Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
|
@ -0,0 +1,107 @@
|
|||
# mypy: allow-untyped-defs
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.optim._functional as F
|
||||
from torch import Tensor
|
||||
from torch.distributed.optim._deprecation_warning import (
|
||||
_scripted_functional_optimizer_deprecation_warning,
|
||||
)
|
||||
|
||||
|
||||
__all__: list[str] = []
|
||||
|
||||
|
||||
# Define a TorchScript compatible Functional Rprop Optimizer
|
||||
# where we use these optimizer in a functional way.
|
||||
# Instead of using the `param.grad` when updating parameters,
|
||||
# we explicitly allow the distributed optimizer pass gradients to
|
||||
# the `step` function. In this way, we could separate the gradients
|
||||
# and parameters and allow multithreaded trainer to update the
|
||||
# parameters without data traces on accumulating to the same .grad.
|
||||
# NOTE: This should be only used by distributed optimizer internals
|
||||
# and not meant to expose to the user.
|
||||
@torch.jit.script
|
||||
class _FunctionalRprop:
|
||||
def __init__(
|
||||
self,
|
||||
params: list[Tensor],
|
||||
lr: float = 1e-2,
|
||||
etas: tuple[float, float] = (0.5, 1.2),
|
||||
step_sizes: tuple[float, float] = (1e-6, 50),
|
||||
foreach: bool = False,
|
||||
maximize: bool = False,
|
||||
_allow_empty_param_list: bool = False,
|
||||
):
|
||||
_scripted_functional_optimizer_deprecation_warning(stacklevel=2)
|
||||
self.defaults = {
|
||||
"lr": lr,
|
||||
}
|
||||
self.etas = etas
|
||||
self.step_sizes = step_sizes
|
||||
self.foreach = foreach
|
||||
self.maximize = maximize
|
||||
|
||||
if len(params) == 0 and not _allow_empty_param_list:
|
||||
raise ValueError("optimizer got an empty parameter list")
|
||||
|
||||
# NOTE: we only have one param_group and don't allow user to add additional
|
||||
# param group as it's not a common use case.
|
||||
self.param_group = {"params": params}
|
||||
|
||||
self.state = torch.jit.annotate(dict[torch.Tensor, dict[str, torch.Tensor]], {})
|
||||
|
||||
def step(self, gradients: list[Optional[Tensor]]):
|
||||
params = self.param_group["params"]
|
||||
params_with_grad = []
|
||||
grads = []
|
||||
prevs = []
|
||||
step_sizes = []
|
||||
state_steps = []
|
||||
lr = self.defaults["lr"]
|
||||
etaminus, etaplus = self.etas
|
||||
step_size_min, step_size_max = self.step_sizes
|
||||
|
||||
if len(params) != len(gradients):
|
||||
raise ValueError(
|
||||
"the gradients passed in does not equal to the size of the parameters!"
|
||||
+ f"Params length: {len(params)}. "
|
||||
+ f"Gradients length: {len(gradients)}"
|
||||
)
|
||||
|
||||
has_complex = False
|
||||
for param, gradient in zip(params, gradients):
|
||||
if gradient is not None:
|
||||
has_complex |= torch.is_complex(param)
|
||||
params_with_grad.append(param)
|
||||
grads.append(gradient)
|
||||
# Lazy state initialization
|
||||
if param not in self.state:
|
||||
self.state[param] = {}
|
||||
state = self.state[param]
|
||||
state["step"] = torch.tensor(0.0)
|
||||
state["prev"] = torch.zeros_like(
|
||||
param, memory_format=torch.preserve_format
|
||||
)
|
||||
state["step_size"] = torch.full_like(gradient, lr)
|
||||
|
||||
state = self.state[param]
|
||||
prevs.append(state["prev"])
|
||||
step_sizes.append(state["step_size"])
|
||||
state_steps.append(state["step"])
|
||||
|
||||
with torch.no_grad():
|
||||
F.rprop(
|
||||
params_with_grad,
|
||||
grads,
|
||||
prevs,
|
||||
step_sizes,
|
||||
state_steps,
|
||||
step_size_min=step_size_min,
|
||||
step_size_max=step_size_max,
|
||||
etaminus=etaminus,
|
||||
etaplus=etaplus,
|
||||
foreach=self.foreach,
|
||||
maximize=self.maximize,
|
||||
has_complex=has_complex,
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue