Adding all project files

This commit is contained in:
Martina Burlando 2025-08-02 02:00:33 +02:00
parent 6c9e127bdc
commit cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions

View file

@ -0,0 +1,29 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_deepseek_v2 import *
from .modeling_deepseek_v2 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View file

@ -0,0 +1,239 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/deepseek_v2/modular_deepseek_v2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_deepseek_v2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class DeepseekV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate a DeepSeek
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of DeepSeek-V2-Lite" [deepseek-ai/DeepSeek-V2-Lite"](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite").
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DeepSeek model. Defines the number of different tokens that can be represented by the
`input_ids` passed when calling [`DeepseekV2Model`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
The number of key-value heads used to implement Grouped Query Attention (GQA). If
`num_key_value_heads=num_attention_heads`, the model will use Multi-Head Attention (MHA). If
`num_key_value_heads=1`, the model will use Multi-Query Attention (MQA). Otherwise, GQA is used.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon value used by the RMS normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/value attentions (useful for inference optimization).
pad_token_id (`int`, *optional*):
Padding token ID.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning-of-sequence token ID.
eos_token_id (`int`, *optional*, defaults to 2):
End-of-sequence token ID.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the Rotary Position Embeddings (RoPE).
rope_scaling (`Dict`, *optional*):
Configuration for scaling RoPE embeddings. Supports `linear` and `dynamic` scaling strategies.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value, and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability applied to attention weights.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias term in the MLP layers.
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
Weight coefficient for auxiliary loss in Mixture of Experts (MoE) models.
first_k_dense_replace (`int`, *optional*, defaults to 0):
Number of dense layers in the shallow layers before switching to MoE layers.
kv_lora_rank (`int`, *optional*, defaults to 512):
Rank of the LoRA decomposition for key-value projections.
q_lora_rank (`int`, *optional*, defaults to 1536):
Rank of the LoRA decomposition for query projections.
Specifically, it determines the dimensionality to which the query (q) vectors are compressed before being expanded back to their original size.
It reduces computational overhead while maintaining model performance.
n_group (`int`, *optional*):
Number of groups for routed experts.
n_routed_experts (`int`, *optional*, defaults to 64):
Number of routed experts (None indicates a dense model).
n_shared_experts (`int`, *optional*, defaults to 2):
Number of shared experts (None indicates a dense model).
qk_nope_head_dim (`int`, *optional*, defaults to 128):
The head dimension for the QK (query-key) projections when using NOPE (Neural Operator Position Encoding).
qk_rope_head_dim (`int`, *optional*, defaults to 64):
The head dimension for QK projections when using RoPE.
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for routed experts in MoE models.
seq_aux (`bool`, *optional*, defaults to `True`):
Whether to compute the auxiliary loss for each individual sequence.
topk_group (`int`, *optional*):
Number of selected groups per token for expert selection.
topk_method (`str`, *optional*, defaults to `"greedy"`):
The method used for selecting top-k experts in the routed gate mechanism.
v_head_dim (`int`, *optional*, defaults to 128):
The dimension of value projections in the attention layers.
num_experts_per_tok (`int`, *optional*):
The number of experts selected per token. If `None`, the model behaves as a dense Transformer.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the probability distribution over top-k selected experts.
moe_intermediate_size (`int`, *optional*, defaults to 1407):
Dimension of the MoE (Mixture of Experts) representations.
