default,
# c10d.allgather_into_tensor_coalesced_.default,
# c10d.allgather_coalesced_.default,
# ]
non_functional_collectives: set[torch._ops.OpOverload] = {
c10d.broadcast_.default,
c10d.allreduce_.default,
c10d.reduce_.default,
c10d.send.default,
c10d.recv_.default,
c10d.recv_any_source_.default,
c10d.allgather_.default,
c10d.reduce_scatter_.default,
c10d._reduce_scatter_base_.default,
c10d._allgather_base_.default,
c10d.gather_.default,
c10d.scatter_.default,
c10d.alltoall_.default,
c10d.alltoall_base_.default,
c10d.barrier.default,
c10d.monitored_barrier_.default,
}
functional_collectives: set[torch._ops.OpOverload] = {
_c10d_functional.broadcast.default,
_c10d_functional.all_reduce.default,
_c10d_functional.all_gather_into_tensor.default,
_c10d_functional.reduce_scatter_tensor.default,
_c10d_functional.all_to_all_single.default,
_c10d_functional_autograd.all_to_all_single.default,
_c10d_functional.wait_tensor.default,
_c10d_functional.all_reduce_.default,
_c10d_functional.all_reduce_coalesced.default,
_c10d_functional.all_reduce_coalesced_.default,
_c10d_functional.all_gather_into_tensor_out.default,
_c10d_functional.all_gather_into_tensor_coalesced.default,
_c10d_functional_autograd.all_gather_into_tensor.default,
_c10d_functional.reduce_scatter_tensor_coalesced.default,
_c10d_functional_autograd.reduce_scatter_tensor.default,
_c10d_functional.broadcast_.default,
_dtensor.shard_dim_alltoall.default,
}
sync_ops: set[torch._ops.OpOverload] = {
c10d.barrier.default,
c10d.monitored_barrier_.default,
_c10d_functional.wait_tensor.default,
}
collective_ops = set.union(functional_collectives, non_functional_collectives)
class CollectiveOp:
# Static sets for performance optimization
PG_ARG_1 = {
c10d.broadcast_.default,
c10d.allreduce_.default,
c10d.reduce_.default,
c10d.send.default,
c10d.recv_.default,
c10d.recv_any_source_.default,
c10d.barrier.default,
# c10d.allreduce_coalesced_.default
}
PG_ARG_2 = {
c10d.allgather_.default,
c10d._allgather_base_.default,
c10d.reduce_scatter_.default,
c10d._reduce_scatter_base_.default,
c10d.gather_.default,
c10d.scatter_.default,
c10d.alltoall_.default,
c10d.alltoall_base_.default,
# c10d.allgather_coalesced_.default,
# c10d.allgather_into_tensor_coalesced_.default
# c10d.reduce_scatter_tensor_coalesced_.default
}
PG_ARG_3 = {
_c10d_functional.broadcast.default,
_c10d_functional.broadcast_.default,
_c10d_functional.all_reduce.default,
_c10d_functional.all_reduce_.default,
_c10d_functional.all_reduce_coalesced.default,
_c10d_functional.all_reduce_coalesced_.default,
_c10d_functional.all_gather_into_tensor.default,
_c10d_functional.all_gather_into_tensor_out.default,
_c10d_functional_autograd.all_gather_into_tensor.default,
_c10d_functional.all_gather_into_tensor_coalesced.default,
}
PG_ARG_4 = {
_c10d_functional.reduce_scatter_tensor.default,
_c10d_functional.reduce_scatter_tensor_coalesced.default,
_c10d_functional_autograd.reduce_scatter_tensor.default,
_c10d_functional.all_to_all_single.default,
_c10d_functional_autograd.all_to_all_single.default,
_dtensor.shard_dim_alltoall.default,
}
WK_ARG_1 = {
c10d.broadcast_.default,
c10d.allreduce_.default,
c10d.allgather_.default,
c10d.reduce_scatter_.default,
c10d._reduce_scatter_base_.default,
c10d._allgather_base_.default,
c10d.scatter_.default,
c10d.alltoall_.default,
}
WK = {
c10d.send.default,
c10d.recv_.default,
c10d.recv_any_source_.default,
c10d.reduce_.default,
c10d.gather_.default,
c10d.alltoall_base_.default,
c10d.barrier.default,
}
COMM_TENSOR_ARG_0 = {
c10d.allreduce_.default,
c10d.send.default,
c10d.recv_.default,
c10d.recv_any_source_.default,
c10d.allgather_.default,
c10d.gather_.default,
c10d.reduce_.default,
c10d.broadcast_.default,
_c10d_functional.all_reduce_coalesced.default,
_c10d_functional.all_reduce_coalesced_.default,
# c10d.allreduce_coalesced_.default
# c10d.allgather_coalesced_.default
# c10d.allgather_into_tensor_coalesced_.default,
}
COMM_TENSOR_ARG_1 = {
c10d.reduce_scatter_.default,
c10d.scatter_.default,
# c10d.reduce_scatter_tensor_coalesced_.default,
}
COMM_TENSOR_ARG_RES = {
_c10d_functional.all_gather_into_tensor.default,
_c10d_functional_autograd.all_gather_into_tensor.default,
}
COMM_TENSOR_SINGLE_UNTYPED_STORAGE = {
c10d._allgather_base_.default,
_c10d_functional.broadcast.default,
_c10d_functional.broadcast_.default,
_c10d_functional.all_reduce.default,
_c10d_functional.all_reduce_.default,
_c10d_functional.reduce_scatter_tensor.default,
_c10d_functional_autograd.reduce_scatter_tensor.default,
}
COMM_TENSOR_ARG_0_AND_RES = {
_c10d_functional.all_to_all_single.default,
_c10d_functional_autograd.all_to_all_single.default,
_dtensor.shard_dim_alltoall.default,
}
COMM_TENSOR_RES_SUM = {
_c10d_functional.all_gather_into_tensor_coalesced.default,
_c10d_functional.reduce_scatter_tensor_coalesced.default,
}
@staticmethod
def sum_tensors(arg: Any) -> int:
"""Calculate total memory consumed by the tensors in the argument."""
total_memory = 0
def sum_bytes(t: torch.Tensor) -> None:
nonlocal total_memory
total_memory += t.untyped_storage().nbytes()
tree_map_only(torch.Tensor, sum_bytes, arg)
return total_memory
@staticmethod
def get_process_group(func, args) -> ProcessGroup: # type: ignore[no-untyped-def]
"""Retrieve the process group for collective operations, except `wait_tensor`."""
if func in CollectiveOp.PG_ARG_1:
return ProcessGroup.unbox(args[1])
if func in CollectiveOp.PG_ARG_2:
return ProcessGroup.unbox(args[2])
if func in CollectiveOp.PG_ARG_3:
return _resolve_process_group(args[2])
if func in CollectiveOp.PG_ARG_4:
return _resolve_process_group(args[3])
raise TypeError(f"Func {func} not found in {collective_ops}")
@staticmethod
def get_comm_tensor_size(func, res, args, kwargs) -> int: # type: ignore[no-untyped-def]
"""Compute the communication tensor size, except for `wait_tensor`, `barrier`, and `monitored_barrier`."""
if func in CollectiveOp.COMM_TENSOR_ARG_0:
return CollectiveOp.sum_tensors(args[0])
if func in CollectiveOp.COMM_TENSOR_ARG_1:
return CollectiveOp.sum_tensors(args[1])
if func in CollectiveOp.COMM_TENSOR_ARG_RES:
return res.untyped_storage().nbytes()
if func in CollectiveOp.COMM_TENSOR_SINGLE_UNTYPED_STORAGE:
return args[0].untyped_storage().nbytes()
if func == c10d._reduce_scatter_base_.default:
return args[1].untyped_storage().nbytes()
if func == c10d.alltoall_.default:
# TODO(@sanketpurandare) - Confirm size computation
return max(
CollectiveOp.sum_tensors(args[0]), CollectiveOp.sum_tensors(args[1])
)
if func == c10d.alltoall_base_.default:
# TODO(@sanketpurandare) - Confirm size computation
return max(
args[0].untyped_storage().nbytes(), args[1].untyped_storage().nbytes()
)
if func == _c10d_functional.all_gather_into_tensor_out.default:
return args[-1].untyped_storage().nbytes()
if func in CollectiveOp.COMM_TENSOR_RES_SUM:
return CollectiveOp.sum_tensors(res)
if func in CollectiveOp.COMM_TENSOR_ARG_0_AND_RES:
# TODO(@sanketpurandare) - Confirm size computation
return args[0].untyped_storage().nbytes() + res.untyped_storage().nbytes()
raise TypeError(f"Unknown function: {func} in {collective_ops}")
@staticmethod
def get_work(func, res) -> Work: # type: ignore[no-untyped-def]
if func in CollectiveOp.WK:
return FakeWork.unbox(res)
elif func in CollectiveOp.WK_ARG_1:
return FakeWork.unbox(res[1])
raise TypeError(f"Func {func} not found in {collective_ops}")

View file

@ -0,0 +1,547 @@
from copy import deepcopy
from enum import auto, Enum
from functools import partial, wraps
from typing import Any, Callable, NamedTuple, Optional, TypeVar, Union
from typing_extensions import ParamSpec, TypeVarTuple, Unpack
import torch
import torch.distributed._tools.fake_collectives
from torch import nn, optim
from torch._guards import active_fake_mode
from torch.distributed._tools.mem_tracker import _RefType, _State, MemTracker
from torch.distributed.fsdp import FSDPModule
from torch.distributed.fsdp._fully_shard._fsdp_param_group import FSDPParamGroup
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map_only
from torch.utils.weak import WeakIdKeyDictionary, weakref
_TOTAL_KEY = "Total"
__all__ = ["FSDPMemTracker"]
_P = ParamSpec("_P")
_R = TypeVar("_R")
_Ts = TypeVarTuple("_Ts")
c10d = torch.ops.c10d
class _FSDPRefType(_RefType):
"""
Enumerates categories of memory usage in FSDP modules, including parameters, gradients, activations,
and optimizer states.
Attributes:
SHARDED_PARAM (str): Memory usage of sharded parameters.
UNSHARDED_PARAM (str): Memory usage of unsharded parameters.
SHARDED_GRAD (str): Memory usage of sharded gradients corresponding to the sharded parameters.
UNSHARDED_GRAD (str): Memory usage of unsharded gradients corresponding to the unsharded parameters.
ACT (str): Memory usage of activations and tensors from forward and AC recomputation.
TEMP (str): Memory usage of temporary tensors during the backward pass including gradients of activations.
ALL_GATHER (str): Memory usage of all_gather output tensor.
REDUCE_SCATTER (str): Memory usage of reduce_scatter input tensor.
OPT (str): Memory usage of tensors storing optimizer states.
INP (str): Memory usage of input tensors.
"""
SHARDED_PARAM = "Sharded Param"
UNSHARDED_PARAM = "Unsharded Param"
BUFFER = "Buffer"
SHARDED_GRAD = "Sharded Grad"
UNSHARDED_GRAD = "Unsharded Grad"
ACT = "Activation"
TEMP = "Temp"
ALL_GATHER = "All Gather"
REDUCE_SCATTER = "Reduce Scatter"
OPT = "OptState"
INP = "Inputs"
class _SavedFSDPMethods(NamedTuple):
pre_backward: Callable
post_backward: Callable
class _FSDPModState(_State):
"""
Enumerates the states of FSDP modules during the forward and backward passes.
"""
BEF_PRE_FW = "Before Pre-Forward"
AFT_PRE_FW = "After Pre-Forward"
BEF_POST_FW = "Before Post-Forward"
AFT_POST_FW = "After Post-Forward"
BEF_PRE_BW = "Before Pre-Backward"
AFT_PRE_BW = "After Pre-Backward"
BEF_POST_BW = "Before Post-Backward"
AFT_POST_BW = "After Post-Backward"
PRE_FW_AC = "Pre-Forward AC"
POST_FW_AC = "Post-Forward AC"
PEAK_FW = "Peak Forward"
PEAK_BW = "Peak Backward"
class _FSDPModMemStats:
"""
A class to store the memory statistics of an FSDP module.
Args:
mod_fqn (str): The fully qualified name of the FSDP module.
Attributes:
snapshots (Dict[_FSDPModState, Dict[torch.device, Dict[str, int]]]): A dictionary of memory snapshots
of the module at different states as defined by ``_FSDPModState``. Each key is a device, and
each value is another dictionary with keys as memory reference types defined by ``_FSDPRefType`` and
values as the memory consumed in bytes.
"""
def __init__(self, mod_fqn: str) -> None:
self.mod_fqn = mod_fqn
self.local_peak: dict[torch.device, int] = {}
self.snapshots: dict[
_FSDPModState, list[dict[torch.device, dict[str, int]]]
] = {}
class _FSDPState(Enum):
PRE_FW = auto()
FW = auto()
POST_FW = auto()
PRE_BW = auto()
BW = auto()
POST_BW = auto()
class FSDPMemTracker(MemTracker):
"""
A ``TorchDispatchMode`` based context manager that extends ``torch.distributed._tools.mem_tracker.MemTracker`` to track
and categorize the peak memory and module-wise memory usage of FSDP modules.
It tracks the peak memory usage across all the devices of all the FSDP modules in the module tree and categorizes
the tensor memory usage as defined by ``_FSDPRefType``. Further, it captures memory `snapshots` at different stages of
the module execution defined by ``_FSDPModState``.
Attributes:
memory_tracking: A weakref key dictionary to store the memory statistics of each module. Each key is a reference
to a module, and each value is a ``_FSDPModMemStats`` object that stores the memory statistics of the module.
Args:
mod (torch.nn.Module): The root FSDP module to be tracked.
optm (torch.optim.Optimizer, optional): The optimizer to be tracked.
Note: Please refer to ``torch.distributed._tools.mem_tracker.MemTracker`` to learn about the limitations.
Example usage
.. code-block:: python
module = ...
optimizer = ...
inp = ...
fmt = FSDPMemTracker(module, optimizer)
fmt.track_inputs((inp,))
with fmt:
optimizer.zero_grad()
loss = module(inp)
print("After Forward:")
fmt.display_snapshot("current")
loss.backward()
optimizer.step()
fmt.display_snapshot("peak")
fmt.display_modulewise_snapshots(depth=3, units="MB")
"""
def __init__(
self,
mod: torch.nn.Module,
optm: Optional[torch.optim.Optimizer] = None,
) -> None:
super().__init__()
assert isinstance(mod, FSDPModule), "FSDPMemTracker only supports FSDP modules"
self._root_mod = mod
self._optm = optm
self._fsdp_mod_to_saved_methods: WeakIdKeyDictionary = WeakIdKeyDictionary()
self._fsdp_state: _FSDPState = _FSDPState.PRE_FW
self._ref_class: type[_RefType] = _FSDPRefType
def _instrument_fsdp_sharded_params_grads(
self, fsdp_param_group: FSDPParamGroup
) -> None:
# Track sharded params and grads after initilization
for fsdp_param in fsdp_param_group.fsdp_params:
self._update_and_maybe_create_winfos(
fsdp_param.sharded_param,
_FSDPRefType.SHARDED_PARAM,
)
sharded_grad = fsdp_param.sharded_param.grad
if sharded_grad is not None:
self._update_and_maybe_create_winfos(
sharded_grad,
_FSDPRefType.SHARDED_GRAD,
)
def _fsdp_state_pre_forward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_state_pre_fw: Callable[_P, tuple[tuple[Unpack[_Ts]], dict[str, Any]]],
) -> Callable[_P, tuple[tuple[Unpack[_Ts]], dict[str, Any]]]:
# We capture memory snapshots before and after ``FSDPState._pre_forward`` to attribute the `unsharded` params
# and `all_gather` buffers. There are three cases:
# Case 1: If the module is not in the ``memory_tracking`` dictionary, create a new ``_FSDPModMemStats``
# instance for the module and add it to the ``memory_tracking`` dictionary.
# Case 2: If the module is already in the ``memory_tracking`` dictionary and we are in backward, this means
# we are in the AC region. We check if this is the top most module in the AC region. If it is,
# we store a weak reference and set the flag ``_in_ac`` to True.
# Case 3: If the module is already in the ``memory_tracking`` dictionary and we are in forward, this means
# this module is called for the second time. If it is a root module, that means we are in the next
# iteration and we error out. If it is not a root module, that means it's a submodule that is being
# used multiple times in the same iteration, which we allow and track.
# For Case 1 and 3, we also initialiaze the ``local_peak`` and ``PEAK_FW`` snapshot for the module.
# For Case 2 we only capture 1 snapshot after ``FSDPState._pre_forward`` runs because it is a no-op.
@wraps(orig_fsdp_state_pre_fw)
def inner(
*args: _P.args, **kwargs: _P.kwargs
) -> tuple[tuple[Unpack[_Ts]], dict[str, Any]]:
self._fsdp_state = _FSDPState.PRE_FW
mod_fqn = self._mod_tracker.get_known_fqn(fsdp_mod)
assert mod_fqn is not None
if fsdp_mod not in self.memory_tracking:
mod_stat = _FSDPModMemStats(mod_fqn)
self.memory_tracking[fsdp_mod] = mod_stat
snapshot = self.get_tracker_snapshot()
mod_stat.local_peak = {
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in snapshot.items()
}
mod_stat.snapshots.setdefault(_FSDPModState.PEAK_FW, []).append(
snapshot
)
mod_stat.snapshots.setdefault(_FSDPModState.BEF_PRE_FW, []).append(
deepcopy(snapshot)
)
elif not self._mod_tracker.is_bw:
parents = self._mod_tracker.parents - {mod_fqn}
if len(parents) == 1 and "Global" in parents:
raise NotImplementedError(
"FSDPMemTracker does not support memory tracking for multiple iterative calls."
" Either use ``reset_mod_stats`` to clear module memory stats for the previous iteration"
" or file a github issue if you need this feature."
)
args, kwargs = orig_fsdp_state_pre_fw(*args, **kwargs)
fsdp_state = fsdp_mod._get_fsdp_state()
if fsdp_param_group := fsdp_state._fsdp_param_group:
for fsdp_param in fsdp_param_group.fsdp_params:
self._update_and_maybe_create_winfos(
fsdp_param.unsharded_param,
_FSDPRefType.UNSHARDED_PARAM,
)
mod_stat = self.memory_tracking[fsdp_mod]
if self._mod_tracker.is_bw:
state = _FSDPModState.PRE_FW_AC
if self._ac_mod is None:
self._ac_mod = weakref.ref(fsdp_mod)
self._in_ac = True
else:
state = _FSDPModState.AFT_PRE_FW
mod_stat.snapshots.setdefault(state, []).append(self.get_tracker_snapshot())
self._fsdp_state = _FSDPState.FW
return args, kwargs
return inner
def _fsdp_state_post_forward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_state_post_fw: Callable[_P, _R],
) -> Callable[_P, _R]:
# We capture memory snapshots before and after ``FSDPState._post_forward`` to capture the resharded state
# if ``reshard_after_forward`` is not ``False``. There are two cases:
# Case 1: This is called in backward, which means we are in the AC region. If this is the top most module
# in the AC region, we set the flag ``_in_ac`` to False.
# Case 2: This is called in forward.
@wraps(orig_fsdp_state_post_fw)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> _R:
mod_stat = self.memory_tracking[fsdp_mod]
if self._mod_tracker.is_bw:
state = _FSDPModState.POST_FW_AC
if self._ac_mod is not None and self._ac_mod() is fsdp_mod:
self._ac_mod = None
self._in_ac = False
else:
state = _FSDPModState.BEF_POST_FW
mod_stat.snapshots.setdefault(state, []).append(self.get_tracker_snapshot())
self._fsdp_state = _FSDPState.POST_FW
output = orig_fsdp_state_post_fw(*args, **kwargs)
if not self._mod_tracker.is_bw:
mod_stat.snapshots.setdefault(_FSDPModState.AFT_POST_FW, []).append(
self.get_tracker_snapshot()
)
return output
return inner
def _fsdp_param_group_pre_backward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_param_group_pre_backward: Callable[_P, Any],
) -> Callable[_P, None]:
# We capture memory snapshots before and after ``FSDPParamGroup.pre_backward`` to capture the pre-fetching
# and unsharding of params. We also initialize ``local_peak`` and ``PEAK_BW`` snapshot for the module.
@wraps(orig_fsdp_param_group_pre_backward)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> None:
self._fsdp_state = _FSDPState.PRE_BW
mod_stat = self.memory_tracking[fsdp_mod]
snapshot = self.get_tracker_snapshot()
mod_stat.local_peak = {
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in snapshot.items()
}
mod_stat.snapshots.setdefault(_FSDPModState.PEAK_BW, []).append(snapshot)
mod_stat.snapshots.setdefault(_FSDPModState.BEF_PRE_BW, []).append(
deepcopy(snapshot)
)
orig_fsdp_param_group_pre_backward(*args, **kwargs)
mod_stat.snapshots.setdefault(_FSDPModState.AFT_PRE_BW, []).append(
self.get_tracker_snapshot()
)
self._fsdp_state = _FSDPState.BW
return inner
def _fsdp_param_group_post_backward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_param_group_post_backward: Callable[_P, Any],
) -> Callable[_P, None]:
# We capture the memory snapshots before and after ``FSDPParamGroup.post_backward`` to track and attribute
# the `unsharded` grads before the post backward and then `sharded` grads and `reduce_scatter` buffers
# after the post backward.
@wraps(orig_fsdp_param_group_post_backward)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> None:
fsdp_state = fsdp_mod._get_fsdp_state()
if fsdp_param_group := fsdp_state._fsdp_param_group:
for fsdp_param in fsdp_param_group.fsdp_params:
unsharded_grad = fsdp_param._unsharded_param.grad
if unsharded_grad is not None:
self._update_and_maybe_create_winfos(
unsharded_grad,
_FSDPRefType.UNSHARDED_GRAD,
update_existing=True,
)
mod_stat = self.memory_tracking[fsdp_mod]
mod_stat.snapshots.setdefault(_FSDPModState.BEF_POST_BW, []).append(
self.get_tracker_snapshot()
)
self._fsdp_state = _FSDPState.POST_BW
orig_fsdp_param_group_post_backward(*args, **kwargs)
if fsdp_param_group := fsdp_state._fsdp_param_group:
for fsdp_param in fsdp_param_group.fsdp_params:
sharded_grad = fsdp_param.sharded_param.grad
if sharded_grad is not None:
self._update_and_maybe_create_winfos(
sharded_grad,
_FSDPRefType.SHARDED_GRAD,
)
mod_stat.snapshots.setdefault(_FSDPModState.AFT_POST_BW, []).append(
self.get_tracker_snapshot()
)
return inner
def _instrument_fsdp_module(self) -> None:
# We uninstall the existing `FSDPState._pre_forward` and `FSDPState._post_forward` hooks and install
# our own hooks that wrap them. We choose this over monkey-patching `FSDPParamGroup.pre_forward` and
# `FSDPParamGroup.post_forward` because during AC these won't be called.
# TODO(@sanketpurandare): This will need to be modified after this PR (https://github.com/pytorch/pytorch/pull/127786)
# lands. For backward we monkey-patch the `FSDPParamGroup.pre_backward` and `FSDPParamGroup.post_backward`.
for module in self._root_mod.modules():
if isinstance(module, FSDPModule):
fsdp_state = module._get_fsdp_state()
if fsdp_param_group := fsdp_state._fsdp_param_group:
self._instrument_fsdp_sharded_params_grads(fsdp_param_group)
fsdp_state._pre_forward_hook_handle.remove()
fsdp_state._post_forward_hook_handle.remove()
fsdp_state._pre_forward_hook_handle = (
module.register_forward_pre_hook(
self._fsdp_state_pre_forward(
module, fsdp_state._pre_forward
),
prepend=True,
with_kwargs=True,
)
)
fsdp_state._post_forward_hook_handle = module.register_forward_hook(
self._fsdp_state_post_forward(module, fsdp_state._post_forward),
prepend=False,
always_call=True,
)
self._fsdp_mod_to_saved_methods[module] = _SavedFSDPMethods(
fsdp_param_group.pre_backward,
fsdp_param_group.post_backward,
)
fsdp_param_group.pre_backward = self._fsdp_param_group_pre_backward( # type: ignore[assignment]
module, fsdp_param_group.pre_backward
)
fsdp_param_group.post_backward = ( # type: ignore[assignment]
self._fsdp_param_group_post_backward(
module, fsdp_param_group.post_backward
)
)
for buffer in self._root_mod.buffers():
self._update_and_maybe_create_winfos(
buffer,
_FSDPRefType.BUFFER,
)
def _instrument_optimizer(self) -> None:
# Register a hook on the optimizer step to track the optimizer states.
# The pre-hook is to set the flag ``_in_opt`` to True. The post-hook unsets the flag,
# and also tracks any optimizer states that are created during the optimizer step.
if self._optm is not None:
self._track_optimizer_states(_FSDPRefType.OPT, self._optm)
def _opt_step_pre_hook(
optimizer: optim.Optimizer, args: Any, kwargs: Any
) -> None:
self._in_opt = True
def _opt_step_post_hook(
optimizer: optim.Optimizer, args: Any, kwargs: Any
) -> None:
self._track_optimizer_states(_FSDPRefType.OPT, optimizer)
self._in_opt = False
self._optimizer_hook_handles = (
self._optm.register_step_pre_hook(_opt_step_pre_hook),
self._optm.register_step_post_hook(_opt_step_post_hook),
)
def _register_module_and_optimizer_hooks(self) -> None:
self._instrument_fsdp_module()
self._instrument_optimizer()
def _deregister_module_and_optimizer_hooks(self) -> None:
for (
fsdp_mod,
saved_methods,
) in self._fsdp_mod_to_saved_methods.items():
fsdp_state = fsdp_mod._get_fsdp_state()
fsdp_state._pre_forward_hook_handle.remove()
fsdp_state._post_forward_hook_handle.remove()
fsdp_state._pre_forward_hook_handle = fsdp_mod.register_forward_pre_hook(
fsdp_state._pre_forward, prepend=True, with_kwargs=True
)
fsdp_state._post_forward_hook_handle = fsdp_mod.register_forward_hook(
fsdp_state._post_forward, prepend=False
)
if fsdp_param_group := fsdp_state._fsdp_param_group:
fsdp_param_group.pre_backward = saved_methods.pre_backward
fsdp_param_group.post_backward = saved_methods.post_backward
self._fsdp_mod_to_saved_methods.clear()
if self._optimizer_hook_handles is not None:
for handle in self._optimizer_hook_handles:
handle.remove()
self._optimizer_hook_handles = None
def track_inputs(self, inputs: tuple[Any, ...]) -> None:
"""
This is used to track the input tensors to the model and annotate them as ``Inputs``.
Args:
inputs (Tuple[Any]): A tuple containing the input data. This can include tensors
as well as other data types. Only tensors will be tracked.
"""
def _track_inputs(t: torch.Tensor) -> None:
self._update_and_maybe_create_winfos(
t,
_FSDPRefType.INP,
)
tree_map_only(torch.Tensor, _track_inputs, inputs)
def track_external(
self, *external: Union[nn.Module, optim.Optimizer, torch.Tensor]
) -> None:
"""This is no-op for ``FSDPMemTracker``"""
def __enter__(self) -> "FSDPMemTracker":
if self._depth == 0:
self._register_module_and_optimizer_hooks()
self._track_resize()
self._track_dtensor_dispatch()
self._peak_mem_snap = self.get_tracker_snapshot()
self._peak_mem = {
dev: dev_snap[_TOTAL_KEY]
for dev, dev_snap in self._peak_mem_snap.items()
}
self._mod_tracker.__enter__()
TorchDispatchMode.__enter__(self)
self._depth += 1
return self
def __exit__(self, *args: Any) -> None:
self._depth -= 1
if self._depth == 0:
self._deregister_module_and_optimizer_hooks()
self._restore_resize()
self._restore_dtensor_dispatch()
self._mod_tracker.__exit__(*args)
TorchDispatchMode.__exit__(self, *args)
def __torch_dispatch__(self, func, types, args=..., kwargs=None): # type: ignore[no-untyped-def]
if (
func == torch.ops._c10d_functional.wait_tensor.default
and active_fake_mode()
):
# N.B: This is a hacky way to override the Meta IMPL of wait_tensor. The original impl returns
# a new tensor which does not happen in eager mode, when a wait_tensor is called.
res = args[0]
else:
res = func(*args, **kwargs or {})
# If we are tracking an optimizer state, we use the optimizer reference type.
# If we are in backward region and not in AC region, we use the backward reference type.
# Else we use the forward reference type.
if self._in_opt:
reftype = _FSDPRefType.OPT
elif self._mod_tracker.is_bw and not self._in_ac:
reftype = _FSDPRefType.TEMP
else:
reftype = _FSDPRefType.ACT
if func == c10d._allgather_base_.default and self._fsdp_state in [
_FSDPState.PRE_FW,
_FSDPState.PRE_BW,
]:
output_tensor = args[0]
self._update_and_maybe_create_winfos(
output_tensor,
_FSDPRefType.ALL_GATHER,
update_existing=True,
)
if (
func == c10d._reduce_scatter_base_.default
and self._fsdp_state == _FSDPState.POST_BW
):
input_tensor = args[1]
self._update_and_maybe_create_winfos(
input_tensor,
_FSDPRefType.REDUCE_SCATTER,
update_existing=True,
)
tree_map_only(torch.Tensor, partial(self._track, reftype), res)
peak_state = (
_FSDPModState.PEAK_BW if self._mod_tracker.is_bw else _FSDPModState.PEAK_FW
)
self._update_peak_stats(peak_state)
return res

View file

@ -0,0 +1,292 @@
import copy
from collections import OrderedDict
from typing import cast, TypedDict
import numpy as np
import torch
from torch.distributed._tools.mem_tracker import (
_MemRefType,
_ModMemStats,
_ModState,
MemTracker,
)
from torch.distributed._tools.runtime_estimator import RuntimeEstimator
from torch.distributed._tools.sac_estimator import SACEstimator, SACTradeOffStats
class ModOrder(TypedDict):
fw_pre_order: list[str]
bw_pre_order: list[str]
fw_post_order: list[str]
bw_post_order: list[str]
class ModRuntime(TypedDict):
fw: float
bw: float
class ModStats(TypedDict):
fqn: str
# per-module params
param_per_module: int
# per-module grads
grad_per_module: int
# total accumulated gradients up to and including this module
grad_total: int
# per module fw activation size (excluding input and output)
act_fw_per_module: int
# per module bw activation size during peak_bw
act_bw_per_module: int
# per module activation grad size during peak_bw
act_grad_per_module: int
# total activation size up to but excluding the current module
# includes input of the current module (i.e., output of previous module)
act_total: int
# Inputs to the module
input_per_module: int
# Outputs of the module
output_per_module: int
# Total fw run-time of the module
fw_runtime_per_module: float
# Total bw run-time of the module
bw_runtime_per_module: float
# Is this module a leaf module
is_leaf: bool
# Total ac run-time of the module
sac_runtime: float
# Total ac_memory for the module
sac_memory: int
# Number of piecewise-linear functions used for approximating ac tradeoff curve
n_segments: int
# Slopes of the of piecewise-linear functions
slopes: list[float]
# Intercepts of the of piecewise-linear functions
intercepts: list[float]
# X breakpoints of the of piecewise-linear functions
breakpoints: list[float]
# Original trade-off curves
tradeoff_curve: OrderedDict[float, float]
class ModuleInfo(TypedDict):
mod_order: ModOrder
mod_stats: list[ModStats]
def aggregate_stats(
model: torch.nn.Module,
mem_tracker: MemTracker,
runtime_estimator: RuntimeEstimator,
sac_estimator: SACEstimator,
dev: torch.device,
) -> ModuleInfo:
"""
Collect modulewise stats for a given model, including memory, runtime, and AC tradeoff stats.
Args:
model: nn.Module object
runtime_estimator: RuntimeEstimator object with runtime stats
mem_tracker: MemTracker object with memory stats
sac_estimator: SACEstimator object with AC tradeoff stats
dev: device the model was run on (used to extract memory stats from MemTracker)
Returns:
ModuleInfo: A dictionary with module order and module stats.
"""
# Memory stats
mod_mem_stats: dict[torch.nn.Module, _ModMemStats] = dict(
copy.deepcopy(mem_tracker.memory_tracking)
)
# Runtime stats
mod_runtime_stats: dict[str, ModRuntime] = {
fqn: {"fw": v["fw"], "bw": v["bw"]}
for fqn, v in runtime_estimator.mod_runtimes.items()
}
# Module order
mod_order: ModOrder = {
"fw_pre_order": list(runtime_estimator.mod_fw_pre_order),
"bw_pre_order": list(runtime_estimator.mod_bw_pre_order),
"fw_post_order": list(runtime_estimator.mod_fw_post_order),
"bw_post_order": list(runtime_estimator.mod_bw_post_order),
}
# Selective Activation Checkpointing stats
sac_estimator.pwlf_sac_tradeoff_curve()
mod_sac_tradeoff_stats: dict[str, SACTradeOffStats] = copy.deepcopy(
sac_estimator.sac_mod_tradeoff_stats
)
module_info: ModuleInfo = {
"mod_order": mod_order,
"mod_stats": [],
}
for mod in model.modules():
if mod_mem_stat := mod_mem_stats.get(mod, None):
if tradeoff_stats := mod_sac_tradeoff_stats.get(mod_mem_stat.mod_fqn, None):
sac_runtime = tradeoff_stats.sac_runtime
sac_memory = tradeoff_stats.sac_memory
n_segments = tradeoff_stats.n_segments
slopes = tradeoff_stats.slopes
intercepts = tradeoff_stats.intercepts
breakpoints = tradeoff_stats.fit_breaks
tradeoff_curve = tradeoff_stats.tradeoff_curve
is_leaf = False
else:
sac_runtime = sac_memory = n_segments = 0
slopes = intercepts = breakpoints = []
tradeoff_curve: OrderedDict[float, float] = OrderedDict() # type: ignore[no-redef]
is_leaf = True
mod_stat: ModStats = {
"fqn": mod_mem_stat.mod_fqn,
"param_per_module": mod_mem_stat.parameter_mem,
"grad_per_module": mod_mem_stat.parameter_mem,
"grad_total": mod_mem_stat.snapshots[_ModState.PRE_BW][-1][dev][
_MemRefType.GRAD
],
"act_fw_per_module": max(
0,
mod_mem_stat.snapshots[_ModState.POST_FW][-1][dev][_MemRefType.ACT]
- mod_mem_stat.snapshots[_ModState.PRE_FW][-1][dev][_MemRefType.ACT]
- mod_mem_stat.output_mem,
),
"act_bw_per_module": max(
0,
mod_mem_stat.snapshots[_ModState.PEAK_BW][-1][dev][_MemRefType.ACT],
),
"act_grad_per_module": (
mod_mem_stat.snapshots[_ModState.PEAK_BW][-1][dev][_MemRefType.TEMP]
- mod_mem_stat.snapshots[_ModState.PRE_BW][-1][dev][
_MemRefType.TEMP
]
),
"act_total": mod_mem_stat.snapshots[_ModState.POST_FW][-1][dev][
_MemRefType.ACT
],
"input_per_module": mod_mem_stat.input_mem,
"output_per_module": mod_mem_stat.output_mem,
"fw_runtime_per_module": mod_runtime_stats[mod_mem_stat.mod_fqn]["fw"],
"bw_runtime_per_module": mod_runtime_stats[mod_mem_stat.mod_fqn]["bw"],
"is_leaf": is_leaf,
"sac_runtime": sac_runtime,
"sac_memory": sac_memory,
"n_segments": n_segments,
"slopes": slopes,
"intercepts": intercepts,
"breakpoints": breakpoints,
"tradeoff_curve": tradeoff_curve,
}
module_info["mod_stats"].append(mod_stat)
return module_info
class Node(ModStats):
index: int # index according to forward pre-order
pos_fw_post_order: int # index according to forward post-order
class Graph:
def __init__(self, n: int) -> None:
self.nodes: list[Node] = []
self.name2node: dict[str, Node] = {}
self.ad_matrix = np.zeros((n, n))
self.fw_post_order: list[str] = []
def add_node(self, node: Node) -> None:
self.nodes.append(node)
self.name2node[node["fqn"]] = node
def parse_module_info(module_info: ModuleInfo) -> Graph:
"""
Parse module info and create a graph (tree) of modules. The graph will be
used by MILP solver to find optimal SAC and/or FSDP configurations.
"""
mod_stats = module_info["mod_stats"]
fw_pre_order = module_info["mod_order"]["fw_pre_order"]
# assertion and number of nodes
assert len(mod_stats) == len(fw_pre_order)
n_nodes = len(mod_stats)
# create graph
g = Graph(n_nodes)
g.fw_post_order = module_info["mod_order"]["fw_post_order"]
# sort the modules by pre-order and add them to the graph
module_info["mod_stats"] = sorted(
mod_stats, key=lambda x: fw_pre_order.index(x["fqn"])
)
for i, one_mod_stats in enumerate(mod_stats):
node: Node = cast(Node, one_mod_stats)
node["index"] = i
node["pos_fw_post_order"] = g.fw_post_order.index(node["fqn"])
g.add_node(node)
# set up ancestor-descendant matrix
for i in range(n_nodes):
for j in range(i, n_nodes):
if is_self_or_submodule(g.nodes[j]["fqn"], g.nodes[i]["fqn"]):
g.ad_matrix[i][j] = 1
else:
break
return g
def is_self_or_submodule(name_descendant: str, name_ancestor: str) -> bool:
"""
check if name_descendant is a submodule of name_ancestor, or if they are the same
"""
return name_descendant == name_ancestor or name_ancestor + "." in name_descendant
def is_submodule(name_descendant: str, name_ancestor: str) -> bool:
"""
if name_descendant is a submodule of name_ancestor, but not the same
"""
return name_ancestor + "." in name_descendant
def display_bytes(b: int, unit: str = "MiB") -> str:
"""
return a string that represent the number of bytes in a desired unit
"""
if unit == "KiB":
return f"{b / 2**10:.2f} KiB"
if unit == "MiB":
return f"{b / 2**20:.2f} MiB"
if unit == "GiB":
return f"{b / 2**30:.2f} GiB"
return f"{b:.2f} bytes"
def get_peak_memory_runtime_baseline(graph: Graph) -> tuple[int, float]:
"""
Get the baseline peak memory and runtime.
Baseline here means there is no FSDP or AC.
Memory includes the parameters, gradients, activations, and activation gradients.
Memory does not include e.g., optimizer states, embedding tables, etc.
Returns:
int: peak memory in bytes
float: compute time in ms
"""
P_1 = graph.nodes[0]["param_per_module"]
num_nodes = len(graph.nodes)
peak_mem = 0
for i in range(num_nodes):
TG_i = graph.nodes[i]["grad_total"]
AG_i = graph.nodes[i]["act_grad_per_module"]
TA_i = graph.nodes[i]["act_total"]
peak_mem = max(peak_mem, P_1 + TG_i + AG_i + TA_i)
compute_time = (
graph.nodes[0]["fw_runtime_per_module"]
+ graph.nodes[0]["bw_runtime_per_module"]
)
return (peak_mem, compute_time)

View file

@ -0,0 +1,949 @@
import math
import os
import re
import warnings
from contextlib import nullcontext
from copy import deepcopy
from enum import auto, Enum
from functools import partial, wraps
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
from typing_extensions import Self
import torch
import torch.distributed._tools.fake_collectives
from torch import nn, optim
from torch._guards import active_fake_mode
from torch.distributed._tools.common_utils import get_untyped_storages
from torch.distributed._tools.mod_tracker import ModTracker
from torch.distributed.tensor import DTensor
from torch.optim.optimizer import (
register_optimizer_step_post_hook,
register_optimizer_step_pre_hook,
)
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten, tree_map_only
from torch.utils.weak import WeakIdKeyDictionary, weakref
if TYPE_CHECKING:
from torch.utils.hooks import RemovableHandle
# This value is hard-coded here:
# https://github.com/pytorch/pytorch/blob/5fba5d83f0703ff8077ab65448a998e9ad6598fd/c10/cuda/CUDACachingAllocator.cpp#L117
_PYTORCH_MIN_ALLOCATE = (
2**9 if int(os.environ.get("PYTORCH_NO_CUDA_MEMORY_CACHING", 0)) == 0 else 1
)
_TOTAL_KEY = "Total"
__all__ = ["MemTracker"]
class _RefType(str, Enum):
"""Base Class for defining memory reference types, categorizing tensors based on their usage within a model."""
class _State(str, Enum):
"""Base Class for defining module state to capture snapshots ."""
class _MemRefType(_RefType):
"""
An enum to define memory reference types, categorizing tensors based on their usage within a model.
- PARAM: Tensors registered as nn.Parameter within modules.
- BUFFER: Tensors registered as nn.Buffer within modules.
- GRAD: Gradients associated with parameters.
- ACT: Tensors produced during the forward pass and recomputation in activation checkpointing.
- TMP: Temporary memory used during the backward pass, including gradients of activations.
- OPT: Tensors holding optimizer states.
- OTH: Tensors registered via `track_external` that do not fit the above categories.
"""
PARAM = "Parameter"
BUFFER = "Buffer"
GRAD = "Gradient"
ACT = "Activation"
TEMP = "Temp"
OPT = "Optstate"
OTH = "Other"
class _ModState(_State):
"""
An enum to define the state of a module.
- PRE_FW: The module is about to run the forward pass.
- POST_FW: The module has finished running the forward pass.
- PEAK_FW: The module has reached the peak memory usage during the forward pass.
- PRE_BW: The module is about to run the backward pass.
- PRE_FW_AC: The module is about to run the forward pass with activation checkpointing.
- POST_FW_AC: The module has finished running the forward pass with activation checkpointing.
- POST_BW: The module has finished running the backward pass.
- PEAK_BW: The module has reached the peak memory usage during the backward pass.
"""
PRE_FW = "Pre-Forward"
POST_FW = "Post-Forward"
PEAK_FW = "Peak-Forward"
PRE_BW = "Pre-Backward"
PRE_FW_AC = "Pre-Forward-AC"
POST_FW_AC = "Post-Forward-AC"
POST_BW = "Post-Backward"
PEAK_BW = "Peak-Backward"
class _ModMemStats:
"""
A class to store the memory statistics of a module.
Args:
mod_fqn (str): The fully qualified name of the module.
Attributes:
mod_fqn (str): The fully qualified name of the module.
parameter_mem (int): The memory usage of the parameters of the module.
buffer_mem (int): The memory usage of the buffers of the module.
input_mem (int): The memory usage of the inputs to the module.
output_mem (int): The memory usage of the outputs from the module.
snapshots (Dict[_ModState, Dict[torch.device, Dict[str, int]]]): A dictionary of memory snapshots
of the module at different states defined by ``_ModState``.
Note:
The memory snapshot is stored as a dictionary - Dict[torch.device, Dict[str, int]], where each key is a device,
and each value is another dictionary with keys as memory reference types defined by `_MemRefType` and
values as the memory consumed in bytes.
"""
def __init__(self, mod_fqn: str):
self.mod_fqn = mod_fqn
self.parameter_mem: int
self.buffer_mem: int
self.input_mem: int
self.output_mem: int
self.local_peak: dict[torch.device, int] = {}
self.snapshots: dict[_ModState, list[dict[torch.device, dict[str, int]]]] = {}
class _WeakRefInfo:
"""
Manages memory statistics and device attributes for tensor storages.
"""
def __init__(
self, size: int, element_size: int, device: torch.device, reftype: _RefType
) -> None:
"""
Initializes the ``_WeakRefInfo`` object with tensor storage properties.
Args:
size (int): The number of elements in the tensor storage.
element_size (int): The size of each element in the tensor storage.
device (torch.device): The device on which the tensor is allocated.
reftype (_RefType): The reference type of the tensor.
"""
self.size = size
self.element_size = element_size
self.reftype = reftype
self.device = device
self.mem_consumed = self._calculate_mem_consumed()
def _calculate_mem_consumed(self) -> int:
"""
Calculates the memory consumed by the tensor storage, considering device-specific allocation rules.
Returns:
int: The memory consumed in bytes.
"""
mem = self.size * self.element_size
if self.device.type == "cuda":
return math.ceil((mem) / _PYTORCH_MIN_ALLOCATE) * _PYTORCH_MIN_ALLOCATE
return mem
def update_mem_consumed(self, st: torch.UntypedStorage) -> int:
"""
Updates and returns the memory consumed if the storage size has changed.
Args:
st (torch.UntypedStorage): The tensor storage to check for size updates.
Returns:
int: The updated memory consumed in bytes.
"""
if st.size() != self.size:
self.size = st.size()
self.mem_consumed = self._calculate_mem_consumed()
return self.mem_consumed
@classmethod
def create_winfo(
cls,
st: torch.UntypedStorage,
device: torch.device,
reftype: _RefType,
callback: Optional[Callable[[Self, weakref.ref], Any]] = None,
) -> tuple[Self, weakref.ref]:
"""
Creates a new ``_WeakRefInfo`` instance and a weak reference to a ``torch.UntypedStorage`` object,
optionally attaching a callback to the weak reference.
Args:
st (torch.UntypedStorage): The storage object for which to create the weak reference info.
device (torch.device): The device associated with the storage object.
reftype (_RefType): The type of reference, used to categorize the storage.
callback (Optional[Callable[[Self, weakref.ref]]]): A callback function that is called when
the storage object is about to be finalized (garbage collected). The callback function
should accept two arguments: the ``_WeakRefInfo`` instance and the weak reference to the storage.
Returns:
Tuple[Self, weakref.ref]: A tuple containing the newly created ``_WeakRefInfo`` instance and the
weak reference to the storage object. The weak reference may have an attached callback if provided.
"""
winfo = cls(st.size(), st.element_size(), device, reftype)
w_st = weakref.ref(st, partial(callback, winfo) if callback else None)
return winfo, w_st
def _get_mem_divisor(units: str) -> int:
unit_dict = {"B": 1, "KiB": 2**10, "MiB": 2**20, "GiB": 2**30}
if units in unit_dict:
return unit_dict[units]
else:
raise ValueError(
f"Unsupported unit: {units}. Supported units are: {', '.join(unit_dict.keys())}"
)
def _rounding_fn(value: int, divisor: int, precision: int) -> Union[float, int]:
return value if divisor == 1 else round(value / divisor, precision)
def _print_snapshot(snapshot: dict[torch.device, dict[str, int]], units: str) -> None:
if len(snapshot) == 0:
print("No memory tracked.")
return
divisor = _get_mem_divisor(units)
for dev, dev_snap in snapshot.items():
if _rounding_fn(dev_snap[_TOTAL_KEY], divisor, 2) <= 0:
continue
print(
f"Device: {dev}",
*(
f"\t{k.value}: {_rounding_fn(v, divisor, 2)} {units}"
if isinstance(k, _RefType)
else f"\t{k}: {_rounding_fn(v, divisor, 2)} {units}"
for k, v in dev_snap.items()
),
sep="\n",
)
def _print_snapshot_tabular(
snapshot: dict[torch.device, dict[str, int]], units: str
) -> None:
if len(snapshot) == 0:
print("No memory tracked.")
return
try:
from tabulate import tabulate
except ImportError as err:
raise ImportError(
"Please install tabulate to use the tabulate option."
) from err
divisor = _get_mem_divisor(units)
table_data = []
key_list = list(next(iter(snapshot.values())).keys())
headers = ["Device"] + [
f"{key.value}" if isinstance(key, _RefType) else f"{key}" for key in key_list
]
for dev, dev_snap in snapshot.items():
if _rounding_fn(dev_snap[_TOTAL_KEY], divisor, 2) <= 0:
continue
row = [str(dev)]
row.extend(f"{_rounding_fn(v, divisor, 2)} {units}" for v in dev_snap.values())
table_data.append(row)
print(tabulate(table_data, headers=headers, tablefmt="rst"))
def _print_state_snapshots(
snapshots: dict[_State, list[dict[torch.device, dict[str, int]]]], units: str
) -> None:
for state, snapshot_list in snapshots.items():
print(f"{state.value}")
for i, snapshot in enumerate(snapshot_list):
print(f"# {i + 1}:")
_print_snapshot(snapshot, units)
print()
def _print_state_snapshots_tabular(
snapshots: dict[_State, list[dict[torch.device, dict[str, int]]]], units: str
) -> None:
try:
from tabulate import tabulate
except ImportError as err:
raise ImportError(
"Please install tabulate to use the tabulate option."
) from err
table_data = []
last_state_call = None
divisor = _get_mem_divisor(units)
for state, snapshot_list in snapshots.items():
for i, snapshot in enumerate(snapshot_list):
state_call = f"{state.value} # {i + 1}"
for dev, dev_snap in snapshot.items():
if _rounding_fn(dev_snap[_TOTAL_KEY], divisor, 2) <= 0:
continue
row = {
"State & Call": (
state_call if state_call != last_state_call else ""
),
"Device": str(dev),
}
last_state_call = state_call
for k, v in dev_snap.items():
row[f"{k.value}" if isinstance(k, _RefType) else f"{k}"] = (
f"{_rounding_fn(v, divisor, 2)} {units}"
)
table_data.append(row)
print(tabulate(table_data, headers="keys", tablefmt="rst"))
class _UpdateType(Enum):
# These are used for tracking updates to the continuouly maintained memory snapshot.
# ADD - When a new tensor storage is tracked
# DEL - When a tensor storage is about to be finalized (garbage collected).
# REF - When a tensor reference is updated, for instance, the gradients are marked as
# generic backward reference types until the grad_hook categorizes them as gradients.
# SIZE - When a tensor's storage is resized.
ADD = auto()
DEL = auto()
REF = auto()
SIZE = auto()
class MemTracker(TorchDispatchMode):
"""
A TorchDispatchMode to track, categorize and attribute the tensor memory created or accessed within its context.
It categorizes the tracked tensors as parameters, buffers, activations, gradients, temporary memory and optimizer states
as defined by ``_MemRefType`` within its context. It captures memory `snapshots` for the modules, called within its context,
at various states defined by ``_ModState``.
Attributes:
memory_tracking: A weakref key dictionary to store the memory statistics of each module. Each key
is a reference to a module, and each value is a ``_ModMemStats`` object that stores the memory
statistics of the module.
Note:
The MemTracker should be used as a context manager. The modules, optimizers, and any other tensors created within
the context of MemTracker will be tracked by default. Any tensors or stateful objects such as modules, optimizers etc.
that need to be tracked but are created outside the MemTracker should be registered using the `track_external` method.
The `track_external` method should be called before the MemTracker is used. Any tensors created outside the ``MemTracker``
and not supplied to the `track_external` method will not be tracked by the ``MemTracker``.
Example usage:
.. code-block:: python
module = ...
optimizer = ...
inp = ...
mem_tracker = MemTracker()
mem_tracker.track_external(module, optimizer, inp)
with mem_tracker as mt:
loss = module(inp)
print("After Forward:")
mt.display_snapshot("current")
loss.backward()
optimizer.step()
optimizer.zero_grad()
mt.display_snapshot("peak")
mt.display_modulewise_snapshots(depth=3, units="MiB")
Known Limitations:
- The ``MemTracker`` does not track memory for tensors that bypass the ``TorchDispatchMode`` ex. under ``no_dispatch``.
- Resizing tensor storages directly by using non-Tensor methods other than using ``torch.Untyped_Storage.resize_``
is not tracked. File a Github issue if you have use-cases for this.
- If the tensors are not traceable or wrappable subclasses of ``torch.Tensor``, then the tracker does not know how to
track their storages. File a Github issue if you have use-cases for this.
- During AC in the backward pass there might be misattribution between activation and temp memory, but the peak memory
will be tracked accurately. This will be fixed in the next update by hooking intricately with ``torch.uitls.checkpoint``.
"""
def __init__(self) -> None:
self.memory_tracking = WeakIdKeyDictionary()
self._curr_mem_snap: dict[torch.device, dict[str, int]] = {}
self._peak_mem: dict[torch.device, int] = {}
self._peak_mem_snap: dict[torch.device, dict[str, int]] = {}
self._param_to_grad_hook_handles = WeakIdKeyDictionary()
self._optimizer_hook_handles: Optional[
tuple[RemovableHandle, RemovableHandle]
] = None
# Dictionary to store the ``_WeakRefInfo`` instances corresponding to each tensor's storage.
self._WINFO = WeakIdKeyDictionary()
self._mod_tracker = ModTracker()
# This is a general memory tracker which can be used with any ``_RefType`` subclass
self._ref_class: type[_RefType] = _MemRefType
# Flags to track if we are in the AC region or optimizer step region
self._in_opt: bool = False
self._in_ac: bool = False
# Weak references to the topmost AC module currently active
self._ac_mod: Optional[weakref.ref] = None
self._orig_resize = torch.UntypedStorage.resize_
self._orig_dtensor_dispatch = DTensor._op_dispatcher.dispatch
self._depth = 0
def _update_snap(
self,
u_type: _UpdateType,
winfo: _WeakRefInfo,
old_mem_consumed: Optional[int] = None,
old_reftype: Optional[_RefType] = None,
) -> None:
# Initialize a flag to track if the total memory might drop to zero after updates.
maybe_zero = False
# Ensure the device entry exists in the current memory snapshot, initializing if necessary.
dev_snap = self._curr_mem_snap.setdefault(
winfo.device, dict.fromkeys(self._ref_class, 0)
)
dev_snap.setdefault(_TOTAL_KEY, 0)
# Handle different types of updates based on the update type (`u_type`).
if u_type == _UpdateType.ADD:
# Increase the memory consumed for the specific reference type and update the total.
dev_snap[winfo.reftype] += winfo.mem_consumed
dev_snap[_TOTAL_KEY] += winfo.mem_consumed
elif u_type == _UpdateType.DEL:
# Decrease the memory consumed for the specific reference type and reduce the total.
dev_snap[winfo.reftype] -= winfo.mem_consumed
dev_snap[_TOTAL_KEY] -= winfo.mem_consumed
maybe_zero = True
elif u_type == _UpdateType.REF:
assert old_reftype is not None
# Adjust memory consumption between two reference types within the same device.
dev_snap[old_reftype] -= winfo.mem_consumed
dev_snap[winfo.reftype] += winfo.mem_consumed
elif u_type == _UpdateType.SIZE:
assert old_mem_consumed is not None
# Adjust the memory consumed for a reference type due to a change in size.
change = winfo.mem_consumed - old_mem_consumed
dev_snap[winfo.reftype] += change
dev_snap[_TOTAL_KEY] += change
maybe_zero = True
else:
raise ValueError(f"Invalid update type: {u_type}")
# Check if the total memory for the device has dropped to zero.
if maybe_zero:
if self._curr_mem_snap[winfo.device][_TOTAL_KEY] == 0:
# Remove the device entry from the memory snapshot if the total memory is zero.
del self._curr_mem_snap[winfo.device]
def _update_and_maybe_create_winfos(
self,
t: torch.Tensor,
reftype: _RefType,
update_existing: bool = False,
) -> set[_WeakRefInfo]:
sts = get_untyped_storages(t)
winfos = set()
for st in sts:
# Attempt to retrieve existing ``_WeakRefInfo`` and its weak reference from the tracking dictionary.
winfo, _ = self._WINFO.get(st, (None, None))
if winfo is not None:
# If ``_WeakRefInfo`` exists, check if the reference type needs to be updated.
old_reftype = winfo.reftype
if old_reftype != reftype:
# Update the reference type and apply changes via ``_update_snap``.
winfo.reftype = reftype
self._update_snap(_UpdateType.REF, winfo, old_reftype=old_reftype)
winfos.add(winfo)
elif update_existing:
# If no existing ``_WeakRefInfo`` is found and update_existing is True, raise an error.
raise KeyError("No existing winfo found")
else:
# If no existing _WeakRefInfo is found and update_existing is False, create a new ``_WeakRefInfo``.
winfo, w_st = _WeakRefInfo.create_winfo(
st, t.device, reftype, self._delete_callback
)
# Store the new ``_WeakRefInfo`` and its weak reference in the tracking dictionary.
self._WINFO[st] = (winfo, w_st)
# Update the snapshot for the newly added ``_WeakRefInfo``.
if winfo.mem_consumed > 0:
self._update_snap(_UpdateType.ADD, winfo)
winfos.add(winfo)
return winfos
def _delete_callback(self, winfo: _WeakRefInfo, w_st: weakref.ref) -> None:
# Callback to be called when the storage object corresponding to the ``_WeakRefInfo``
# instance is about to be finalized.
if winfo.mem_consumed > 0:
self._update_snap(_UpdateType.DEL, winfo)
def _track_resize(self) -> None:
# Need to monkey-patch this because ``torch.UntypedStorage.resize_`` is not captured
# by ``TorchDispatchMode``.
@wraps(self._orig_resize)
def resize_(st: torch.UntypedStorage, size: int) -> None:
self._orig_resize(st, size)
winfo, _ = self._WINFO.get(st, (None, None))
if winfo is not None and winfo.size != st.size():
old_mem_consumed = winfo.mem_consumed
winfo.update_mem_consumed(st)
self._update_snap(
_UpdateType.SIZE, winfo, old_mem_consumed=old_mem_consumed
)
torch.UntypedStorage.resize_ = resize_ # type: ignore[method-assign, assignment]
def _restore_resize(self) -> None:
torch.UntypedStorage.resize_ = self._orig_resize # type: ignore[method-assign]
def _update_peak_stats(self, peak_state: _State) -> None:
# We first capture the current memory snapshot of the current tracker state then,
# We step through each of the modules we have tracked so far in ``memory_tracking``
# and check if it is currently active by querying ``_mod_tracker.parents``
# If it is active, we update the per device peak memory usage for the module
# corresponding to the ``_State`` which can be ``PEAK_FW`` or ``PEAK_BW``.
curr_snap = self._curr_mem_snap
for mod_stats in self.memory_tracking.values():
if mod_stats.mod_fqn in self._mod_tracker.parents:
if peak_state in mod_stats.snapshots:
for dev, dev_snap in curr_snap.items():
if mod_stats.local_peak.get(dev, 0) < dev_snap[_TOTAL_KEY]:
mod_stats.local_peak[dev] = dev_snap[_TOTAL_KEY]
mod_stats.snapshots[peak_state][-1][dev] = deepcopy(
dev_snap
)
for dev, dev_snap in curr_snap.items():
if self._peak_mem.get(dev, 0) < dev_snap[_TOTAL_KEY]:
self._peak_mem[dev] = dev_snap[_TOTAL_KEY]
self._peak_mem_snap[dev] = deepcopy(dev_snap)
def _track(self, reftype: _RefType, t: torch.Tensor) -> None:
# Get the storages of the tensor and check if we have already tracked them.
# If yes, then check if the storage size has changed and update the current snapshot.
# Else create a new ``_WeakRefInfo`` instance and add it to the dictionary.
sts = get_untyped_storages(t)
for st in sts:
winfo, _ = self._WINFO.get(st, (None, None))
if winfo is not None:
if winfo.size != st.size():
old_mem_consumed = winfo.mem_consumed
winfo.update_mem_consumed(st)
self._update_snap(
_UpdateType.SIZE, winfo, old_mem_consumed=old_mem_consumed
)
return
else:
winfo, w_st = _WeakRefInfo.create_winfo(
st, t.device, reftype, self._delete_callback
)
self._WINFO[st] = (winfo, w_st)
# Update the current snapshot for the newly added ``_WeakRefInfo``.
if winfo.mem_consumed > 0:
self._update_snap(_UpdateType.ADD, winfo)
def get_tracker_snapshot(
self, type: str = "current"
) -> dict[torch.device, dict[str, int]]:
"""
Capture a snapshot of the memory usage breakdown per device, based on the specified type.
Args:
type (str): The type of snapshot to capture. Can be "current" for the current memory usage or "peak" for the
peak memory usage. Defaults to "current".
Returns:
Dict[torch.device, Dict[str, int]]: A dictionary where each key is a torch.device, and each value is another
dictionary. This inner dictionary has keys representing memory reference
types as defined in ``_MemRefType`` and values representing the amount of
memory consumed in bytes.
Raises:
ValueError: If an invalid type is specified.
"""
if type == "current":
return deepcopy(self._curr_mem_snap)
elif type == "peak":
return deepcopy(self._peak_mem_snap)
else:
raise ValueError(f"Invalid type {type}")
def _track_module_params_and_buffers(
self, module: nn.Module, install_grad_hooks: bool = True
) -> tuple[int, int]:
# Track the parameters and buffers of the module if not already tracked.
# If the parameters have gradients, track the gradients as well.
# If install_grad_hooks is True, install a gradient hook on the parameters
# to track the gradients, if it has not already been installed.
# Return the total memory consumed by the parameters and buffers.
def _grad_hook(grad: torch.Tensor) -> None:
self._update_and_maybe_create_winfos(
grad,
_MemRefType.GRAD,
)
param_memory = 0
for param in module.parameters():
winfos = self._update_and_maybe_create_winfos(
param,
_MemRefType.PARAM,
)
param_memory += sum(winfo.mem_consumed for winfo in winfos)
if param.grad is not None:
self._update_and_maybe_create_winfos(
param.grad,
_MemRefType.GRAD,
)
if (
self._param_to_grad_hook_handles.get(param, None) is None
and install_grad_hooks
):
grad_hook_handle = param.register_hook(_grad_hook)
post_acc_grad_hook_handle = param.register_post_accumulate_grad_hook(
lambda p: (_grad_hook(p.grad))
)
self._param_to_grad_hook_handles[param] = (
grad_hook_handle,
post_acc_grad_hook_handle,
)
buffer_memory = 0
for buffer in module.buffers():
winfos = self._update_and_maybe_create_winfos(
buffer,
_MemRefType.BUFFER,
)
buffer_memory += sum(winfo.mem_consumed for winfo in winfos)
return (param_memory, buffer_memory)
def _track_inputs_or_outputs(self, args: Any) -> int:
# Calculate the memory consumed by the inputs or outputs of the module.
input_or_output_memory = 0
def add_inps_or_outs(t: torch.Tensor) -> None:
nonlocal input_or_output_memory
sts = get_untyped_storages(t)
for st in sts:
winfo, _ = self._WINFO.get(st, (None, None))
if winfo is not None:
input_or_output_memory += winfo.mem_consumed
tree_map_only(torch.Tensor, add_inps_or_outs, args)
return input_or_output_memory
def _pre_fw_hook(self, module: nn.Module, inputs: Any) -> None:
# This is installed as a pre-fwd user hook with ``ModTracker.`` Based on the following cases we
# set the state and capture the memory snapshot for the module.
# Case 1: If the module is not in the ``memory_tracking`` dictionary, we track the parameters, buffers,
# input and output memory of the module. Create a new ``_ModMemStats`` instance for the module
# and add it to the ``memory_tracking`` dictionary.
# Case 2: If the module is already in the ``memory_tracking`` dictionary and we are in backward, this means
# we are in the AC region. We check if this is the top most module in the AC region. If it is,
# we store a weak reference and set the flag ``_in_ac`` to True.
# Case 3: If the module is already in the ``memory_tracking`` dictionary and we are in forward, this means
# this module is called for the second time. If it is a root module, that means we are in the next
# iteration and we error out. If it is not a root module, that means it's a submodule that is being
# used multiple times in the same iteration, which we allow and track.
# For Case 1 and 3, we also initialiaze the ``local_peak`` and ``PEAK_FW`` snapshot for the module.
mod_name = self._mod_tracker.get_known_fqn(module)
assert mod_name is not None
if module not in self.memory_tracking:
mod_stats = _ModMemStats(mod_name)
param_mem, buffer_mem = self._track_module_params_and_buffers(
module, install_grad_hooks=True
)
input_mem = self._track_inputs_or_outputs(inputs)
mod_stats.parameter_mem = param_mem
mod_stats.buffer_mem = buffer_mem
mod_stats.input_mem = input_mem
self.memory_tracking[module] = mod_stats
state = _ModState.PRE_FW
elif self._mod_tracker.is_bw:
mod_stats = self.memory_tracking[module]
state = _ModState.PRE_FW_AC
if self._ac_mod is None:
self._ac_mod = weakref.ref(module)
self._in_ac = True
else:
parents = set(self._mod_tracker.parents) - {mod_name}
if len(parents) == 1 and "Global" in parents:
raise NotImplementedError(
"MemTracker does not support memory tracking for multiple iterative calls."
" Either use ``reset_mod_stats`` to clear module memory stats for the previous iteration"
" or file a github issue if you need this feature."
)
mod_stats = self.memory_tracking[module]
state = _ModState.PRE_FW
input_mem = self._track_inputs_or_outputs(inputs)
mod_stats.mod_fqn = mod_name
mod_stats.input_mem = input_mem
mem_snapshot = self.get_tracker_snapshot()
if state == _ModState.PRE_FW:
mod_stats.local_peak = {
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in mem_snapshot.items()
}
mod_stats.snapshots.setdefault(_ModState.PEAK_FW, []).append(mem_snapshot)
mod_stats.snapshots.setdefault(state, []).append(deepcopy(mem_snapshot))
def _post_fw_hook(self, module: nn.Module, inputs: Any, outputs: Any) -> None:
# This is installed as a post-fwd user hook with ``ModTracker``. Based on the following cases we
# set the state and capture the memory snapshot for the module.
# Case 1: This is called in backward, which means we are in the AC region. If this is the top most module
# in the AC region, we set the flag ``_in_ac`` to False.
# Case 2: This is called in forward so we calculate the output memory
# of the module and update its mod_stats.
mod_stats = self.memory_tracking[module]
if self._mod_tracker.is_bw:
state = _ModState.POST_FW_AC
if self._ac_mod is not None and self._ac_mod() is module:
self._ac_mod = None
self._in_ac = False
else:
state = _ModState.POST_FW
output_mem = self._track_inputs_or_outputs(outputs)
mod_stats.output_mem = output_mem
mod_stats.snapshots.setdefault(state, []).append(self.get_tracker_snapshot())
def _pre_bw_hook(self, module: nn.Module, args: Any) -> None:
# This is installed as a pre-bwd user hook with ``ModTracker``. We set the state and capture the
# snapshot for the module. We also initialize the ``local_peak`` and ``PEAK_BW`` snapshot for it.
# If the module is None, we skip the hook.
# This can happen since this installed inside a multi-grad hook on the module's output tensors
# and the module itself may not be alive during backward.
if module is None:
warnings.warn("Module is None. Skipping PRE_BW hook.", stacklevel=2)
return
mod_stats = self.memory_tracking[module]
mem_snapshot = self.get_tracker_snapshot()
mod_stats.local_peak = {
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in mem_snapshot.items()
}
mod_stats.snapshots.setdefault(_ModState.PEAK_BW, []).append(mem_snapshot)
mod_stats.snapshots.setdefault(_ModState.PRE_BW, []).append(
deepcopy(mem_snapshot)
)
def _post_bw_hook(self, module: nn.Module, args: Any) -> None:
# This is installed as a post-bwd user hook with ``ModTracker``. We set the state and capture the
# snapshot for the module if it is not None.
# This can happen since this installed inside a multi-grad hook on the module's input tensors
# and the module itself may not be alive during backward.
if module is None:
warnings.warn("Module is None. Skipping POST_BW hook.", stacklevel=2)
return
mod_stats = self.memory_tracking[module]
mod_stats.snapshots.setdefault(_ModState.POST_BW, []).append(
self.get_tracker_snapshot()
)
def _track_optimizer_states(
self, reftype: _RefType, optimizer: optim.Optimizer
) -> None:
for states in optimizer.state.values():
for val in states.values():
if isinstance(val, torch.Tensor):
self._update_and_maybe_create_winfos(
val,
reftype,
)
def _register_global_optimizer_hook(self) -> None:
# Register a hook on the optimizer step to track the optimizer states.
# The pre-hook is to set the flag ``_in_opt`` to True. The post-hook unsets the flag,
# and also tracks any optimizer states that are created during the optimizer step.
def _opt_step_pre_hook(
optimizer: optim.Optimizer, args: Any, kwargs: Any
) -> None:
self._in_opt = True
def _opt_step_post_hook(
optimizer: optim.Optimizer, args: Any, kwargs: Any
) -> None:
self._track_optimizer_states(_MemRefType.OPT, optimizer)
self._in_opt = False
self._optimizer_hook_handles = (
register_optimizer_step_pre_hook(_opt_step_pre_hook),
register_optimizer_step_post_hook(_opt_step_post_hook),
)
def _deregister_param_and_optimizer_hooks(self) -> None:
for (
grad_hook_handle,
post_acc_grad_hook_handle,
) in self._param_to_grad_hook_handles.values():
grad_hook_handle.remove()
post_acc_grad_hook_handle.remove()
self._param_to_grad_hook_handles.clear()
if self._optimizer_hook_handles is not None:
for handle in self._optimizer_hook_handles:
handle.remove()
self._optimizer_hook_handles = None
def track_external(
self, *external: Union[nn.Module, optim.Optimizer, torch.Tensor]
) -> None:
"""
Track tensors and stateful objects like modules, optimizers etc. that are created outside the MemTracker.
This method should be called before the ``MemTracker`` is used. Any tensors that are not module parameters, buffers,
gradients activations, or optimizer states will be categorized as ``Other``. If you want them categorized with a
custom name, please file a GitHub issue. Any tensors created outside the MemTracker and not supplied to this
method will not be be tracked by ``MemTracker``.
Args:
*external (Union[nn.Module, optim.Optimizer, torch.Tensor]): The external modules, optimizers, and
tensors to be tracked.
"""
flat_external, _ = tree_flatten(external)
for obj in flat_external:
if isinstance(obj, torch.Tensor):
self._update_and_maybe_create_winfos(
obj,
_MemRefType.OTH,
)
elif isinstance(obj, torch.nn.Module):
self._track_module_params_and_buffers(obj, install_grad_hooks=False)
elif isinstance(obj, optim.Optimizer):
self._track_optimizer_states(_MemRefType.OPT, obj)
elif obj is None:
continue
else:
raise TypeError(
f"Object of type {type(obj)} is not supported for tracking. "
f"Only stateful objects like modules, optimizers, and tensors are supported."
)
def display_snapshot(
self, type: str = "current", units: str = "B", tabulate: bool = False
) -> None:
"""
Display the memory usage breakdown snapshot of the tracker based on the specified type and units.
Keyword args:
type (str): The type of snapshot to display. Can be "current" for the current memory usage or "peak" for the
peak memory usage. Defaults to "current".
units (str): The units to use for displaying memory usage. Defaults to "B". Supports ["B", "KiB", "MiB", "GiB"].
tabulate (bool): Whether to display the snapshot in a tabular format. Defaults to False.
"""
snapshot = self.get_tracker_snapshot(type)
if tabulate:
_print_snapshot_tabular(snapshot, units)
else:
_print_snapshot(snapshot, units)
def display_modulewise_snapshots(
self, depth: int = 2, units: str = "B", tabulate: bool = False
) -> None:
"""
Print per device memory breakdown snapshot for each module called within MemTracker.
Snapshots are displayed for the states defined by ``_ModState``.
The module hierarchy is displayed up to the specified depth.
Keyword Args:
depth (int, optional): The depth of the module hierarchy to display. Defaults to 2.
units (str, optional): The units to use for memory tracking. Defaults to "B". Supports ["B", "KiB", "MiB", "GiB"].
tabulate (bool, optional): Whether to display the snapshot in a tabular format. Defaults to False.
"""
def natural_sort_key(s: str) -> list[Union[int, str]]:
return [
int(text) if text.isdigit() else text.lower()
for text in re.split("([0-9]+)", s)
]
for mod_stats in sorted(
self.memory_tracking.values(),
key=lambda m_stats: natural_sort_key(m_stats.mod_fqn),
):
mod_fqn = mod_stats.mod_fqn
mod_depth = mod_fqn.count(".") + 1
if mod_depth > depth:
continue
print(f"Module: {mod_fqn}")
if tabulate:
_print_state_snapshots_tabular(mod_stats.snapshots, units)
else:
_print_state_snapshots(mod_stats.snapshots, units)
def reset_mod_stats(self) -> None:
"""
Reset all the module memory stats. Clears ``memory_tracking`` dictionary.
"""
self.memory_tracking.clear()
def _track_dtensor_dispatch(self) -> None:
def track_dtensor_dispatch(
op_call: torch._ops.OpOverload,
args: tuple[object, ...],
kwargs: dict[str, object],
) -> object:
with (
self
if op_call in DTensor._op_dispatcher._custom_op_handlers
else nullcontext()
):
return self._orig_dtensor_dispatch(op_call, args, kwargs)
DTensor._op_dispatcher.dispatch = track_dtensor_dispatch # type: ignore[method-assign, assignment]
def _restore_dtensor_dispatch(self) -> None:
DTensor._op_dispatcher.dispatch = self._orig_dtensor_dispatch # type: ignore[method-assign]
def __enter__(self) -> "MemTracker":
if self._depth == 0:
self._register_global_optimizer_hook()
self._mod_tracker.register_user_hooks(
self._pre_fw_hook,
self._post_fw_hook,
self._pre_bw_hook,
self._post_bw_hook,
)
self._track_resize()
self._track_dtensor_dispatch()
self._peak_mem_snap = self.get_tracker_snapshot()
self._peak_mem = {
dev: dev_snap[_TOTAL_KEY]
for dev, dev_snap in self._peak_mem_snap.items()
}
self._mod_tracker.__enter__()
super().__enter__()
self._depth += 1
return self
def __exit__(self, *args: Any) -> None:
self._depth -= 1
if self._depth == 0:
self._deregister_param_and_optimizer_hooks()
self._mod_tracker.clear_user_hooks()
self._restore_resize()
self._restore_dtensor_dispatch()
self._mod_tracker.__exit__(*args)
super().__exit__(*args)
def __torch_dispatch__(self, func, types, args=(), kwargs=None): # type: ignore[no-untyped-def]
if (
func == torch.ops._c10d_functional.wait_tensor.default
and active_fake_mode()
):
# N.B: This is a hacky way to override the Meta IMPL of wait_tensor. The original impl returns
# a new tensor which does not happen in eager mode, when a wait_tensor is called.
res = args[0]
else:
res = func(*args, **kwargs or {})
# If we are tracking an optimizer state, we use the optimizer reference type.
# If we are in backward region and not in AC region, we use the backward reference type.
# Else we use the forward reference type.
if self._in_opt:
reftype = _MemRefType.OPT
elif self._mod_tracker.is_bw and not self._in_ac:
reftype = _MemRefType.TEMP
else:
reftype = _MemRefType.ACT
tree_map_only(torch.Tensor, partial(self._track, reftype), res)
peak_state = _ModState.PEAK_BW if self._mod_tracker.is_bw else _ModState.PEAK_FW
self._update_peak_stats(peak_state)
return res

View file

@ -0,0 +1,296 @@
# mypy: allow-untyped-defs
import operator
import pickle
from collections import defaultdict
from collections.abc import Sequence
from itertools import chain
from typing import Any, Callable, no_type_check, TYPE_CHECKING
import torch
import torch.nn as nn
from torch.utils._python_dispatch import TorchDispatchMode
if TYPE_CHECKING:
from torch.utils.hooks import RemovableHandle
BYTES_PER_MB = 1024 * 1024.0
class MemoryProfileDispatchMode(TorchDispatchMode):
"""Run in ``TorchDispatchMode`` to get memory stats at operator level."""
def __init__(self, memory_tracker) -> None:
self.memory_tracker = memory_tracker
def __torch_dispatch__(self, func, types, args=..., kwargs=None):
rs = func(*args, **kwargs)
if func == torch.ops.aten.detach.default:
return rs
func_name: str = (
self.memory_tracker._cur_module_name
+ "."
+ func.__name__
+ "_"
+ str(self.memory_tracker._operator_names[func.__name__])
)
self.memory_tracker._operator_names[func.__name__] = (
self.memory_tracker._operator_names[func.__name__] + 1
)
self.memory_tracker._record_memory_stats(func_name)
return rs
class MemoryTracker:
"""
Collect and plot the memory stats at operator level.
Includes ``memories_allocated``, ``memories_active`` and ``memories_reserved``.
It also prints a summary for the top 20 operators that generate the most memories.
Example usage:
>>> # xdoctest: +SKIP(failing)
>>> net.cuda()
>>> input = input.cuda()
>>> mem_tracker = MemoryTracker()
>>> mem_tracker.start_monitor(net)
>>> net.zero_grad(True)
>>> loss = net(input)
>>> if isinstance(loss, dict):
>>> loss = loss['out']
>>> loss.sum().backward()
>>> net.zero_grad(set_to_none=True)
>>> mem_tracker.stop()
>>> mem_tracker.summary()
>>> mem_tracker.show_traces()
"""
def __init__(self) -> None:
torch._C._log_api_usage_once("torch.distributed.memory_tracker")
self._hooks: list[RemovableHandle] = []
self._operator_names: dict[str, int] = defaultdict(int)
self.memories_allocated: dict[int, dict[str, float]] = defaultdict()
self.memories_active: dict[int, dict[str, float]] = defaultdict()
self.memories_reserved: dict[int, dict[str, float]] = defaultdict()
self._markers: dict[str, int] = defaultdict(int)
self._cur_module_name: str = ""
self._op_index: int = 0
self._num_cuda_retries: int = 0
@no_type_check
def start_monitor(self, root_module: nn.Module) -> None:
"""
Register module hooks and entering ``MemoryProfileDispatchMode``.
This enables operator level memory stats can be tracked during module runtime.
"""
self._clear_state()
root_module.__setattr__("_memory_tracker_is_root", True)
for name, m in root_module.named_modules():
if m is not root_module:
m.__setattr__("_memory_tracker_is_root", False)
# fused_proxy_group does not support hooks
if ".fused_proxy_grouped_embedding_bag" in name:
continue
# hook ordering with other hooks added by users is not managed, so
# the memory stats tracked here may not completely accurate.
h1 = m.register_forward_pre_hook(self._create_pre_forward_hook(name))
h2 = m.register_forward_hook(self._create_post_forward_hook(name))
# it does not work well with jagged tensor somehow, the root cause is not
# clear and remove it for now as it does not really capture important info.
# h3 = m.register_backward_hook(self._create_backward_hook(name))
self._hooks.extend([h1, h2])
torch.cuda.empty_cache()
assert getattr(self, "profile_mode", None) is None
self.profile_mode = MemoryProfileDispatchMode(self)
self.profile_mode.__enter__()
@no_type_check
def stop(self) -> None:
"""
Remove module hooks and exit ``MemoryProfileDispatchMode`` to stop tracking memory stats at operator level.
Get some aggregated stats when the memory_tracker() is enabled, like cuda ``num_alloc_retries``.
"""
self._num_cuda_retries = torch.cuda.memory_stats().get("num_alloc_retries", 0)
for h in self._hooks:
h.remove()
self._hooks.clear()
assert getattr(self, "profile_mode", None) is not None
self.profile_mode.__exit__(None, None, None)
self.profile_mode = None
@no_type_check
def summary(self, top: int = 20) -> None:
"""
Print out the top operators that generate the most memories.
The number of the top operators can be configured.
"""
op_diff: dict[str, float] = defaultdict(float)
op_name, previous_allocated_memory = self.memories_allocated[0]
for i in range(1, self._op_index):
op_name, current_allocated_memory = self.memories_allocated[i]
op_diff[op_name] = current_allocated_memory - previous_allocated_memory
previous_allocated_memory = current_allocated_memory
print("------------------------------------------------")
print(f"The number of cuda retries are: {self._num_cuda_retries}")
print(f"Top {top} ops that generates memory are:")
for k, v in sorted(op_diff.items(), key=operator.itemgetter(1), reverse=True)[
:top
]:
print(f"{k}: {v}MB")
print("------------------------------------------------")
@no_type_check
def show_traces(self, path: str = "") -> None:
import matplotlib.pyplot as plt
def _plot_figure(x, y_values, labels):
min_val = min(chain.from_iterable(y_values)) * 0.999
max_val = max(chain.from_iterable(y_values)) * 1.001
plt.figure()
for y, label in zip(y_values, labels):
plt.plot(x, y, label=label)
plt.xlabel("# Operator Calls")
plt.ylabel("Memory (MB)")
plt.legend()
for marker_name, marker in self._markers.items():
if marker_name == "fw_bw_boundary":
plt.plot(
[marker, marker],
[min_val, max_val],
"r",
lw=2,
label=marker_name,
)
else:
plt.plot(
[marker, marker],
[min_val, max_val],
"k-",
lw=2,
label=marker_name,
)
if path != "":
self.load(path)
y_1 = [gb for (name, gb) in self.memories_allocated.values()]
y_2 = [gb for (name, gb) in self.memories_active.values()]
y_3 = [gb for (name, gb) in self.memories_reserved.values()]
x = list(range(len(y_1)))
# Split figures when there is big difference between
# "reserved_memory" and "allocated_memory" or "active_memory".
_plot_figure(
x,
[list(y_1), list(y_2), list(y_3)],
["allocated_memory", "active_memory", "reserved_memory"],
)
_plot_figure(x, [list(y_1)], ["allocated_memory"])
_plot_figure(x, [list(y_2)], ["active_memory"])
_plot_figure(x, [list(y_3)], ["reserved_memory"])
def save_stats(self, path: str) -> None:
"""Save the stats using pickle during runtime if users want to plot the traces in other places like notebook."""
stats = {
"memories_allocated": self.memories_allocated,
"memories_active": self.memories_active,
"memories_reserved": self.memories_reserved,
"markers": self._markers,
"num_alloc_retries": self._num_cuda_retries,
}
with open(path, "wb") as f:
pickle.dump(stats, f, pickle.HIGHEST_PROTOCOL)
def load(self, path: str) -> None:
"""Load the pickled memory stats to plot the traces or print the summary."""
with open(path, "rb") as f:
stats = pickle.load(f)
self.memories_allocated = stats["memories_allocated"]
self.memories_active = stats["memories_active"]
self.memories_reserved = stats["memories_reserved"]
self._markers = stats["markers"]
self._num_cuda_retries = stats["num_alloc_retries"]
def _create_pre_forward_hook(self, name: str) -> Callable:
"""Prefix operator name with current module and 'forward', and insert 'fw_start' marker at forward pass start."""
def _pre_forward_hook(module: nn.Module, inputs: Any) -> None:
self._cur_module_name = f"{name}.forward"
if (
hasattr(module, "_memory_tracker_is_root")
and module._memory_tracker_is_root
):
self._add_marker("fw_start")
return _pre_forward_hook
def _create_post_forward_hook(self, name: str) -> Callable:
"""Insert the marker 'fw_bw_boundary' at the boundary of forward and backward pass."""
def _post_forward_hook(
module: nn.Module,
inputs: Sequence[torch.Tensor],
outputs: Sequence[torch.Tensor],
) -> None:
if (
hasattr(module, "_memory_tracker_is_root")
and module._memory_tracker_is_root
):
self._add_marker("fw_bw_boundary")
return _post_forward_hook
def _create_backward_hook(self, name: str) -> Callable:
"""Insert the current module name with backward prefix for the operator name."""
def _backward_hook(
module: nn.Module, grad_input: torch.Tensor, grad_output: torch.Tensor
) -> None:
self._cur_module_name = f"{name}.backward"
return _backward_hook
@no_type_check
def _record_memory_stats(self, fn_name: str) -> None:
"""
Record current memory allocated, current memory active and current memory reserved.
The memory stats dict is indexed with ``self._op_index``.
"""
memory_allocated: float = torch.cuda.memory_allocated() / BYTES_PER_MB
memory_reserved: float = torch.cuda.memory_reserved() / BYTES_PER_MB
memory_active: float = (
torch.cuda.memory_stats().get("active_bytes.all.current", 0) / BYTES_PER_MB
)
self.memories_allocated[self._op_index] = (fn_name, memory_allocated)
self.memories_reserved[self._op_index] = (fn_name, memory_reserved)
self.memories_active[self._op_index] = (fn_name, memory_active)
self._op_index += 1
def _add_marker(self, marker_name: str) -> None:
"""Set the marker's x-axis value."""
marker_val = len(self.memories_allocated.values())
self._markers[marker_name] = marker_val
def _clear_state(self) -> None:
"""Clear states when start_monitor() is called."""
self._operator_names.clear()
self.memories_allocated.clear()
self.memories_active.clear()
self.memories_reserved.clear()
self._markers.clear()
self._cur_module_name = ""
self._op_index = 0
self._num_cuda_retries = 0

View file

@ -0,0 +1,251 @@
# mypy: allow-untyped-defs
import warnings
import weakref
from typing import Callable, Optional
import torch
from torch.autograd.graph import register_multi_grad_hook
from torch.nn.modules.module import (
register_module_forward_hook,
register_module_forward_pre_hook,
)
from torch.utils._pytree import tree_flatten
__all__ = ["ModTracker"]
class ModTracker:
"""
``ModTracker`` is a context manager that tracks the nn.Module hierarchy during execution
so that other system can query which Module is currently being executed (or its backward is being
executed).
You can access the ``parents`` attribute on this context manager to get the set of all the
Modules currently being executed via their fqn (fully qualified name, also used as the key within
the state_dict).
You can access the ``is_bw`` attribute to know if you are currently running in backward or not.
Note that ``parents`` is never empty and always contains the "Global" key. The ``is_bw`` flag
will remain ``True`` after the forward until another Module is executed. If you need it to be
more accurate, please submit an issue requesting this. Adding a map from fqn to the module instance
is possible but not done yet, please submit an issue requesting this if you need it.
Example usage
.. code-block:: python
mod = torch.nn.Linear(2, 2)
with ModTracker() as tracker:
# Access anything during the forward pass
def my_linear(m1, m2, bias):
print(f"Current modules: {tracker.parents}")
return torch.mm(m1, m2.t()) + bias
torch.nn.functional.linear = my_linear
mod(torch.rand(2, 2))
"""
parents: set[str]
"""
A Set containing the fqn for each module currently running their forward
"""
def __init__(self):
self.parents = {"Global"}
self._active_module_cnt = {}
self._known_modules: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
self._seen_modules: weakref.WeakSet = weakref.WeakSet()
self._has_callback = False
self._post_bw_callbacks_to_enqueue: list[Callable] = []
self._user_pre_fw_hook = None
self._user_post_fw_hook = None
self._user_pre_bw_hook = None
self._user_post_bw_hook = None
def _maybe_set_engine_callback(self):
# This assumes no concurrent calls to backward
if self._has_callback:
return
for post_bw_callback in reversed(self._post_bw_callbacks_to_enqueue):
torch.autograd.Variable._execution_engine.queue_callback(post_bw_callback)
self._post_bw_callbacks_to_enqueue.clear()
def callback():
self.parents = {"Global"}
self._has_callback = False
torch.autograd.Variable._execution_engine.queue_callback(callback)
self._has_callback = True
@property
def is_bw(self):
"""
A boolean marking if this is currently running during the backward pass or not
"""
return torch._C._current_graph_task_id() != -1
def get_known_fqn(self, mod):
"""
Return the fqn for the given module if it is known to the ``ModTracker``, otherwise ``None``.
"""
return self._known_modules.get(mod, None)
def register_user_hooks(
self,
pre_fw_hook: Optional[Callable] = None,
post_fw_hook: Optional[Callable] = None,
pre_bw_hook: Optional[Callable] = None,
post_bw_hook: Optional[Callable] = None,
):
"""
Registers user-specified hooks to be called before/after the forward/backward pass for each
module tracked by the ``ModTracker``. One or more can be ``None``.
Args:
pre_fw_hook (Callable, optional): A hook to be called before the forward pass for the
module. It should have the following signature:
pre_fw_hook (module, input) -> None
post_fw_hook (Callable, optional): A hook to be called after the forward pass for the
module. It should have the following signature:
post_fw_hook (module, input, output) -> None
pre_bw_hook (Callable, optional): A multi-grad hook to be called on all the outputs of
the module that require gradients. It should have the following signature:
pre_bw_hook (module, grad_output) -> None
post_bw_hook (Callable, optional): A multi-grad hook to be called on all the inputs of
the module that require gradients. It should have the following signature:
post_bw_hook (module, grad_input) -> None
Raises:
AssertionError: If a new hook is provided when one is already registered.
Note:
If the module is not alive during the backward pass, the pre_bw_hook and post_bw_hook will
will receive None as the module argument.
The module fqn will be present in the ``parents`` attribute when each of the hooks is called.
Hooks are intended to be used as markers only not to modify the inputs/outputs.
"""
def set_hook(hook, user_hook, hook_name):
if hook is not None and user_hook is not None:
raise AssertionError(
f"Only one {hook_name} can be registered at a time"
f" Clear the existing hook by calling ``clear_user_hooks`` before registering a new one"
)
return hook
self._user_pre_fw_hook = set_hook(
pre_fw_hook, self._user_pre_fw_hook, "pre_fw_hook"
)
self._user_post_fw_hook = set_hook(
post_fw_hook, self._user_post_fw_hook, "post_fw_hook"
)
self._user_pre_bw_hook = set_hook(
pre_bw_hook, self._user_pre_bw_hook, "pre_bw_hook"
)
self._user_post_bw_hook = set_hook(
post_bw_hook, self._user_post_bw_hook, "post_bw_hook"
)
def clear_user_hooks(self):
"""
Clears the user specified hooks registered with ``register_user_hooks``
"""
self._user_pre_fw_hook = None
self._user_post_fw_hook = None
self._user_pre_bw_hook = None
self._user_post_bw_hook = None
def _get_mod_name(self, mod):
if mod not in self._known_modules:
self._known_modules[mod] = type(mod).__name__
mod_name = self._known_modules[mod]
if mod not in self._seen_modules:
for name, submod in mod.named_children():
self._known_modules[submod] = f"{mod_name}.{name}"
self._get_mod_name(submod)
self._seen_modules.add(mod)
return mod_name
def _get_append_fn(self, w_mod, name, is_bw):
def fn(*args):
if is_bw:
self._maybe_set_engine_callback()
if name in self.parents and not self.is_bw:
def custom_formatwarning(msg, category, filename, lineno, line=None):
return f"{filename}:{lineno}: {category.__name__}: {msg} \n"
warnings.formatwarning = custom_formatwarning
warnings.warn(
"The module hierarchy tracking maybe be messed up."
" Please file a bug to PyTorch, if it is the case."
)
if name not in self.parents:
self._active_module_cnt[name] = 1
self.parents.add(name)
else:
self._active_module_cnt[name] += 1
if self._user_pre_bw_hook is not None and is_bw:
self._user_pre_bw_hook(w_mod(), args)
return fn
def _get_pop_fn(self, w_mod, name, is_bw):
def fn(*args):
if self._user_post_bw_hook is not None and is_bw:
self._user_post_bw_hook(w_mod(), args)
if name in self.parents:
self._active_module_cnt[name] -= 1
if self._active_module_cnt[name] == 0:
self.parents.remove(name)
elif not self.is_bw:
# Due to some input/output not requiring gradients, we cannot enforce
# proper nesting in backward
raise RuntimeError(
"The Module hierarchy tracking is wrong. Report a bug to PyTorch"
)
return fn
def _fw_pre_hook(self, mod, input):
name = self._get_mod_name(mod)
w_mod = weakref.ref(mod)
self._get_append_fn(w_mod, name, False)()
if self._user_pre_fw_hook is not None:
self._user_pre_fw_hook(mod, input)
args, _ = tree_flatten(input)
tensors = [a for a in args if isinstance(a, torch.Tensor) and a.requires_grad]
if not self.is_bw:
if tensors:
register_multi_grad_hook(tensors, self._get_pop_fn(w_mod, name, True))
else:
self._post_bw_callbacks_to_enqueue.append(
self._get_pop_fn(w_mod, name, True)
)
def _fw_post_hook(self, mod, input, output):
name = self._get_mod_name(mod)
w_mod = weakref.ref(mod)
if self._user_post_fw_hook is not None:
self._user_post_fw_hook(mod, input, output)
self._get_pop_fn(w_mod, name, False)()
args, _ = tree_flatten(output)
tensors = [a for a in args if isinstance(a, torch.Tensor) and a.requires_grad]
if not self.is_bw and tensors:
register_multi_grad_hook(
tensors, self._get_append_fn(w_mod, name, True), mode="any"
)
def __enter__(self):
self._fw_pre_handle = register_module_forward_pre_hook(self._fw_pre_hook)
self._fw_post_handle = register_module_forward_hook(
self._fw_post_hook, always_call=True
)
return self
def __exit__(self, *args):
self._fw_pre_handle.remove()
self._fw_post_handle.remove()

