Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
|
@ -0,0 +1,231 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""CodeGen model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional
|
||||
|
||||
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class CodeGenConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a
|
||||
CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the CodeGen
|
||||
[Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects
|
||||
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
|
||||
[`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 50400):
|
||||
Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`CodeGenModel`].
|
||||
n_positions (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
n_ctx (`int`, *optional*, defaults to 2048):
|
||||
This attribute is used in `CodeGenModel.__init__` without any real effect.
|
||||
n_embd (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the embeddings and hidden states.
|
||||
n_layer (`int`, *optional*, defaults to 28):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
n_head (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
rotary_dim (`int`, *optional*, defaults to 64):
|
||||
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
||||
n_inner (`int`, *optional*):
|
||||
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
||||
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
||||
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
||||
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the embeddings.
|
||||
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention.
|
||||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon to use in the layer normalization layers.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
bos_token_id (`int`, *optional*, defaults to 50256):
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 50256):
|
||||
End of stream token id.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
||||
model has a output word embedding layer.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import CodeGenConfig, CodeGenModel
|
||||
|
||||
>>> # Initializing a CodeGen 6B configuration
|
||||
>>> configuration = CodeGenConfig()
|
||||
|
||||
>>> # Initializing a model (with random weights) from the configuration
|
||||
>>> model = CodeGenModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "codegen"
|
||||
attribute_map = {
|
||||
"max_position_embeddings": "n_positions",
|
||||
"hidden_size": "n_embd",
|
||||
"num_attention_heads": "n_head",
|
||||
"num_hidden_layers": "n_layer",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=50400,
|
||||
n_positions=2048,
|
||||
n_ctx=2048,
|
||||
n_embd=4096,
|
||||
n_layer=28,
|
||||
n_head=16,
|
||||
rotary_dim=64,
|
||||
n_inner=None,
|
||||
activation_function="gelu_new",
|
||||
resid_pdrop=0.0,
|
||||
embd_pdrop=0.0,
|
||||
attn_pdrop=0.0,
|
||||
layer_norm_epsilon=1e-5,
|
||||
initializer_range=0.02,
|
||||
use_cache=True,
|
||||
bos_token_id=50256,
|
||||
eos_token_id=50256,
|
||||
tie_word_embeddings=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.n_ctx = n_ctx
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_head = n_head
|
||||
self.n_inner = n_inner
|
||||
self.rotary_dim = rotary_dim
|
||||
self.activation_function = activation_function
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.attn_pdrop = attn_pdrop
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.use_cache = use_cache
|
||||
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
|
||||
super().__init__(
|
||||
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
||||
)
|
||||
|
||||
|
||||
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
||||
class CodeGenOnnxConfig(OnnxConfigWithPast):
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
task: str = "default",
|
||||
patching_specs: Optional[list[PatchingSpec]] = None,
|
||||
use_past: bool = False,
|
||||
):
|
||||
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
||||
if not getattr(self._config, "pad_token_id", None):
|
||||
# TODO: how to do that better?
|
||||
self._config.pad_token_id = 0
|
||||
|
||||
@property
|
||||
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||||
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
||||
if self.use_past:
|
||||
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
||||
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
||||
else:
|
||||
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
||||
|
||||
return common_inputs
|
||||
|
||||
@property
|
||||
def num_layers(self) -> int:
|
||||
return self._config.n_layer
|
||||
|
||||
@property
|
||||
def num_attention_heads(self) -> int:
|
||||
return self._config.n_head
|
||||
|
||||
def generate_dummy_inputs(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
batch_size: int = -1,
|
||||
seq_length: int = -1,
|
||||
is_pair: bool = False,
|
||||
framework: Optional[TensorType] = None,
|
||||
) -> Mapping[str, Any]:
|
||||
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
||||
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
||||
)
|
||||
|
||||
# We need to order the input in the way they appears in the forward()
|
||||
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
||||
|
||||
# Need to add the past_keys
|
||||
if self.use_past:
|
||||
if not is_torch_available():
|
||||
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
||||
else:
|
||||
import torch
|
||||
|
||||
batch, seqlen = common_inputs["input_ids"].shape
|
||||
# Not using the same length for past_key_values
|
||||
past_key_values_length = seqlen + 2
|
||||
past_shape = (
|
||||
batch,
|
||||
self.num_attention_heads,
|
||||
past_key_values_length,
|
||||
self._config.hidden_size // self.num_attention_heads,
|
||||
)
|
||||
ordered_inputs["past_key_values"] = [
|
||||
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
||||
]
|
||||
|
||||
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
||||
if self.use_past:
|
||||
mask_dtype = ordered_inputs["attention_mask"].dtype
|
||||
ordered_inputs["attention_mask"] = torch.cat(
|
||||
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
||||
)
|
||||
|
||||
return ordered_inputs
|
||||
|
||||
@property
|
||||
def default_onnx_opset(self) -> int:
|
||||
return 13
|
||||
|
||||
|
||||
__all__ = ["CodeGenConfig", "CodeGenOnnxConfig"]
|
Loading…
Add table
Add a link
Reference in a new issue