```python
>>> from transformers import DeepseekV2Model, DeepseekV2Config
>>> # Initializing a DeepSeek-V2 style configuration
>>> configuration = DeepseekV2Config()
>>> # Accessing the model configuration
>>> model = DeepseekV2Model(configuration)
>>> print(model.config)
```
"""
model_type = "deepseek_v2"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.q_a_proj": "colwise",
"layers.*.self_attn.q_b_proj": "colwise",
"layers.*.self_attn.kv_b_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
aux_loss_alpha=0.001,
first_k_dense_replace=0,
kv_lora_rank=512,
q_lora_rank=1536,
n_group=None,
n_routed_experts=64,
n_shared_experts=2,
qk_nope_head_dim=128,
qk_rope_head_dim=64,
routed_scaling_factor=1.0,
seq_aux=True,
topk_group=None,
topk_method="greedy",
v_head_dim=128,
num_experts_per_tok=None,
norm_topk_prob=False,
moe_intermediate_size=1407,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = qk_rope_head_dim
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.aux_loss_alpha = aux_loss_alpha
self.first_k_dense_replace = first_k_dense_replace
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.n_group = n_group
self.n_routed_experts = n_routed_experts
self.n_shared_experts = n_shared_experts
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.routed_scaling_factor = routed_scaling_factor
self.seq_aux = seq_aux
self.topk_group = topk_group
self.topk_method = topk_method
self.v_head_dim = v_head_dim
self.num_experts_per_tok = num_experts_per_tok
self.norm_topk_prob = norm_topk_prob
self.moe_intermediate_size = moe_intermediate_size
__all__ = ["DeepseekV2Config"]

View file

@ -0,0 +1,642 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/deepseek_v2/modular_deepseek_v2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_deepseek_v2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Callable, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
from ...modeling_layers import GenericForSequenceClassification, GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
from ...utils.generic import check_model_inputs
from .configuration_deepseek_v2 import DeepseekV2Config
class DeepseekV2MoEGate(nn.Module):
def __init__(self, config: DeepseekV2Config):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.num_experts = config.n_routed_experts
self.routed_scaling_factor = config.routed_scaling_factor
self.alpha = config.aux_loss_alpha
self.seq_aux = config.seq_aux
self.topk_method = config.topk_method
self.num_group = config.n_group
self.topk_group = config.topk_group
# topk selection algorithm
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, hidden_dim = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, hidden_dim)
logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32), None)
scores = logits.softmax(dim=-1, dtype=torch.float32)
# select top-k experts
# greedy method is used for DeepSeek-V2-Lite
# group_limited_greedy for DeepSeek-V2 and DeepSeek-V2-Chat
if self.topk_method == "greedy":
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
elif self.topk_method == "group_limited_greedy":
group_scores = scores.view(batch_size * seq_len, self.num_group, -1).max(dim=-1).values # [n, num_group]
group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, num_group]
group_mask.scatter_(1, group_idx, 1) # [n, num_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(batch_size * seq_len, self.num_group, self.num_experts // self.num_group)
.reshape(batch_size * seq_len, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_weight, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False)
topk_weight = topk_weight * self.routed_scaling_factor
### expert-level computation auxiliary loss
return topk_idx, topk_weight
class DeepseekV2MoE(nn.Module):
"""
A mixed expert module containing shared experts.
"""
def __init__(self, config: DeepseekV2Config):
super().__init__()
self.config = config
self.num_experts_per_tok = config.num_experts_per_tok
self.experts = nn.ModuleList(
[
(DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size))
for _ in range(config.n_routed_experts)
]
)
self.gate = DeepseekV2MoEGate(config)
if config.n_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV2MLP(config=config, intermediate_size=intermediate_size)
self.ep_rank = 0
self.experts_per_rank = config.n_routed_experts
def moe(self, hidden_states: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
indicies = topk_ids.view(-1).argsort()
sorted_tokens = hidden_states[indicies // topk_ids.shape[1]]
# Process experts
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
if num_tokens == 0:
continue
end_idx = start_idx + num_tokens
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if outputs else sorted_tokens.new_empty(0)
# Reorder and combine outputs
new_x = torch.empty_like(outs)
new_x[indicies] = outs
hidden_states = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return hidden_states
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residuals = hidden_states
orig_shape = hidden_states.shape
topk_indices, topk_weights = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
hidden_states = hidden_states + self.shared_experts(residuals)
return hidden_states
class DeepseekV2MLP(nn.Module):
def __init__(self, config: DeepseekV2Config, hidden_size=None, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
@use_kernel_forward_from_hub("RMSNorm")
class DeepseekV2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DeepseekV2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class DeepseekV2RotaryEmbedding(nn.Module):
def __init__(self, config: DeepseekV2Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
self.rope_type = (
config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
if config.rope_scaling is not None
else "default"
)
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # Convert to complex representation
freqs_cis = freqs_cis * self.attention_scaling
return freqs_cis
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
# Broadcast to [1, 1, seq_len, dim // 2]
freqs_cis = freqs_cis.unsqueeze(1).to(xq_.device)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
return xq_out, xk_out