View file

@ -0,0 +1,527 @@
# Owner(s): ["module: unknown"]
import math
import os
from collections import defaultdict
from typing import Any, Callable
from typing_extensions import Self
import torch
import torch.utils._pytree as pytree
from torch._guards import active_fake_mode
from torch._inductor.utils import get_device_tflops, get_gpu_dram_gbps
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._tools.mod_tracker import ModTracker
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils.flop_counter import flop_registry
aten = torch.ops.aten
# This value is hard-coded here:
# https://github.com/pytorch/pytorch/blob/5fba5d83f0703ff8077ab65448a998e9ad6598fd/c10/cuda/CUDACachingAllocator.cpp#L117
_PYTORCH_MIN_ALLOCATE = (
2**9 if int(os.environ.get("PYTORCH_NO_CUDA_MEMORY_CACHING", 0)) == 0 else 1
)
# No fall-back kernel needed/exists for view ops
_VIEW_OPS = {
aten.lift_fresh,
aten.t,
aten.transpose,
aten.view,
aten.detach,
aten._unsafe_view,
aten.split,
aten.adjoint,
aten.as_strided,
aten.diagonal,
aten.expand,
aten.expand_as,
aten.movedim,
aten.permute,
aten.select,
aten.squeeze,
aten.mT,
aten.mH,
aten.real,
aten.imag,
aten.view_as,
aten.unflatten,
aten.unfold,
aten.unbind,
aten.unsqueeze,
aten.vsplit,
aten.hsplit,
aten.split_with_sizes,
aten.swapaxes,
aten.swapdims,
aten.chunk,
}
# We can ignore benchmarking tensor create ops
_CREATE_OPS = {
aten.randint,
aten.randn,
aten.rand,
aten.randn_like,
aten.rand_like,
aten.randint_like,
aten.arange,
aten.ones_like,
aten.zeros_like,
}
_IGNORE_OPS = _VIEW_OPS | _CREATE_OPS
__all__ = ["RuntimeEstimator"]
class RuntimeEstimator(TorchDispatchMode):
"""
Estimates the GPU runtime in milliseconds using various estimation methods under the ``FakeTensorMode``.
This class provides a ``TorchDispatchMode`` based context manager that can be used to estimate the eager
runtime of PyTorch functions. It supports two estimation modes, benchmarking (`operator-level-benchmark`) and
roofline cost modeling (`operator-level-cost-model`).
For modules executed under this context manager, it agggregates the forward and backward operation runtimes
and also records their execution orders.
Attributes:
mod_runtimes (Dict[str, Dict[str, float]]): A dictionary of module runtimes. The key to the outer dictionary
is the fully qualified name (FQN) of the module. For each module the forward and backward runtimes of the
operations are aggregated in the inner dictionary keyed by 'fw' and 'bw'.
mod_fw_pre_order (List[str]): List of module FQNs in pre-forward execution order.
mod_bw_pre_order (List[str]): List of module FQNs in pre-backward execution order.
mod_fw_post_order (List[str]): List of module FQNs in post-forward execution order.
mod_bw_post_order (List[str]): List of module FQNs in post-backward execution order.
total_runtime (float): The total estimated runtime in milliseconds.
Note:
1) The benchmarking estimate mode will execute kernels on GPU and assumes that every operation can run in
isolation without causing an OOM error. It is also designed to be used only under ``FakeTensorMode``.
2) Currently wrapper tensor sub-classes such as ``DTensor`` won't produce correct estimates. We plan to support
them in future PRs.
3) We only estimate the compute time, if your code has communication, it will not be considered. Again, we will
support this in future PRs.
Example usage:
.. code-block:: python
runtime_estimator = RuntimeEstimator()
with FakeTensorMode():
module = ...
optimizer = ...
inp = ...
with runtime_estimator(estimate_mode_type="operator-level-cost-model"):
loss = module(inp)
loss.backward()
optimizer.step()
optimizer.zero_grad()
runtime_estimator.display_modulewise_stats()
"""
_float_types: set[torch.dtype] = {
torch.float16,
torch.bfloat16,
torch.float32,
torch.float64,
}
_no_fallback_kernel: set[torch._ops._OpNamespace] = set()
fake_mode: FakeTensorMode
def __init__(self) -> None:
super().__init__()
self._estimate: Callable
self._estimate_mode_type: str
self._mod_tracker = ModTracker()
self.mod_runtimes: dict[str, dict[str, float]] = defaultdict(
lambda: defaultdict(lambda: 0.0)
)
self.mod_fw_pre_order: list[str] = []
self.mod_bw_pre_order: list[str] = []
self.mod_fw_post_order: list[str] = []
self.mod_bw_post_order: list[str] = []
self.total_runtime: float = 0.0
# Adapted from: https://github.com/pytorch/pytorch/blob/9b902b3ee3bd608a19543362b66bf06c373dd374/torch/_subclasses/fake_tensor.py#L1969 # noqa: PGH004,B950
# NB: returns fake tensors
@classmethod
def _maybe_run_and_benchmark_fallback_kernel( # type: ignore[no-untyped-def]
cls,
func,
args,
kwargs,
orig_not_implemented_exception,
):
"""
Runs and benchmarks a fallback kernel for a given function.
Args:
func (Callable): The function to benchmark.
args (Tuple): The arguments to pass to the function.
kwargs (Dict[str, Any]): The keyword arguments to pass to the function.
orig_not_implemented_exception (Exception): The original exception to raise if the fallback kernel
is not implemented.
Returns:
Tuple[Any, float]: A tuple containing the result of the function and
the mean operation time in milliseconds.
"""
# these should all be supported, just to be safe
# avoid fallback for operators which inplace modify metadata
# because the input fake tensors would be umodified
if torch.Tag.inplace_view in func.tags: # type: ignore[attr-defined]
raise orig_not_implemented_exception
inp_impls = {}
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
# Don't use in_kernel_invocation_manager(fake_mode) as we want to do
# REAL compute (not with meta device)
with no_dispatch():
def to_real_tensor(e): # type: ignore[no-untyped-def]
if cls.fake_mode.is_our_fake(e):
if e.dtype in cls._float_types:
out = torch.rand_like(e, device=e.fake_device)
else:
out = torch.ones_like(e, device=e.fake_device)
if e.is_sparse:
out._coalesced_(e.is_coalesced())
inp_impls[id(out)] = e
return out
return e
flat_args = [to_real_tensor(a) for a in flat_args]
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
r = func(*args, **kwargs)
warmup_iters, actual_iters = 2, 3
for _ in range(warmup_iters):
func(*args, **kwargs)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record(torch.cuda.current_stream())
for _ in range(actual_iters):
func(*args, **kwargs)
end_event.record(torch.cuda.current_stream())
torch.cuda.synchronize()
cuda_time = start_event.elapsed_time(end_event)
mean_op_time = cuda_time / actual_iters
storages = set()
for e in flat_args:
if isinstance(e, torch.Tensor):
if not e.is_sparse:
storages.add(e._typed_storage()._cdata)
# TODO: also check metadata change on inputs
# proper aliasing/metadata relationship between outputs and inputs will
# not be set up, bc of conversion to device, unless we can reuse an
# input impl
def map_out(e): # type: ignore[no-untyped-def]
if id(e) not in inp_impls and (
isinstance(e, torch.Tensor)
and not e.is_sparse
and e._typed_storage()._cdata in storages
):
raise orig_not_implemented_exception
if isinstance(e, torch.Tensor):
if id(e) in inp_impls:
return inp_impls[id(e)]
else:
return cls.fake_mode.fake_tensor_converter.from_real_tensor(
cls.fake_mode, e
)
else:
return e
return (pytree.tree_map(map_out, r), mean_op_time)
@classmethod
def _benchmark_estimate(cls, func, args, kwargs) -> tuple[Any, float]: # type: ignore[no-untyped-def]
"""
Estimates the runtime of a function using benchmarking.
Args:
func: The function to estimate.
args: The arguments to pass to the function.
kwargs: The keyword arguments to pass to the function.
res: The result of the function.
Returns:
Tuple[Any, float]: A tuple containing the result of the function and
the mean operation time in milliseconds.
"""
assert isinstance(cls.fake_mode, FakeTensorMode), (
"Initialize/Assign FakeTensorMode before using this function"
)
mean_op_time = 0.0
if func._overloadpacket not in _VIEW_OPS:
try:
res, mean_op_time = cls._maybe_run_and_benchmark_fallback_kernel(
func,
args,
kwargs,
NotImplementedError,
)
return (res, mean_op_time)
except NotImplementedError:
cls._no_fallback_kernel.add(func._overloadpacket)
res = func(*args, **kwargs or {})
return (res, mean_op_time)
# Adapted from: https://github.com/pytorch/pytorch/blob/9b902b3ee3bd608a19543362b66bf06c373dd374/torch/_inductor/scheduler.py#L589 # noqa: PGH004,B950
@classmethod
def _roofline_estimate(cls, func, args, kwargs) -> tuple[Any, float]: # type: ignore[no-untyped-def]
"""
Estimates the runtime of a function using a roofline cost model.
Args:
func: The function to estimate.
args: The arguments to pass to the function.
kwargs: The keyword arguments to pass to the function.
out: The output of the function.
Returns:
Tuple[Any, float]: A tuple containing the result of the function and
the mean operation time in milliseconds.
"""
assert torch.cuda.is_available(), (
"Roofline estimation needs to access CUDA capabilities to make estimations"
)
def get_num_bytes(t: torch.Tensor) -> int:
"""
Calculates the memory consumption of a tensor.
Args:
t (torch.Tensor): The input tensor.
Returns:
int: The memory consumption of the tensor in bytes.
"""
num_bytes = t.untyped_storage().nbytes()
mem_consumed = (
math.ceil(num_bytes / _PYTORCH_MIN_ALLOCATE) * _PYTORCH_MIN_ALLOCATE
)
return mem_consumed
def get_compute_time(func_packet, args, kwargs, out, out_dtypes) -> float: # type: ignore[no-untyped-def]
"""
Estimates the compute time of an aten operator.
Args:
func_packet: The operator overload packet.
args: The arguments to the operator.
kwargs: The keyword arguments to the operator.
out: The output of the operator.
out_dtypes: The output data types.
Returns:
float: The estimated compute time in nanoseconds.
"""
if func_packet in flop_registry:
assert len(out_dtypes) == 1, (
f"Only support single out dtype got {out_dtypes} for {func_packet}"
)
dtype = out_dtypes.pop()
# This actually gives peta-FLOPs/s hence multiply by 1e15 to get the FLOPs/s
peak_gpu_flops = get_device_tflops(dtype) * 1e15
# We can expect to achieve 75% of theoretical peak flops
factor = 0.75
peak_empirical_flops = factor * peak_gpu_flops
flop_count_func = flop_registry[func_packet]
# We divide by a factor of 2 to get the MACs (multiply and accumulate)
flop_count = flop_count_func(*args, **kwargs, out_val=out) / 2
# We multiply by 1e9 to get the time in nano seconds
compute_time = (flop_count / peak_empirical_flops) * 1e9
return compute_time
return 0.0
def get_transfer_time(flat_args_kwargs, flat_outs) -> float: # type: ignore[no-untyped-def]
"""
Estimates the memory transfer time of input and output tensors.
Args:
flat_args_kwargs (List[torch.Tensor]): The flat list of arguments and keyword arguments.
flat_outs (List[torch.Tensor]): The flat list of outputs.
Returns:
float: The estimated memory transfer time in nanoseconds.
"""
gpu_memory_bandwidth = get_gpu_dram_gbps()
read_bytes = sum(
get_num_bytes(t)
for t in flat_args_kwargs
if isinstance(t, torch.Tensor)
)
write_bytes = sum(
get_num_bytes(t) for t in flat_outs if isinstance(t, torch.Tensor)
)
counted_bytes = read_bytes + write_bytes
# The GPU memory bandwidth is in GB/s so the transfer time is in nanoseconds
transfer_time = counted_bytes / gpu_memory_bandwidth
return transfer_time
# Roofline Cost Model Explanation
# The roofline cost model estimates the execution time of an operator based on
# the device's empirical maximum FLOPs/sec (pi) and device DRAM bandwidth (beta).
# Variables:
# - pi: Maximum empirical FLOPs/sec of the device
# - beta: Maximum empirical device DRAM bandwidth (bytes/sec) of the device
# - I: Arithmetic intensity of the operator (FLOPs/bytes)
# - op_flops: FLOPs required by the operator
# - op_bytes: Bytes transferred to and from DRAM for the operator
# Calculation Steps:
# 1. Calculate arithmetic intensity: I = op_flops / op_bytes
# 2. Calculate estimated FLOPs/sec: est_flops_sec = min(pi, beta * I)
# 3. Calculate estimated operator time: estimated_op_time = op_flops / est_flops_sec
# This simplifies to: estimated_op_time = max(op_flops / pi, op_flops / (beta * I))
# Further simplifying: estimated_op_time = max(op_flops / pi, op_bytes / beta)
# Simplified Formulas:
# - compute_time = op_flops / pi
# - transfer_time = op_bytes / beta
# - estimated_op_time = max(compute_time, transfer_time)
kwargs = kwargs if kwargs else {}
out = func(*args, **kwargs)
op_time = 0.0
func_packet = func._overloadpacket
if func_packet not in _IGNORE_OPS:
flat_args_kwargs, args_spec = pytree.tree_flatten((args, kwargs))
flat_outs, out_spec = pytree.tree_flatten(out)
transfer_time = get_transfer_time(flat_args_kwargs, flat_outs)
out_dtypes = {
t.dtype
for t in flat_outs
if isinstance(t, torch.Tensor) and t.dtype in cls._float_types
}
args, kwargs = pytree.tree_unflatten(flat_args_kwargs, args_spec)
out = pytree.tree_unflatten(flat_outs, out_spec)
compute_time = get_compute_time(func_packet, args, kwargs, out, out_dtypes)
# We get the estimated time as the max of the transfer time and
# compute time. We divide by 1e6 to get the time in ms
op_time = max(transfer_time, compute_time) / 1e6
return (out, op_time)
def display_modulewise_stats(self, depth: int = 2) -> None:
"""
Displays module-wise statistics collected by ``RuntimeEstimator``.
Prints the pre-forward and pre-backward execution orders.
Displays the module-wise forward and backward runtimes in milliseconds.
Args:
depth (int): The maximum depth of module hierarchy to display (default to 2).
"""
print("Pre-Forward Execution Order: ")
for mod_fqn in self.mod_fw_pre_order:
mod_depth = mod_fqn.count(".") + 1
if mod_depth > depth:
continue
print(mod_fqn)
print("Pre-Backward Execution Order: ")
for mod_fqn in self.mod_bw_pre_order:
mod_depth = mod_fqn.count(".") + 1
if mod_depth > depth:
continue
print(mod_fqn)
for mod_fqn, runtimes in self.mod_runtimes.items():
mod_depth = mod_fqn.count(".") + 1
if mod_depth > depth:
continue
print(
f"{mod_fqn} fw: {runtimes.get('fw', 0.0):.3f}ms bw: {runtimes.get('bw', 0.0):.3f}ms"
)
def __torch_dispatch__(self, func, types, args=..., kwargs=None): # type: ignore[no-untyped-def]
# TODO: @sanketpurandare: Flatten tensors by desugaring the tensor subclasses
# TODO: @sanketpurandare: Add logic for incorporating communication time
res, op_time = self._estimate(func, args, kwargs)
for par in self._mod_tracker.parents:
if self._mod_tracker.is_bw:
self.mod_runtimes[par]["bw"] += op_time
else:
self.mod_runtimes[par]["fw"] += op_time
self.total_runtime += op_time
return res
def __call__(self, estimate_mode_type: str) -> Self:
"""
Sets the estimate mode type.
Currently supported modes:
- "operator-level-benchmark": Estimates runtime using operator benchmarking.
- "operator-level-cost-model": Estimates runtime using roofline cost model.
Args:
estimate_mode_type (str): The type of estimate mode to use.
Returns:
RuntimeEstimator: The runtime estimator instance.
Raises:
NotImplementedError: If the estimate mode type is not supported.
"""
if estimate_mode_type == "operator-level-benchmark":
self._estimate = RuntimeEstimator._benchmark_estimate
elif estimate_mode_type == "operator-level-cost-model":
self._estimate = RuntimeEstimator._roofline_estimate
else:
raise NotImplementedError(
f"estimate_mode_type {estimate_mode_type} not supported"
)
self._estimate_mode_type = estimate_mode_type
return self
def __enter__(self) -> Self:
fake_mode = active_fake_mode()
assert isinstance(fake_mode, FakeTensorMode), (
"No FakeTensorMode found, designed to used under FakeTensorMode"
)
RuntimeEstimator.fake_mode = fake_mode
self.total_runtime = 0.0
self.mod_runtimes = defaultdict(lambda: defaultdict(lambda: 0.0))
self.mod_fw_pre_order.clear()
self.mod_bw_pre_order.clear()
self.mod_fw_post_order.clear()
self.mod_bw_post_order.clear()
self._mod_tracker.register_user_hooks(
pre_fw_hook=lambda mod, inp: self.mod_fw_pre_order.append(
self._mod_tracker.get_known_fqn(mod)
),
pre_bw_hook=lambda mod, g_out: self.mod_bw_pre_order.append(
self._mod_tracker.get_known_fqn(mod)
),
post_fw_hook=lambda mod, inp, out: self.mod_fw_post_order.append(
self._mod_tracker.get_known_fqn(mod)
),
post_bw_hook=lambda mod, g_inp: self.mod_bw_post_order.append(
self._mod_tracker.get_known_fqn(mod)
),
)
self._mod_tracker.__enter__()
super().__enter__()
return self
def __exit__(self, *args: Any) -> None:
print(
f"Estimated ({self._estimate_mode_type})"
f"total_time: {self.total_runtime:.3f} ms"
)
if len(self._no_fallback_kernel) > 0:
print("no_fallback_kernel: ", list(self._no_fallback_kernel))
super().__exit__(*args)
self._mod_tracker.clear_user_hooks()
self._mod_tracker.__exit__()

