Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
150
venv/Lib/site-packages/torch/utils/data/distributed.py
Normal file
150
venv/Lib/site-packages/torch/utils/data/distributed.py
Normal file
|
@ -0,0 +1,150 @@
|
|||
import math
|
||||
from collections.abc import Iterator
|
||||
from typing import Optional, TypeVar
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data.dataset import Dataset
|
||||
from torch.utils.data.sampler import Sampler
|
||||
|
||||
|
||||
__all__ = ["DistributedSampler"]
|
||||
|
||||
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
|
||||
|
||||
class DistributedSampler(Sampler[_T_co]):
|
||||
r"""Sampler that restricts data loading to a subset of the dataset.
|
||||
|
||||
It is especially useful in conjunction with
|
||||
:class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each
|
||||
process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a
|
||||
:class:`~torch.utils.data.DataLoader` sampler, and load a subset of the
|
||||
original dataset that is exclusive to it.
|
||||
|
||||
.. note::
|
||||
Dataset is assumed to be of constant size and that any instance of it always
|
||||
returns the same elements in the same order.
|
||||
|
||||
Args:
|
||||
dataset: Dataset used for sampling.
|
||||
num_replicas (int, optional): Number of processes participating in
|
||||
distributed training. By default, :attr:`world_size` is retrieved from the
|
||||
current distributed group.
|
||||
rank (int, optional): Rank of the current process within :attr:`num_replicas`.
|
||||
By default, :attr:`rank` is retrieved from the current distributed
|
||||
group.
|
||||
shuffle (bool, optional): If ``True`` (default), sampler will shuffle the
|
||||
indices.
|
||||
seed (int, optional): random seed used to shuffle the sampler if
|
||||
:attr:`shuffle=True`. This number should be identical across all
|
||||
processes in the distributed group. Default: ``0``.
|
||||
drop_last (bool, optional): if ``True``, then the sampler will drop the
|
||||
tail of the data to make it evenly divisible across the number of
|
||||
replicas. If ``False``, the sampler will add extra indices to make
|
||||
the data evenly divisible across the replicas. Default: ``False``.
|
||||
|
||||
.. warning::
|
||||
In distributed mode, calling the :meth:`set_epoch` method at
|
||||
the beginning of each epoch **before** creating the :class:`DataLoader` iterator
|
||||
is necessary to make shuffling work properly across multiple epochs. Otherwise,
|
||||
the same ordering will be always used.
|
||||
|
||||
Example::
|
||||
|
||||
>>> # xdoctest: +SKIP
|
||||
>>> sampler = DistributedSampler(dataset) if is_distributed else None
|
||||
>>> loader = DataLoader(dataset, shuffle=(sampler is None),
|
||||
... sampler=sampler)
|
||||
>>> for epoch in range(start_epoch, n_epochs):
|
||||
... if is_distributed:
|
||||
... sampler.set_epoch(epoch)
|
||||
... train(loader)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
num_replicas: Optional[int] = None,
|
||||
rank: Optional[int] = None,
|
||||
shuffle: bool = True,
|
||||
seed: int = 0,
|
||||
drop_last: bool = False,
|
||||
) -> None:
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
num_replicas = dist.get_world_size()
|
||||
if rank is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
rank = dist.get_rank()
|
||||
if rank >= num_replicas or rank < 0:
|
||||
raise ValueError(
|
||||
f"Invalid rank {rank}, rank should be in the interval [0, {num_replicas - 1}]"
|
||||
)
|
||||
self.dataset = dataset
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
self.epoch = 0
|
||||
self.drop_last = drop_last
|
||||
# If the dataset length is evenly divisible by # of replicas, then there
|
||||
# is no need to drop any data, since the dataset will be split equally.
|
||||
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
||||
# Split to nearest available length that is evenly divisible.
|
||||
# This is to ensure each rank receives the same amount of data when
|
||||
# using this Sampler.
|
||||
self.num_samples = math.ceil(
|
||||
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
|
||||
)
|
||||
else:
|
||||
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
|
||||
self.total_size = self.num_samples * self.num_replicas
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
|
||||
def __iter__(self) -> Iterator[_T_co]:
|
||||
if self.shuffle:
|
||||
# deterministically shuffle based on epoch and seed
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.seed + self.epoch)
|
||||
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
|
||||
else:
|
||||
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
||||
|
||||
if not self.drop_last:
|
||||
# add extra samples to make it evenly divisible
|
||||
padding_size = self.total_size - len(indices)
|
||||
if padding_size <= len(indices):
|
||||
indices += indices[:padding_size]
|
||||
else:
|
||||
indices += (indices * math.ceil(padding_size / len(indices)))[
|
||||
:padding_size
|
||||
]
|
||||
else:
|
||||
# remove tail of data to make it evenly divisible.
|
||||
indices = indices[: self.total_size]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample
|
||||
indices = indices[self.rank : self.total_size : self.num_replicas]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
return iter(indices)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.num_samples
|
||||
|
||||
def set_epoch(self, epoch: int) -> None:
|
||||
r"""
|
||||
Set the epoch for this sampler.
|
||||
|
||||
When :attr:`shuffle=True`, this ensures all replicas
|
||||
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
||||
sampler will yield the same ordering.
|
||||
|
||||
Args:
|
||||
epoch (int): Epoch number.
|
||||
"""
|
||||
self.epoch = epoch
|
Loading…
Add table
Add a link
Reference in a new issue