class DeepseekV2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.qk_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.is_causal = True
if self.q_lora_rank is None:
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
else:
self.q_a_proj = nn.Linear(self.hidden_size, config.q_lora_rank, bias=config.attention_bias)
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
self.kv_a_proj_with_mqa = nn.Linear(
self.hidden_size,
config.kv_lora_rank + config.qk_rope_head_dim,
bias=config.attention_bias,
)
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
self.kv_b_proj = nn.Linear(
config.kv_lora_rank,
self.num_heads * (self.qk_head_dim - self.qk_rope_head_dim + self.v_head_dim),
bias=False,
)
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=config.attention_bias,
)
self.scaling = self.qk_head_dim ** (-0.5)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
position_ids: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
batch_size, seq_length = hidden_states.shape[:-1]
query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
if self.q_lora_rank is None:
q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(query_shape).transpose(1, 2)
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
k_nope, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
k_nope = self.kv_b_proj(self.kv_a_layernorm(k_nope)).view(key_shape).transpose(1, 2)
k_nope, value_states = torch.split(k_nope, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = k_pe.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
q_pe, k_pe = apply_rotary_emb(q_pe, k_pe, position_embeddings.to(q_pe.device))
k_pe = k_pe.expand(*k_nope.shape[:-1], -1)
query_states = torch.cat((q_nope, q_pe), dim=-1)
key_states = torch.cat((k_nope, k_pe), dim=-1)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class DeepseekV2DecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: DeepseekV2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DeepseekV2Attention(config=config, layer_idx=layer_idx)
self.mlp = DeepseekV2MoE(config) if layer_idx >= config.first_k_dense_replace else DeepseekV2MLP(config)
self.input_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class DeepseekV2PreTrainedModel(PreTrainedModel):
config: DeepseekV2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DeepseekV2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": DeepseekV2DecoderLayer,
"attentions": DeepseekV2Attention,
}
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, DeepseekV2MoEGate):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring
class DeepseekV2Model(DeepseekV2PreTrainedModel):
def __init__(self, config: DeepseekV2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DeepseekV2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DeepseekV2RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position: torch.Tensor = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
@auto_docstring
class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = DeepseekV2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
r"""
Example:
```python
>>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
>>> model = DeepseekV2ForCausalLM.from_pretrained("meta-deepseek_v2/DeepseekV2-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-deepseek_v2/DeepseekV2-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class DeepseekV2ForSequenceClassification(GenericForSequenceClassification, DeepseekV2PreTrainedModel):
pass
__all__ = [
"DeepseekV2PreTrainedModel",
"DeepseekV2Model",
"DeepseekV2ForCausalLM",
"DeepseekV2ForSequenceClassification",
]

View file

@ -0,0 +1,529 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Callable, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...cache_utils import Cache
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...utils import (
logging,
)
from ..llama.configuration_llama import LlamaConfig
from ..llama.modeling_llama import (
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaMLP,
LlamaModel,
LlamaPreTrainedModel,
LlamaRMSNorm,
eager_attention_forward,
)
from ..llama4.modeling_llama4 import Llama4TextRotaryEmbedding
logger = logging.get_logger(__name__)
class DeepseekV2Config(LlamaConfig):
r"""
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate a DeepSeek
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of DeepSeek-V2-Lite" [deepseek-ai/DeepSeek-V2-Lite"](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite").
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DeepSeek model. Defines the number of different tokens that can be represented by the
`input_ids` passed when calling [`DeepseekV2Model`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
The number of key-value heads used to implement Grouped Query Attention (GQA). If
`num_key_value_heads=num_attention_heads`, the model will use Multi-Head Attention (MHA). If
`num_key_value_heads=1`, the model will use Multi-Query Attention (MQA). Otherwise, GQA is used.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon value used by the RMS normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/value attentions (useful for inference optimization).
pad_token_id (`int`, *optional*):
Padding token ID.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning-of-sequence token ID.
eos_token_id (`int`, *optional*, defaults to 2):
End-of-sequence token ID.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the Rotary Position Embeddings (RoPE).
rope_scaling (`Dict`, *optional*):
Configuration for scaling RoPE embeddings. Supports `linear` and `dynamic` scaling strategies.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value, and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability applied to attention weights.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias term in the MLP layers.
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
Weight coefficient for auxiliary loss in Mixture of Experts (MoE) models.
first_k_dense_replace (`int`, *optional*, defaults to 0):
Number of dense layers in the shallow layers before switching to MoE layers.
kv_lora_rank (`int`, *optional*, defaults to 512):
Rank of the LoRA decomposition for key-value projections.
q_lora_rank (`int`, *optional*, defaults to 1536):
Rank of the LoRA decomposition for query projections.