View file

@ -0,0 +1,962 @@
import math
import os
import sys
from collections import OrderedDict
from dataclasses import astuple, dataclass
from typing import Any, NamedTuple, Optional
from typing_extensions import Self
import torch
from torch import nan, nn, UntypedStorage
from torch._guards import active_fake_mode
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._tools.common_utils import get_untyped_storages
from torch.distributed._tools.mod_tracker import ModTracker
from torch.distributed._tools.runtime_estimator import RuntimeEstimator
from torch.testing._internal.composite_compliance import (
is_inplace,
is_inplace_view_fn,
is_view_fn,
)
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten
from torch.utils.checkpoint import SAC_IGNORED_OPS
__all__ = ["SACEstimator", "SACStats", "MSPS", "SACTradeOffStats", "SACGreedyOrderMeta"]
aten = torch.ops.aten
_ADDITIONAL_IGNORED_OPS = {
aten.lift_fresh.default, # type: ignore[attr-defined]
torch.ops.profiler._record_function_exit._RecordFunction, # type: ignore[attr-defined]
aten.clone.default, # type: ignore[attr-defined] # seems needed for torch.compile
}
OPS_TO_ALWAYS_SKIP = SAC_IGNORED_OPS | _ADDITIONAL_IGNORED_OPS
# This value is hard-coded here:
# https://github.com/pytorch/pytorch/blob/5fba5d83f0703ff8077ab65448a998e9ad6598fd/c10/cuda/CUDACachingAllocator.cpp#L117
_PYTORCH_MIN_ALLOCATE = (
2**9 if int(os.environ.get("PYTORCH_NO_CUDA_MEMORY_CACHING", 0)) == 0 else 1
)
def _display_stats_tabular(headers: list[str], table_data: list[list[Any]]) -> None:
try:
from tabulate import tabulate
except ImportError as err:
raise ImportError("Please install tabulate.") from err
# Use tabulate to print the table
print(tabulate(table_data, headers=headers, tablefmt="rst"))
# Based on:
# https://github.com/fairinternal/xformers/blob/0ded5697a2ea15711ce45131002d04e72053cc6d/xformers/checkpoint.py#L62
@dataclass
class _SACMetadata:
"""
Stores metadata for a single operator for SAC.
Attributes:
func (Any): The operator function.
time_taken (float): The time taken by the operator.
memory_used (float): The memory used by the operator.
curr_idx (int): The current operator index.
output_ids (Tuple[int, ...]): The storage IDs of the operator's outputs.
inplace_info (Tuple[int, ...]): Tuple of self and parent operator for in-place operator.
is_view_like (bool): Whether the operator is view-like.
is_rand_op (bool): Whether the operator is a random operator.
"""
func: Any
time_taken: float
memory_used: float
curr_idx: int
output_ids: tuple[int, ...]
inplace_info: tuple[int, ...]
is_view_like: bool
is_rand_op: bool
@dataclass
class _SACModMetadata:
"""
Stores metadata for a module for SAC.
Attributes:
start_idx (int): The starting index of the module's operators.
force_store_random (bool): Whether to force store random operators in the module.
sac_metadata (List[_SACMetadata]): List of metadata for each operator in the module.
"""
start_idx: int
force_store_random: bool
sac_metadata: list[_SACMetadata]
@dataclass
class SACStats:
"""
A class for storing Activation Checkpointing statistics corresponding to a module.
Attributes:
func_names (List[str]): List of operator names.
runtimes (List[float]): List of operator runtimes in millliseconds.
memory (List[int]): List of operator memory usage in bytes.
view_like_ops (List[int]): Indices of view-like operators.
rand_ops (List[int]): Indices of random operators.
saved_autograd_ops (List[int]): Indices of operator results saved by autograd engine.
inplace_ops (List[Tuple[int, int]]): Tuple of indices of op and its first parent for Inplace operators.
force_store_random (bool): Whether to force store random operator results.
"""
func_names: list[str]
runtimes: list[float]
memory: list[int]
view_like_ops: list[int]
rand_ops: list[int]
saved_autograd_ops: list[int]
inplace_ops: list[tuple[int, int]]
force_store_random: bool
class MSPS(NamedTuple):
"""
Represents Memory and Runtime Statistics for an operator/operator group.
Attributes:
func_names (set[str]): Set of operator/operator group names.
op_idx (int): Operator index (group head index incase of operator groups).
memory (int): Memory usage in bytes.
runtime (float): Runtime in milliseconds.
msps (float): Memory per second calculated as memory/runtime.
"""
func_names: set[str]
op_idx: int
memory: int
runtime: float
msps: float
@dataclass
class SACTradeOffStats:
"""
Stores statistics for activation-checkpointing trade-off.
Attributes:
n_segments (int): Number of piecewise linear segments fitted to the trade-off curve.
slopes (List[float]): Slopes of the pieces of linear segments fitted to the trade-off curve.
intercepts (List[float]): Intercepts of the of the pieces of linear segments fitted to the trade-off curve.
fit_breaks (List[float]): Breakpoints of the of the pieces of linear segments fitted to the trade-off curve.
tradeoff_curve (OrderedDict[float, float]): Trade-off curve data of memory discarded vs recomputation time.
sac_memory (int): Total memory of operations available for activation checkpointing in bytes.
sac_runtime (float): Total runtime of operations available for activation checkpointing in milliseconds.
"""
n_segments: int
slopes: list[float]
intercepts: list[float]
fit_breaks: list[float]
tradeoff_curve: OrderedDict[float, float]
sac_memory: int
sac_runtime: float
@dataclass
class SACGreedyOrderMeta:
"""
Stores metadata for Greedy-order SAC.
Attributes:
recomputed_ops (set[int]): Set of operator indices to be recomputed.
stored_ops (set[int]): Set of operator indices to be stored.
inplace_op_groups (dict[int, set[int]]): Dictionary of inplace operator groups from group-head to operators.
random_ops_group (dict[int, set[int]]): Dictionary of random op group head to random ops.
msps_meta (list[MSPS]): List of Memory and Runtime Statistics for operators.
"""
recomputed_ops: set[int]
stored_ops: set[int]
inplace_op_groups: dict[int, set[int]]
random_ops_group: dict[int, set[int]]
msps_meta: list[MSPS]
class SACEstimator(TorchDispatchMode):
"""
Estimates the memory and recomputation time trade-offs for applying Selective Activation Checkpointing (SAC).
This class provides a ``TorchDispatchMode`` based context manager that can be used to estimate the memory and
runtime trade-offs of functions or ``torch.nn.Module``s for Selective Activation Checkpointing (SAC). It provides
detailed statistics and metadata information for operators of each module and provides a greedy order for selecting
the operators to be recomputed/checkpointed. It also constructs the per-module trade-off graph of discarded memory
vs recomputation time for the obtained greedy order. Using ``RuntimeEstimator`` under the hood, it supports two
estimation modes, `operator-level-benchmark` and (`operator-level-cost-model` (roofline model).
Attributes:
sac_mod_stats (Dict[str, SACStats]): Dictionary from module FQN (fuly qualified name) to ``SACStats``.
sac_mod_tradeoff_stats (Dict[str, SACTradeOffStats]): Dictionary from module FQN to ``SACTradeOffStats``.
sac_mod_greedy_order_meta (Dict[str, SACGreedyOrderMeta]): Dictionary from module FQN to ``SACGreedyOrderMeta``.
Note:
1) This class is designed to be used under ``FakeTensorMode``.
2) Currently, it only supports estimation of compute time and memory usage, and does not consider communication.
Example usage:
.. code-block:: python
sac_estimator = SACEstimator()
with FakeTensorMode():
module = ...
inp = ...
with sac_estimator("operator-level-cost-model"):
output = module(inp)
sac_estimator.display_modulewise_sac_stats(depth=4, print_tabular=True)
"""
def __init__(self) -> None:
self.sac_mod_stats: dict[str, SACStats] = {}
self.sac_mod_tradeoff_stats: dict[str, SACTradeOffStats] = {}
self.sac_mod_greedy_order_meta: dict[str, SACGreedyOrderMeta] = {}
self._mod_tracker = ModTracker()
self._sac_metadata: list[_SACMetadata] = []
self._sac_mod_metadata: dict[str, _SACModMetadata] = {}
self._leaf_modules: set[str] = set()
self._saved_tensor_hook_ctx = torch.autograd.graph.saved_tensors_hooks(
self._pack_hook, lambda x: x
)
self._saved_tensor_ids: set[int] = set()
self._estimate_runtime = RuntimeEstimator._roofline_estimate
def _pack_hook(self, x: torch.Tensor) -> torch.Tensor:
# Hook function to track underlying storage IDs of tensors
# Updates the _saved_tensor_ids set with the IDs of the tensor's storages
# Used in conjunction with torch.autograd.graph.saved_tensors_hooks
untyped_storages = get_untyped_storages(x)
storage_ids = (hash(st) for st in untyped_storages)
self._saved_tensor_ids.update(storage_ids)
return x
def _pre_fw_hook(self, mod: nn.Module, inputs: Any) -> None:
# Pre-forward hook function to prepare module metadata
# Tracks module FQN, force store random flag, and ``SACModMetadata``
# Initializes metadata for non-leaf modules, marks leaf modules
mod_fqn = self._mod_tracker.get_known_fqn(mod)
assert mod_fqn is not None
num_children = sum(1 for _ in mod.children())
if num_children > 0:
force_store_random = self._get_force_store_random(inputs)
self._sac_mod_metadata[mod_fqn] = _SACModMetadata(
start_idx=len(self._sac_metadata),
force_store_random=force_store_random,
sac_metadata=[],
)
else:
self._leaf_modules.add(mod_fqn)
def _post_fw_hook(self, mod: nn.Module, inputs: Any, outputs: Any) -> None:
# 1. Retrieves the module's FQN and checks if it's a leaf module
# 2. If not a leaf module, computes:
# - ``SACStats`` using the module's metadata and force store random flag
# - ``SACGreedyOrderMeta`` using the computed SAC statistics
mod_fqn = self._mod_tracker.get_known_fqn(mod)
assert mod_fqn is not None
if mod_fqn in self._leaf_modules:
return
else:
self.sac_mod_stats[mod_fqn] = self._get_sac_stats(
data=self._sac_mod_metadata[mod_fqn].sac_metadata,
force_store_random=self._sac_mod_metadata[mod_fqn].force_store_random,
)
self.sac_mod_greedy_order_meta[mod_fqn] = self._get_greedy_order_meta(
self.sac_mod_stats[mod_fqn]
)
def _get_force_store_random(self, inputs: Any) -> bool:
flat_inputs, _ = tree_flatten(inputs)
return all(not isinstance(x, torch.Tensor) for x in flat_inputs)
def _get_sac_stats(
self, data: list[_SACMetadata], force_store_random: bool
) -> SACStats:
# 1. Ignore the operations that should be skipped by SAC such as aten.detach.default because autograd
# inserts those during backward and it breaks the fwd-bwd alignment
filtered_data = [x for x in data if x.func not in OPS_TO_ALWAYS_SKIP]
(
ops,
runtimes_,
memory_,
new_ids,
output_ids,
inplace_ops_,
view_like_ops_,
rand_ops_,
) = zip(*[astuple(x) for x in filtered_data], strict=True)
# 2. Extract the metadata information
runtimes = list(runtimes_)
memory = list(memory_)
func_names = [op._overloadpacket.__name__ for op in ops]
view_like_ops = [i for i, x in enumerate(view_like_ops_) if x]
rand_ops = [i for i, x in enumerate(rand_ops_) if x]
saved_autograd_ops = [
i
for i, out_ids in enumerate(output_ids)
if set(out_ids).issubset(self._saved_tensor_ids)
]
# 3. Remap the inplace indices as we have removed OPS_TO_ALWAYS_SKIP
# FIXME @sanketpurandare: Fix this by changing the parent of the inplace-op
# to itself if the original parent is in OPS_TO_ALWAYS_SKIP.
try:
inplace_ops = [tuple(map(new_ids.index, x)) for x in inplace_ops_ if x]
except ValueError as err:
raise ValueError(
f"The remapping of inplace ops failed since one of the inplace op parents"
f" must have been present in {OPS_TO_ALWAYS_SKIP}"
) from err
# 4. The last operation is always stored as the output of the checkpoint
# block, so we can avoid recomputing it. We set the memory to zero
# instead of adding a new constraint because we want both the 0 and 1
# endpoints for memory_budget to be valid
# FIXME @sanketpurandare: this heuristic for finding the last non-view non-inplace op
# might not always be correct, which would yield suboptimal policies
last_op = len(ops) - 1
skip_ops_ = set(view_like_ops) | set({x[0] for x in inplace_ops})
reversed_skip_ops = sorted(skip_ops_, reverse=True)
for op in reversed_skip_ops:
if op == last_op:
last_op -= 1
memory[last_op] = 0
# 5. Create a single ``SACStats`` object for the entire block of ``_SACMetadata``.
return SACStats(
func_names=func_names,
runtimes=runtimes,
memory=memory,
view_like_ops=view_like_ops,
rand_ops=rand_ops,
saved_autograd_ops=saved_autograd_ops,
inplace_ops=inplace_ops, # type: ignore[arg-type]
force_store_random=force_store_random,
)
def _get_inplace_metadata(
self, func: Any, out_storages: set[UntypedStorage]
) -> tuple[int, tuple[int, ...], dict[str, tuple[int, ...]]]:
# 1. Get the current index of the metadata obtained so far
curr_idx = len(self._sac_metadata)
# 2. Get the set of active modules that are not leaf
active_mod_fqns: set[str] = {
par for par in self._mod_tracker.parents if par not in self._leaf_modules
}
# 3. Output ids are the identifies of the storage objects corresponding to the tensors
output_ids = tuple(hash(st) for st in out_storages)
# 4. If the function is not inplace, return
if not is_inplace(func):
return curr_idx, output_ids, {mod_fqn: () for mod_fqn in active_mod_fqns}
op_idx = curr_idx
# 5. Initialize the parent op ids of the inplace op for each of the active modules
mod_op_parent_idxs: dict[str, int] = {
mod_fqn: -1 for mod_fqn in active_mod_fqns
}
for i, d in enumerate(self._sac_metadata):
# 6. Find the first occurence of a tensor corresponding to each module that
# shares the same storage as the current tensor
past_output_ids = d.output_ids
if set(output_ids).issubset(set(past_output_ids)):
for mod_fqn, op_parent_idx in mod_op_parent_idxs.items():
if op_parent_idx == -1:
if acm_stats := self._sac_mod_metadata.get(mod_fqn, None):
if i >= acm_stats.start_idx:
mod_op_parent_idxs[mod_fqn] = i
else:
assert mod_fqn == "Global"
mod_op_parent_idxs[mod_fqn] = i
# 7. If no parent tensor is found, then it's probably an inplace op on the arguments
# so one can just store the current-op idx as parent idx
for mod_fqn, op_parent_idx in mod_op_parent_idxs.items():
if op_parent_idx < 0:
mod_op_parent_idxs[mod_fqn] = op_idx
mod_inplace_info = {
mod_fqn: (op_idx, mod_op_parent_idxs[mod_fqn])
for mod_fqn in active_mod_fqns
}
return curr_idx, output_ids, mod_inplace_info # type: ignore[return-value]
def __torch_dispatch__( # type: ignore[no-untyped-def]
self, func, types, args=..., kwargs=None
):
# 1. Get the runtime estimate
out, op_time = self._estimate_runtime(func, args, kwargs)
flat_outs, _ = tree_flatten(out)
out_storages_cuda: set[UntypedStorage] = set()
out_storages_cpu: set[UntypedStorage] = set()
cuda_devices: set[torch.device] = set()
for o in flat_outs:
if isinstance(o, torch.Tensor):
if o.device.type == "cuda":
out_storages_cuda.update(get_untyped_storages(o))
cuda_devices.add(o.device)
else:
out_storages_cpu.update(get_untyped_storages(o))
# Check if there's more than 1 CUDA device
assert len(cuda_devices) <= 1, (
f"{func.__name__}'s output has more than 1 CUDA devices {cuda_devices}"
)
# 2. Get the memory consumed by output
nbytes_cuda = sum(
math.ceil(st.nbytes() / _PYTORCH_MIN_ALLOCATE) * _PYTORCH_MIN_ALLOCATE
for st in out_storages_cuda
)
nbytes_cpu = sum(st.nbytes() for st in out_storages_cpu)
nbytes = nbytes_cuda + nbytes_cpu
# 3. Get the current operator index, output storage identifiers and inplace metadata
out_storages = out_storages_cuda | out_storages_cpu
curr_idx, output_ids, mod_inplace_info = self._get_inplace_metadata(
func, out_storages
)
# 4. Determine if the function is in-place, random-op or a view-like
is_view_like = is_view_fn(func) or is_inplace_view_fn(func)
is_rand_op = torch.Tag.nondeterministic_seeded in func.tags
if is_view_like:
nbytes = 0
# sdpa has non-deterministic seed, but might be deterministic
# if no dropout is applied
if func.overloadpacket.__name__ == "_scaled_dot_product_flash_attention":
is_rand_op = kwargs.get("dropout_p", 0) != 0
# 5. Create metadata information per active non-leaf module
for mod_fqn in self._mod_tracker.parents:
if mod_fqn in self._leaf_modules:
continue
acm = _SACMetadata(
func=func,
time_taken=op_time,
memory_used=nbytes,
curr_idx=curr_idx,
output_ids=output_ids,
inplace_info=mod_inplace_info[mod_fqn],
is_view_like=is_view_like,
is_rand_op=is_rand_op,
)
if acm_stats := self._sac_mod_metadata.get(mod_fqn, None):
acm_stats.sac_metadata.append(acm)
else:
assert mod_fqn == "Global", (
f"Module {mod_fqn} not found in AC Mod Stats"
)
self._sac_metadata.append(acm)
return out
def _get_greedy_order_meta(self, sac_stats: SACStats) -> SACGreedyOrderMeta:
# An inplace-op group is a set of inplace-ops that operate on the same underlying tensor storage.
# 1. inplace_op_groups: A dictionary from the top-most parent of inplace-ops to the inplace-ops in the group
# The top-most op can itself be an inplace-op or can be a non-inplace op.
# 2. inplace_op_to_group_head: A dictionary that maps all the inplace-ops to their respective group heads.
inplace_op_groups: dict[int, set[int]] = {}
inplace_op_to_group_head: dict[int, int] = dict(sac_stats.inplace_ops)
# Initialize inplace_op_groups using inplace_op_to_group_head
for op_idx, group_head_idx in inplace_op_to_group_head.items():