Specifically, it determines the dimensionality to which the query (q) vectors are compressed before being expanded back to their original size.
It reduces computational overhead while maintaining model performance.
n_group (`int`, *optional*):
Number of groups for routed experts.
n_routed_experts (`int`, *optional*, defaults to 64):
Number of routed experts (None indicates a dense model).
n_shared_experts (`int`, *optional*, defaults to 2):
Number of shared experts (None indicates a dense model).
qk_nope_head_dim (`int`, *optional*, defaults to 128):
The head dimension for the QK (query-key) projections when using NOPE (Neural Operator Position Encoding).
qk_rope_head_dim (`int`, *optional*, defaults to 64):
The head dimension for QK projections when using RoPE.
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for routed experts in MoE models.
seq_aux (`bool`, *optional*, defaults to `True`):
Whether to compute the auxiliary loss for each individual sequence.
topk_group (`int`, *optional*):
Number of selected groups per token for expert selection.
topk_method (`str`, *optional*, defaults to `"greedy"`):
The method used for selecting top-k experts in the routed gate mechanism.
v_head_dim (`int`, *optional*, defaults to 128):
The dimension of value projections in the attention layers.
num_experts_per_tok (`int`, *optional*):
The number of experts selected per token. If `None`, the model behaves as a dense Transformer.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the probability distribution over top-k selected experts.
moe_intermediate_size (`int`, *optional*, defaults to 1407):
Dimension of the MoE (Mixture of Experts) representations.
```python
>>> from transformers import DeepseekV2Model, DeepseekV2Config
>>> # Initializing a DeepSeek-V2 style configuration
>>> configuration = DeepseekV2Config()
>>> # Accessing the model configuration
>>> model = DeepseekV2Model(configuration)
>>> print(model.config)
```
"""
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.q_a_proj": "colwise",
"layers.*.self_attn.q_b_proj": "colwise",
"layers.*.self_attn.kv_b_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
model_type = "deepseek_v2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
aux_loss_alpha=0.001,
first_k_dense_replace=0,
kv_lora_rank=512,
q_lora_rank=1536,
n_group=None,
n_routed_experts=64,
n_shared_experts=2,
qk_nope_head_dim=128,
qk_rope_head_dim=64,
routed_scaling_factor=1.0,
seq_aux=True,
topk_group=None,
topk_method="greedy",
v_head_dim=128,
num_experts_per_tok=None,
norm_topk_prob=False,
moe_intermediate_size=1407,
**kwargs,
):
super().__init__(**kwargs)
del self.pretraining_tp
self.aux_loss_alpha = aux_loss_alpha
self.first_k_dense_replace = first_k_dense_replace
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.n_group = n_group
self.n_routed_experts = n_routed_experts
self.n_shared_experts = n_shared_experts
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.routed_scaling_factor = routed_scaling_factor
self.seq_aux = seq_aux
self.topk_group = topk_group
self.topk_method = topk_method
self.v_head_dim = v_head_dim
self.num_experts_per_tok = num_experts_per_tok
self.norm_topk_prob = norm_topk_prob
self.moe_intermediate_size = moe_intermediate_size
self.head_dim = qk_rope_head_dim
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
# Broadcast to [1, 1, seq_len, dim // 2]
freqs_cis = freqs_cis.unsqueeze(1).to(xq_.device)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
return xq_out, xk_out
class DeepseekV2MoEGate(nn.Module):
def __init__(self, config: DeepseekV2Config):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.num_experts = config.n_routed_experts
self.routed_scaling_factor = config.routed_scaling_factor
self.alpha = config.aux_loss_alpha
self.seq_aux = config.seq_aux
self.topk_method = config.topk_method
self.num_group = config.n_group
self.topk_group = config.topk_group
# topk selection algorithm
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, hidden_dim = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, hidden_dim)
logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32), None)
scores = logits.softmax(dim=-1, dtype=torch.float32)
# select top-k experts
# greedy method is used for DeepSeek-V2-Lite
# group_limited_greedy for DeepSeek-V2 and DeepSeek-V2-Chat
if self.topk_method == "greedy":
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
elif self.topk_method == "group_limited_greedy":
group_scores = scores.view(batch_size * seq_len, self.num_group, -1).max(dim=-1).values # [n, num_group]
group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, num_group]
group_mask.scatter_(1, group_idx, 1) # [n, num_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(batch_size * seq_len, self.num_group, self.num_experts // self.num_group)
.reshape(batch_size * seq_len, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_weight, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False)
topk_weight = topk_weight * self.routed_scaling_factor
### expert-level computation auxiliary loss
return topk_idx, topk_weight
class DeepseekV2MoE(nn.Module):
"""
A mixed expert module containing shared experts.