op_group = inplace_op_groups.setdefault(group_head_idx, {group_head_idx})
op_group.add(op_idx)
# Like inplace ops, all of the random ops in the function/module should all be either recomputed or saved
# as a group. This is because, they affect the ranom seed generator. If force_store_random is set True,
# all of the random ops will be stored by default. For easy of manageability, we store the top-most random op
# as the leader of the random_ops_group.
random_ops_group: dict[int, set[int]] = {}
random_group_head_idx = min(sac_stats.rand_ops, default=-1)
has_rand_ops = bool(sac_stats.rand_ops)
if has_rand_ops:
random_ops_group[random_group_head_idx] = set(sac_stats.rand_ops)
# 1. Random ops are stored if force_store_random is set
# 2. View-like ops are recomputed by default
# 3. For inplace_op_groups:
# a) If the head of this group is an inplace op, then we have to store the entire group.
# b) If any op in the group is random and force_store_random is set, then entire group will be stored.
# c) If none of ops in the group are random and the head of the group is not an in-place op, then
# this group can be considered for recomputation in its entireity
stored_ops: set[int] = set()
recomputed_ops: set[int] = set()
# Case 1:
if has_rand_ops and sac_stats.force_store_random:
stored_ops.add(random_group_head_idx)
# Case 2:
recomputed_ops.update(set(sac_stats.view_like_ops))
for group_head_idx, op_group in inplace_op_groups.items():
# Case 3a:
if group_head_idx in inplace_op_to_group_head:
stored_ops.add(group_head_idx)
# Case 3b:
if (
sac_stats.force_store_random & len(op_group & set(sac_stats.rand_ops))
> 0
):
stored_ops.add(group_head_idx)
# The potential recompute candidates are populated as:
recompute_candidates: set[int] = set()
# 1) The random group head if it is not stored
if has_rand_ops and random_group_head_idx not in stored_ops:
recompute_candidates.add(random_group_head_idx)
# 2) The in-place op group heads that are not stored
recompute_candidates.update(set(inplace_op_groups.keys()) - stored_ops)
# 3) The non-inplace and non-random ops that are neither stored nor recomputed by default
recompute_candidates.update(
set(range(len(sac_stats.memory)))
- recomputed_ops
- stored_ops
- set(inplace_op_to_group_head.keys())
- set(sac_stats.rand_ops)
)
# We define msps for a recomp candidate as the ratio of memory/runtime aka memory savings per second
msps_meta: list[MSPS] = []
for cand_idx in recompute_candidates:
op_indices = {cand_idx}
if cand_idx in inplace_op_groups:
op_indices.update(inplace_op_groups[cand_idx])
if has_rand_ops and cand_idx == random_group_head_idx:
op_indices.update(sac_stats.rand_ops)
mem = sum(sac_stats.memory[op_idx] for op_idx in op_indices)
runtime = sum(sac_stats.runtimes[op_idx] for op_idx in op_indices)
func_names = {sac_stats.func_names[op_idx] for op_idx in op_indices}
msps = (mem / runtime) if runtime > 0 else sys.float_info.max
msps_meta.append(MSPS(func_names, cand_idx, mem, runtime, msps))
# We choose canidates to be recomputed based on increasing msps
msps_meta.sort(key=lambda x: x.msps, reverse=True)
return SACGreedyOrderMeta(
recomputed_ops, stored_ops, inplace_op_groups, random_ops_group, msps_meta
)
def _get_sac_tradeoff_pwlf_stats(
self,
sac_stats: SACStats,
greedy_order_meta: SACGreedyOrderMeta,
n_segments: int = 2,
save_tradeoff_graph: bool = False,
filename: str = "ac_tradeoff",
) -> SACTradeOffStats:
try:
import numpy as np # type: ignore[import-not-found]
import pwlf # type: ignore[import-untyped, import-not-found]
except ImportError as err:
raise ImportError("Please install pwlf and numpy package.") from err
stored_ops, recomputed_ops, inplace_op_groups, random_ops_group, msps_meta = (
greedy_order_meta.stored_ops,
greedy_order_meta.recomputed_ops,
greedy_order_meta.inplace_op_groups,
greedy_order_meta.random_ops_group,
greedy_order_meta.msps_meta,
)
# 1. Intitialize the discarded memory and recomputation runtime to sum of already chosen recomputed_ops
recomp_indices: set[int] = set()
for r_idx in recomputed_ops:
recomp_indices.add(r_idx)
if r_idx in inplace_op_groups:
recomp_indices.update(inplace_op_groups[r_idx])
if r_idx in random_ops_group:
recomp_indices.update(random_ops_group[r_idx])
discarded_mem = sum(sac_stats.memory[op_idx] for op_idx in recomp_indices)
recomp_runtime = sum(sac_stats.runtimes[op_idx] for op_idx in recomp_indices)
# 2. Initialize the max recomputation time and total recomputation memory
sac_runtime = sum(sac_stats.runtimes)
sac_memory = sum(sac_stats.memory)
# 3. Tradeoff curve stores the KV pair of the dicarded memory to total memory and,
# recomputation time to total runtime incurred.
delta = 1e-2
tradeoff_curve = OrderedDict()
# 4. Initialize the trade-off curve with the stats of of already chosen recomputed_ops
tradeoff_curve[(discarded_mem / sac_memory) + delta] = (
recomp_runtime / sac_runtime
)
# 5. Update the trade-off curve with memory and runtime stats of SAC candidates in the
# greedy order of their ``MSPS``.
for cand in msps_meta:
discarded_mem += cand.memory
recomp_runtime += cand.runtime
tradeoff_curve[(discarded_mem / sac_memory) + delta] = (
recomp_runtime / sac_runtime
)
# 6. Finally, we add the memory and recomputation time of the always stored ops.
stored_indices: set[int] = set()
for s_idx in stored_ops:
stored_indices.add(s_idx)
if s_idx in inplace_op_groups:
stored_indices.update(inplace_op_groups[s_idx])
if s_idx in random_ops_group:
stored_indices.update(random_ops_group[s_idx])
discarded_mem += sum(sac_stats.memory[op_idx] for op_idx in stored_indices)
recomp_runtime += sum(sac_stats.runtimes[op_idx] for op_idx in stored_indices)
tradeoff_curve[(discarded_mem / sac_memory) + delta] = (
recomp_runtime / sac_runtime
)
x_ = list(tradeoff_curve.keys())
y_ = list(tradeoff_curve.values())
# 7. We shift the y values to left and x values to right to upperbound the trade-off function
# TODO: Write a better explanation why this needs to be done
x = x_[: len(x_) - 1]
y = y_[1:]
tradeoff_pwlf = pwlf.PiecewiseLinFit(x, y)
# 8. Fit a piecewise linear function with the specified number of segments to the trade-off curve.
n_segments = max(min(len(x) - 2, n_segments), 1)
tradeoff_pwlf.fit(n_segments=n_segments)
# save prediction graph
def save_prediction_graph(
pwlf_: pwlf.PiecewiseLinFit, x: list[float], y: list[float], filename: str
) -> None:
try:
import matplotlib.pyplot as plt # type: ignore[import-not-found]
import numpy as np # type: ignore[import-not-found]
except ImportError as err:
raise ImportError(
"Install matplotlib and numpy using pip: pip install matplotlib numpy"
) from err
# predict for the determined points
xHat = np.linspace(min(x), max(x), num=10000)
yHat = pwlf_.predict(xHat)
# plot the results
plt.figure()
plt.plot(x, y, "o", label="Shifted")
plt.plot(xHat, yHat, "-", label="Predicted")
plt.plot(x_, y_, "x", label="Original")
plt.ylabel("Recomp time / Total recomp time")
plt.xlabel("Memory discarded / Total memory")
plt.legend()
plt.title(f"{filename}")
plt.suptitle(
f"Total Memory = {sac_memory} B Total Runtime = {sac_runtime:.4f} ms",
fontsize=10,
)
folder_name = "tradeoff_graphs"
if not os.path.exists(folder_name):
os.makedirs(folder_name)
# Save the plots in the folder
plt.savefig(os.path.join(folder_name, f"{filename}.png"))
if save_tradeoff_graph:
save_prediction_graph(tradeoff_pwlf, x, y, filename)
# 9. Obtain the slopes, intercepts and breakpoints of the fitted piecewise linear functions
slopes = tradeoff_pwlf.calc_slopes().tolist()
assert isinstance(tradeoff_pwlf.intercepts, np.ndarray) and isinstance(
tradeoff_pwlf.fit_breaks, np.ndarray
)
intercepts = tradeoff_pwlf.intercepts.tolist()
fit_breaks = tradeoff_pwlf.fit_breaks.tolist()
return SACTradeOffStats(
n_segments=n_segments,
slopes=slopes,
intercepts=intercepts, # type: ignore[arg-type]
fit_breaks=fit_breaks, # type: ignore[arg-type]
tradeoff_curve=tradeoff_curve,
sac_memory=sac_memory,
sac_runtime=sac_runtime,
)
def display_sac_stats(
self, sac_stats: SACStats, print_tabular: bool = False
) -> None:
"""
Displays the SAC statistics.
Args:
sac_stats (SACStats): The SAC statistics to display.
print_tabular (bool, optional): Whether to print the statistics in a tabular format. Defaults to False.
Prints:
1. Total Memory: The total memory usage in bytes.
2. Total Runtime: The total runtime in milliseconds.
3. Store Random: A flag indicating whether to force store random operator results.
Followed by a table with the following columns:
1. Op Idx: The operator index.
2. Op Name: The operator name.
3. Runtimes (ms): The operator runtime in milliseconds.
4. Memory (B): The operator memory usage in bytes.
5. View-like: A flag indicating whether the operator is view-like.
6. Random: A flag indicating whether the operator is random.
7. Saved Autograd: A flag indicating whether the operator's result is saved by autograd engine.
8. In-place: The index of the operator's first parent, or None if not in-place.
If print_tabular is True, the table is printed in a tabular format.
Otherwise, the table is printed in a plain text format.
"""
print(
f"Total Memory: {sum(sac_stats.memory)} B Total Runtime: {sum(sac_stats.runtimes)} ms"
f" Store Random: {sac_stats.force_store_random}"
)
table_data = []
op_parent = dict(sac_stats.inplace_ops)
for i, fn_name in enumerate(sac_stats.func_names):
row = [
str(i),
fn_name,
f"{sac_stats.runtimes[i]:.4f}",
str(sac_stats.memory[i]),
str(i in sac_stats.view_like_ops),
str(i in sac_stats.rand_ops),
str(i in sac_stats.saved_autograd_ops),
str(op_parent.get(i, None)),
]
table_data.append(row)
# Define headers
headers = [
"Op Idx",
"Op Name",
"Runtimes(ms)",
"Memory (B)",
"View-like",
"Random",
"Saved Autograd",
"In-place",
]
if print_tabular:
_display_stats_tabular(headers, table_data)
else:
max_widths = [0 for _ in range(len(headers))]
table_data.insert(0, headers)
for row in table_data:
for i, elem in enumerate(row):
max_widths[i] = max(max_widths[i], len(elem))
for row in table_data:
print(
"\t".join(
[f"{elem:<{max_widths[i]}}" for i, elem in enumerate(row)]
)
)
def display_sac_tradeoff_stats(
self,
greedy_order_meta: SACGreedyOrderMeta,
sac_stats: SACStats,
print_tabular: bool = False,
) -> None:
"""
Displays the SAC trade-off statistics.
Args:
greedy_order_meta (SACGreedyOrderMeta): The SAC greedy order metadata.
sac_stats (SACStats): The SAC statistics.
print_tabular (bool, optional): Whether to print the statistics in a tabular format. Defaults to False.
Prints:
A table with the following columns:
1. Op Id(s): The operator index(es).
2. Op Name(s): The operator name(s).
3. Discarded Mem (%): The percentage of discarded memory.
4. Discarded Mem (B): The discarded memory in bytes.
5. Recomp time (%): The percentage of recomputed time.
6. Recomp time (ms): The recomputed time in milliseconds.
7. MSPS: The memory per second.
8. Always Stored: A flag indicating whether the operator is always stored.
9. Always Recomputed: A flag indicating whether the operator is always recomputed.
If print_tabular is True, the table is printed in a tabular format.
Otherwise, the table is printed in a plain text format.
"""
table_data = []
total_memory, total_runtime = sum(sac_stats.memory), sum(sac_stats.runtimes)
discarded_mem: int = 0
recomp_runtime: float = 0.0
def append_row(
op_indices: set[int],
func_names: set[str],
msps: Optional[float] = None,
stored: Optional[bool] = False,
recomputed: Optional[bool] = False,
) -> None:
row = [
str(op_indices),
str(func_names),
f"{discarded_mem / total_memory:.4f}",
str(discarded_mem),
f"{recomp_runtime / total_runtime:.4f}",
str(recomp_runtime),
f"{msps:.2e}" if msps is not None else str(nan),
str(stored),
str(recomputed),
]
table_data.append(row)
stored_ops, recomputed_ops, inplace_op_groups, random_ops_group, msps_meta = (
greedy_order_meta.stored_ops,
greedy_order_meta.recomputed_ops,
greedy_order_meta.inplace_op_groups,
greedy_order_meta.random_ops_group,
greedy_order_meta.msps_meta,
)
for op_idx in recomputed_ops:
op_indices: set[int] = {op_idx}
if op_idx in inplace_op_groups:
op_indices.update(inplace_op_groups[op_idx])
if op_idx in random_ops_group:
op_indices.update(random_ops_group[op_idx])
discarded_mem += sum(sac_stats.memory[i] for i in op_indices)
recomp_runtime += sum(sac_stats.runtimes[i] for i in op_indices)
func_names = {sac_stats.func_names[i] for i in op_indices}
append_row(op_indices, func_names, recomputed=True)
for cand in msps_meta:
discarded_mem += cand.memory
recomp_runtime += cand.runtime
op_indices = {cand.op_idx}
if cand.op_idx in inplace_op_groups:
op_indices.update(inplace_op_groups[cand.op_idx])
if cand.op_idx in random_ops_group:
op_indices.update(random_ops_group[cand.op_idx])
append_row(op_indices, cand.func_names, msps=cand.msps)
for op_idx in stored_ops:
op_indices = {op_idx}
if op_idx in inplace_op_groups:
op_indices.update(inplace_op_groups[op_idx])
if op_idx in random_ops_group:
op_indices.update(random_ops_group[op_idx])
discarded_mem += sum(sac_stats.memory[i] for i in op_indices)
recomp_runtime += sum(sac_stats.runtimes[i] for i in op_indices)
func_names = {sac_stats.func_names[i] for i in op_indices}
append_row(op_indices, func_names, stored=True)
headers = [
"Op Id(s)",
"Op Name(s)",
"Discarded Mem (%)",
"Discarded Mem (B)",
"Recomp time (%)",
"Recomp time (ms)",
"MSPS",
"Always Stored",
"Always Recomputed",
]
if print_tabular:
_display_stats_tabular(headers, table_data)
else:
max_widths = [0 for _ in range(len(headers))]
table_data.insert(0, headers)
for row in table_data:
for i, elem in enumerate(row):
max_widths[i] = max(max_widths[i], len(elem))
for row in table_data:
print(
"\t".join(
[f"{elem:<{max_widths[i]}}" for i, elem in enumerate(row)]
)
)
def pwlf_sac_tradeoff_curve(
self,
n_segments: int = 2,
save_tradeoff_graphs: bool = False,
) -> None:
"""
Fits a piecewise linear function with the specified sumber of segments to the SAC trade-off curve of
discarded memory vs recomputation time.
Args:
n_segments (int, optional): The number of segments to be used for fitting the piecewise linear function to
the trade-off curve. Defaults to 2.
save_tradeoff_graphs (bool, optional): Whether to save the trade-off graphs to file. Defaults to False.
If save_tradeoff_graphs is True, the trade-off graphs are saved to file using the module FQN as the filename.
"""
for mod_fqn, sac_stats in self.sac_mod_stats.items():
self.sac_mod_tradeoff_stats[mod_fqn] = self._get_sac_tradeoff_pwlf_stats(
sac_stats=sac_stats,
greedy_order_meta=self.sac_mod_greedy_order_meta[mod_fqn],
n_segments=n_segments,
save_tradeoff_graph=save_tradeoff_graphs,
filename=mod_fqn,
)
def display_modulewise_sac_stats(
self, depth: int = 2, print_tabular: bool = False
) -> None:
"""
Displays the SAC and trade-off statistics for each module.
Args:
depth (int, optional): The maximum depth of modules to display. Defaults to 2.
print_tabular (bool, optional): Whether to print the statistics in a tabular format. Defaults to False.
Prints:
For each module with depth less than or equal to the specified depth:
1. The SAC statistics for the module (using display_sac_stats).
2. The SAC trade-off statistics for the module (using display_sac_tradeoff_stats).
If print_tabular is True, the statistics are printed in a tabular format.
Otherwise, the statistics are printed in a plain text format.
"""
for mod_fqn, sac_stats in self.sac_mod_stats.items():
mod_depth = mod_fqn.count(".") + 1
if mod_depth > depth:
continue
print(f"Module: {mod_fqn}")
self.display_sac_stats(sac_stats, print_tabular)
print(f"AC Trade-off for Module: {mod_fqn} MSPS = Memory/Runtime")
self.display_sac_tradeoff_stats(
self.sac_mod_greedy_order_meta[mod_fqn], sac_stats, print_tabular
)
def __call__(self, estimate_mode_type: str) -> Self:
"""
Sets the estimate mode type.
Currently supported modes:
- "operator-level-benchmark": Estimates runtime using operator benchmarking.
- "operator-level-cost-model": Estimates runtime using roofline cost model.
Args:
estimate_mode_type (str): The type of estimate mode to use.
Returns:
SACEstimator: The SAC estimator instance.
Raises:
NotImplementedError: If the estimate mode type is not supported.
"""
if estimate_mode_type == "operator-level-benchmark":
self._estimate_runtime = RuntimeEstimator._benchmark_estimate
elif estimate_mode_type == "operator-level-cost-model":
self._estimate_runtime = RuntimeEstimator._roofline_estimate
else:
raise NotImplementedError(
f"estimate_mode_type {estimate_mode_type} not supported"
)
return self
def __enter__(self) -> Self: # type: ignore[no-untyped-def]
fake_mode = active_fake_mode()
assert isinstance(fake_mode, FakeTensorMode), (
"SAC Estimator should be called in FakeTensorMode"
)
RuntimeEstimator.fake_mode = fake_mode
self._mod_tracker.register_user_hooks(
pre_fw_hook=self._pre_fw_hook,
post_fw_hook=self._post_fw_hook,
)
self._mod_tracker.__enter__()
self._saved_tensor_hook_ctx.__enter__()
return super().__enter__()
def __exit__(self, *args: Any) -> None: # type: ignore[no-untyped-def]
self._saved_tensor_hook_ctx.__exit__()
self._mod_tracker.__exit__(*args)
super().__exit__(*args)

View file

@ -0,0 +1,295 @@
import logging
import math
from enum import IntEnum
from typing import Optional
from torch.distributed._tools.ilp_utils import Graph, is_submodule
from torch.distributed._tools.sac_estimator import SACStats
try:
from pulp import ( # type: ignore[import-untyped,import-not-found]
lpDot,
LpInteger,
LpMaximize,
LpMinimize,
LpProblem,
LpStatus,
lpSum,
LpVariable,
PULP_CBC_CMD,
value,
)
except ImportError as err:
raise ImportError(
"Please install pulp package. See: https://github.com/coin-or/pulp."
) from err
# Create a logger object
logger = logging.getLogger(__name__)
# Set the logging level to INFO
logger.setLevel(logging.INFO)
def sac_milp(
graph: Graph,
memory_budget: float,
world_size: int = 1,
ac_units: Optional[list[str]] = None,
fsdp_units: Optional[list[str]] = None,
) -> tuple[dict[str, float], float, int]:
"""
MILP to decide which modules to AC and how much memory to discard.
The objective is to minimize recomputation time.
The constraint is to ensure peak memory is under budget.
Args:
graph: graph representation of the model as a module submodule tree
where each node is a submodule with memory & runtime stats
memory_budget: memory budget in GiB
world_size: number of GPUs. In the case of FSDP, world_size will be
used to compute the amount of parameter and gradient memory on each rank
ac_units: a list of user-specified AC units.
fsdp_units: a list of FSDP units. AC units cannot be supermodules of FSDP units.
Returns:
Dict[str, float]: the optimal SAC solution, mapping from module fqn to
the percentage of activation memory to **discard**
float: the recomputation time of the optimal SAC solution
int: upper bound on the peak memory of the optimal SAC solution.
note that value of -1 means that the ILP solver failed to find a solution.
"""
num_nodes = len(graph.nodes)
M = 10**2 # note: numerical issue may occur if M is too big
MEM_MULTIPLIER = 2**30
# Create a MILP problem
prob = LpProblem("SAC", LpMinimize)
# Create decision variables
# y_i: indicator for if module i is AC'ed
y = LpVariable.matrix("y", list(range(num_nodes)), 0, 1, LpInteger)
# r_i: percentage of discarded activation memory
r = LpVariable.matrix("r", list(range(num_nodes)), 0, 1)
# d_i: discarded activation memory for module i
d = LpVariable.matrix("d", list(range(num_nodes)), 0)
# a_i: total activation memory at module i
a = LpVariable.matrix("a", list(range(num_nodes)), 0)
# m_i: memory at module i, combining parameters, gradients, and activations
m = LpVariable.matrix("m", list(range(num_nodes)), 0)
# rcp_i: percentage of recomputation time
rcp = LpVariable.matrix("rcp", list(range(num_nodes)), 0)
# rct_i: recomputation time for module i (in ms)
rct = LpVariable.matrix("rct", list(range(num_nodes)), 0)
# max_m: peak memory
max_m = LpVariable("max_m", 0)
# Add constraints
# [Constraint] User specified AC units
if ac_units:
ac_units_set = set(ac_units)
for i in range(num_nodes):
if graph.nodes[i]["fqn"] not in ac_units_set:
prob += y[i] == 0
# [Constraint] AC units cannot be supmodules of user specified FSDP units
if fsdp_units:
for i in range(num_nodes):
if any(
is_submodule(fsdp_unit, graph.nodes[i]["fqn"])
for fsdp_unit in fsdp_units
):
prob += y[i] == 0
# [Constraint] No nested AC units
for i in range(num_nodes):
for j in range(i + 1, num_nodes):
if graph.ad_matrix[i][j] == 1:
prob += y[i] + y[j] <= 1
# [Constraint] Do not AC leaf modules
for i in range(num_nodes):
if graph.nodes[i]["is_leaf"]:
prob += y[i] == 0
# [Constraint] Express amount of discarded activation memory
for i in range(num_nodes):
# There are two measures for activation memory: ACM and IA
# 1. IA is the activation memory saved when not using AC
# 2. ACM is the total activation memory, including those
# that are not typically saved when not using AC
# Note: ACM >= IA
if (not graph.nodes[i]["is_leaf"]) and graph.nodes[i][
"sac_memory"
] < graph.nodes[i]["act_fw_per_module"]:
logger.warning("For module {%s}: ", graph.nodes[i]["fqn"])
logger.warning(
"activation memory from memory tracker is {%d},",
graph.nodes[i]["act_fw_per_module"],
)
logger.warning(
"activation memory from SAC estimator is {%d}.",
graph.nodes[i]["sac_memory"],
)
logger.warning("Something is wrong. Please check!")
logger.warning("Overriding the latter with the former.")
graph.nodes[i]["sac_memory"] = graph.nodes[i]["act_fw_per_module"]
ACM_i = graph.nodes[i]["sac_memory"] / MEM_MULTIPLIER
IA_i = graph.nodes[i]["act_fw_per_module"] / MEM_MULTIPLIER
prob += d[i] == ACM_i * r[i] - (ACM_i - IA_i) * y[i]
# [Constraint] Ensure correctness of r_i
# There are two parts to its correctness
# 1. r_i > 0 only if y_i == 1 (discard only if it is an AC unit)
# 2. r_i needs to be large enough to cover the difference between
# ACM and IA. Otherwise, we are not saving any memory
for i in range(num_nodes):
prob += y[i] >= r[i]
if graph.nodes[i]["is_leaf"]:
continue
ACM_i = graph.nodes[i]["sac_memory"] / MEM_MULTIPLIER
IA_i = graph.nodes[i]["act_fw_per_module"] / MEM_MULTIPLIER
prob += r[i] >= (ACM_i - IA_i) / ACM_i * y[i]
# [Constraint] Express total activation memory in the backward pass
for i in range(num_nodes):
AG_i = graph.nodes[i]["act_grad_per_module"] / MEM_MULTIPLIER
TA_i = graph.nodes[i]["act_total"] / MEM_MULTIPLIER
# related to discarded amount of memory
pos = graph.nodes[i]["pos_fw_post_order"]
coeff = [0] * num_nodes
for p in range(pos):
j = graph.name2node[graph.fw_post_order[p]]["index"]
coeff[j] = 1
prob += a[i] == TA_i + AG_i - lpDot(coeff, d)
# [Constraint] Express the total amount of memory at each module
# Note that unsharded parameters and gradients are not included here
P_1 = graph.nodes[0]["param_per_module"] / MEM_MULTIPLIER
for i in range(num_nodes):
TG_i = graph.nodes[i]["grad_total"] / MEM_MULTIPLIER
prob += m[i] == a[i] + (P_1 + TG_i) / world_size
# [Constraint] Express peak memory
for i in range(num_nodes):
prob += max_m >= m[i]
# [Constraint] Express percentage of recomputation time
for i in range(num_nodes):
for s in range(graph.nodes[i]["n_segments"]):
slope = graph.nodes[i]["slopes"][s]
intercept = graph.nodes[i]["intercepts"][s]
prob += rcp[i] >= slope * r[i] + intercept
# [Constraint] Express recomputation time
# rct_i = (rcp_i * ACT_i) if y_i == 1 else 0
for i in range(num_nodes):
ACT_i = graph.nodes[i]["sac_runtime"]
prob += rct[i] <= M * y[i]
prob += rct[i] <= ACT_i * rcp[i]
prob += rct[i] >= ACT_i * rcp[i] - M * (1 - y[i])
# [Constraint] Peak memory should be below budget
prob += max_m <= memory_budget
# Set Objeictive
prob += lpSum(rct)
# Solve
solver = PULP_CBC_CMD(gapRel=0.05, timeLimit=180, msg=0)
status = prob.solve(solver)
# If solver fails, print status and return empty solution
if status != 1:
logger.error("Solver failed to find a solution: %s", LpStatus[status])
return {}, 0, -1
# Gather and return solution if optimal solution is found
ac_decisions = {}
for i in range(num_nodes):
if round(y[i].varValue) == 1:
ac_decisions[graph.nodes[i]["fqn"]] = round(r[i].varValue, 4)
recomputation_time = round(value(prob.objective), 2)
peak_mem = round(max_m.varValue * MEM_MULTIPLIER)
return ac_decisions, recomputation_time, peak_mem
class SACDecision(IntEnum):
RECOMPUTE = 0
SAVE = 1
def get_optimal_checkpointing_policy_per_module(
sac_stats: SACStats, memory_budget: float
) -> list[int]:
"""
This is adapted from --
https://github.com/facebookresearch/xformers/blob/c6c0ac31f1b08542a0bc27278c6ed10f825f6963/xformers/checkpoint.py#L375
Given the SACStats of a module, including list of operators, their memory, runtimes, and metadata,
decide via MILP an optimal set of operators to checkpoint under a given ``memory_budget``.
Args:
sac_stats: the SACStats object of the module
memory_budget: a float between zero and one
Returns:
List[int]: the decision whether each operator should be saved (1) or recomptued (0).
"""
if not (0 <= memory_budget <= 1):
raise ValueError(
f"`memory_budget` must be a float between 0 and 1. Got {memory_budget}."
)
num_ops = len(sac_stats.func_names)
# Create a MILP problem
prob = LpProblem("SAC-per-module", LpMaximize)
# Create decision variables
# x[i] = 1 means the i-th operator should be saved, otherwise it should be recomputed
x = LpVariable.matrix("x", list(range(num_ops)), 0, 1, LpInteger)
# Add constraints
# [Constraint] random ops should be saved if ``force_store_random`` is True
# otherwise, random ops should either be all recomputed or all saved
if sac_stats.force_store_random:
for i in sac_stats.rand_ops:
prob += x[i] == SACDecision.SAVE.value
else:
for i1, i2 in zip(sac_stats.rand_ops[:-1], sac_stats.rand_ops[1:]):
prob += x[i1] == x[i2]
# [Constraint] view-like ops should always be recomputed
for i in sac_stats.view_like_ops:
prob += x[i] == SACDecision.RECOMPUTE.value
# [Constraint] inplace ops should always be done in conjunction with its parent op
for op, op_parent in sac_stats.inplace_ops:
if op != op_parent:
prob += x[op] == x[op_parent]
else:
prob += x[op] == SACDecision.SAVE.value
# [Constraint] saved memory should be under the ``memory_budget``
max_memory = math.ceil(memory_budget * sum(sac_stats.memory))
prob += lpDot(x, sac_stats.memory) <= max_memory
# [Objective] minimize recomputation time, note the ILP is a maximization problem
# because x[i] == 1 means the op is saved (not recomputed), and thus recomputation
# time is sum(sac_stats.runtimes) - lpDot(x, sac_stats.runtimes)
prob += lpDot(x, sac_stats.runtimes)
# Solve
solver = PULP_CBC_CMD(gapRel=0.05, timeLimit=10, msg=0)
status = prob.solve(solver)
# If solver fails, print status and return empty solution
if status != 1:
logger.error("Solver failed to find a solution: %s", LpStatus[status])
return []
# Gather and return solution if optimal solution is found
return [round(x[i].varValue) for i in range(num_ops)]