"""
def __init__(self, config: DeepseekV2Config):
super().__init__()
self.config = config
self.num_experts_per_tok = config.num_experts_per_tok
self.experts = nn.ModuleList(
[
(DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size))
for _ in range(config.n_routed_experts)
]
)
self.gate = DeepseekV2MoEGate(config)
if config.n_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV2MLP(config=config, intermediate_size=intermediate_size)
self.ep_rank = 0
self.experts_per_rank = config.n_routed_experts
def moe(self, hidden_states: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
indicies = topk_ids.view(-1).argsort()
sorted_tokens = hidden_states[indicies // topk_ids.shape[1]]
# Process experts
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
if num_tokens == 0:
continue
end_idx = start_idx + num_tokens
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if outputs else sorted_tokens.new_empty(0)
# Reorder and combine outputs
new_x = torch.empty_like(outs)
new_x[indicies] = outs
hidden_states = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return hidden_states
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residuals = hidden_states
orig_shape = hidden_states.shape
topk_indices, topk_weights = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
hidden_states = hidden_states + self.shared_experts(residuals)
return hidden_states
class DeepseekV2MLP(LlamaMLP):
def __init__(self, config: DeepseekV2Config, hidden_size=None, intermediate_size=None):
super().__init__(config)
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
class DeepseekV2RMSNorm(LlamaRMSNorm):
pass
class DeepseekV2RotaryEmbedding(Llama4TextRotaryEmbedding):
def __init__(self, config: DeepseekV2Config, device=None):
super().__init__(config=config, device=device)
# BC: "rope_type" was originally "type"
self.rope_type = (
config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
if config.rope_scaling is not None
else "default"
)
class DeepseekV2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.qk_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.is_causal = True
if self.q_lora_rank is None:
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
else:
self.q_a_proj = nn.Linear(self.hidden_size, config.q_lora_rank, bias=config.attention_bias)
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
self.kv_a_proj_with_mqa = nn.Linear(
self.hidden_size,
config.kv_lora_rank + config.qk_rope_head_dim,
bias=config.attention_bias,
)
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
self.kv_b_proj = nn.Linear(
config.kv_lora_rank,
self.num_heads * (self.qk_head_dim - self.qk_rope_head_dim + self.v_head_dim),
bias=False,
)
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=config.attention_bias,
)
self.scaling = self.qk_head_dim ** (-0.5)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
position_ids: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
batch_size, seq_length = hidden_states.shape[:-1]
query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
if self.q_lora_rank is None:
q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(query_shape).transpose(1, 2)
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
k_nope, k_pe = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
k_nope = self.kv_b_proj(self.kv_a_layernorm(k_nope)).view(key_shape).transpose(1, 2)
k_nope, value_states = torch.split(k_nope, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = k_pe.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
q_pe, k_pe = apply_rotary_emb(q_pe, k_pe, position_embeddings.to(q_pe.device))
k_pe = k_pe.expand(*k_nope.shape[:-1], -1)
query_states = torch.cat((q_nope, q_pe), dim=-1)
key_states = torch.cat((k_nope, k_pe), dim=-1)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class DeepseekV2DecoderLayer(LlamaDecoderLayer):
def __init__(self, config: DeepseekV2Config, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = DeepseekV2Attention(config=config, layer_idx=layer_idx)
self.mlp = DeepseekV2MoE(config) if layer_idx >= config.first_k_dense_replace else DeepseekV2MLP(config)
self.input_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
class DeepseekV2PreTrainedModel(LlamaPreTrainedModel):
def _init_weights(self, module):
LlamaPreTrainedModel._init_weights(module)
if isinstance(module, DeepseekV2MoEGate):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
class DeepseekV2Model(LlamaModel):
pass
class DeepseekV2ForCausalLM(LlamaForCausalLM):
pass
class DeepseekV2ForSequenceClassification(LlamaForSequenceClassification):
pass
__all__ = [
"DeepseekV2PreTrainedModel",
"DeepseekV2Model",
"DeepseekV2ForCausalLM",
"DeepseekV2ForSequenceClassification",
"DeepseekV2Config",
]