Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
31
venv/Lib/site-packages/transformers/models/detr/__init__.py
Normal file
31
venv/Lib/site-packages/transformers/models/detr/__init__.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import _LazyModule
|
||||
from ...utils.import_utils import define_import_structure
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_detr import *
|
||||
from .feature_extraction_detr import *
|
||||
from .image_processing_detr import *
|
||||
from .image_processing_detr_fast import *
|
||||
from .modeling_detr import *
|
||||
else:
|
||||
import sys
|
||||
|
||||
_file = globals()["__file__"]
|
||||
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,289 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2021 Facebook AI Research and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""DETR model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
from ...utils import logging
|
||||
from ...utils.backbone_utils import verify_backbone_config_arguments
|
||||
from ..auto import CONFIG_MAPPING
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class DetrConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the DETR
|
||||
[facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
use_timm_backbone (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
|
||||
API.
|
||||
backbone_config (`PretrainedConfig` or `dict`, *optional*):
|
||||
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
|
||||
case it will default to `ResNetConfig()`.
|
||||
num_channels (`int`, *optional*, defaults to 3):
|
||||
The number of input channels.
|
||||
num_queries (`int`, *optional*, defaults to 100):
|
||||
Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can
|
||||
detect in a single image. For COCO, we recommend 100 queries.
|
||||
d_model (`int`, *optional*, defaults to 256):
|
||||
This parameter is a general dimension parameter, defining dimensions for components such as the encoder layer and projection parameters in the decoder layer, among others.
|
||||
encoder_layers (`int`, *optional*, defaults to 6):
|
||||
Number of encoder layers.
|
||||
decoder_layers (`int`, *optional*, defaults to 6):
|
||||
Number of decoder layers.
|
||||
encoder_attention_heads (`int`, *optional*, defaults to 8):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
decoder_attention_heads (`int`, *optional*, defaults to 8):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
||||
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
||||
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
||||
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
||||
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||||
dropout (`float`, *optional*, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
activation_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for activations inside the fully connected layer.
|
||||
init_std (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
init_xavier_std (`float`, *optional*, defaults to 1):
|
||||
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
|
||||
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
||||
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://huggingface.co/papers/1909.11556)
|
||||
for more details.
|
||||
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
||||
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://huggingface.co/papers/1909.11556)
|
||||
for more details.
|
||||
auxiliary_loss (`bool`, *optional*, defaults to `False`):
|
||||
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
|
||||
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
|
||||
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
|
||||
backbone (`str`, *optional*, defaults to `"resnet50"`):
|
||||
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
||||
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
||||
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
||||
use_pretrained_backbone (`bool`, *optional*, `True`):
|
||||
Whether to use pretrained weights for the backbone.
|
||||
backbone_kwargs (`dict`, *optional*):
|
||||
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
|
||||
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
|
||||
dilation (`bool`, *optional*, defaults to `False`):
|
||||
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
|
||||
`use_timm_backbone` = `True`.
|
||||
class_cost (`float`, *optional*, defaults to 1):
|
||||
Relative weight of the classification error in the Hungarian matching cost.
|
||||
bbox_cost (`float`, *optional*, defaults to 5):
|
||||
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
|
||||
giou_cost (`float`, *optional*, defaults to 2):
|
||||
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
|
||||
mask_loss_coefficient (`float`, *optional*, defaults to 1):
|
||||
Relative weight of the Focal loss in the panoptic segmentation loss.
|
||||
dice_loss_coefficient (`float`, *optional*, defaults to 1):
|
||||
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
|
||||
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
|
||||
Relative weight of the L1 bounding box loss in the object detection loss.
|
||||
giou_loss_coefficient (`float`, *optional*, defaults to 2):
|
||||
Relative weight of the generalized IoU loss in the object detection loss.
|
||||
eos_coefficient (`float`, *optional*, defaults to 0.1):
|
||||
Relative classification weight of the 'no-object' class in the object detection loss.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from transformers import DetrConfig, DetrModel
|
||||
|
||||
>>> # Initializing a DETR facebook/detr-resnet-50 style configuration
|
||||
>>> configuration = DetrConfig()
|
||||
|
||||
>>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration
|
||||
>>> model = DetrModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "detr"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
attribute_map = {
|
||||
"hidden_size": "d_model",
|
||||
"num_attention_heads": "encoder_attention_heads",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
use_timm_backbone=True,
|
||||
backbone_config=None,
|
||||
num_channels=3,
|
||||
num_queries=100,
|
||||
encoder_layers=6,
|
||||
encoder_ffn_dim=2048,
|
||||
encoder_attention_heads=8,
|
||||
decoder_layers=6,
|
||||
decoder_ffn_dim=2048,
|
||||
decoder_attention_heads=8,
|
||||
encoder_layerdrop=0.0,
|
||||
decoder_layerdrop=0.0,
|
||||
is_encoder_decoder=True,
|
||||
activation_function="relu",
|
||||
d_model=256,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.0,
|
||||
activation_dropout=0.0,
|
||||
init_std=0.02,
|
||||
init_xavier_std=1.0,
|
||||
auxiliary_loss=False,
|
||||
position_embedding_type="sine",
|
||||
backbone="resnet50",
|
||||
use_pretrained_backbone=True,
|
||||
backbone_kwargs=None,
|
||||
dilation=False,
|
||||
class_cost=1,
|
||||
bbox_cost=5,
|
||||
giou_cost=2,
|
||||
mask_loss_coefficient=1,
|
||||
dice_loss_coefficient=1,
|
||||
bbox_loss_coefficient=5,
|
||||
giou_loss_coefficient=2,
|
||||
eos_coefficient=0.1,
|
||||
**kwargs,
|
||||
):
|
||||
# We default to values which were previously hard-coded in the model. This enables configurability of the config
|
||||
# while keeping the default behavior the same.
|
||||
if use_timm_backbone and backbone_kwargs is None:
|
||||
backbone_kwargs = {}
|
||||
if dilation:
|
||||
backbone_kwargs["output_stride"] = 16
|
||||
backbone_kwargs["out_indices"] = [1, 2, 3, 4]
|
||||
backbone_kwargs["in_chans"] = num_channels
|
||||
# Backwards compatibility
|
||||
elif not use_timm_backbone and backbone in (None, "resnet50"):
|
||||
if backbone_config is None:
|
||||
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
|
||||
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
|
||||
elif isinstance(backbone_config, dict):
|
||||
backbone_model_type = backbone_config.get("model_type")
|
||||
config_class = CONFIG_MAPPING[backbone_model_type]
|
||||
backbone_config = config_class.from_dict(backbone_config)
|
||||
backbone = None
|
||||
# set timm attributes to None
|
||||
dilation = None
|
||||
|
||||
verify_backbone_config_arguments(
|
||||
use_timm_backbone=use_timm_backbone,
|
||||
use_pretrained_backbone=use_pretrained_backbone,
|
||||
backbone=backbone,
|
||||
backbone_config=backbone_config,
|
||||
backbone_kwargs=backbone_kwargs,
|
||||
)
|
||||
|
||||
self.use_timm_backbone = use_timm_backbone
|
||||
self.backbone_config = backbone_config
|
||||
self.num_channels = num_channels
|
||||
self.num_queries = num_queries
|
||||
self.d_model = d_model
|
||||
self.encoder_ffn_dim = encoder_ffn_dim
|
||||
self.encoder_layers = encoder_layers
|
||||
self.encoder_attention_heads = encoder_attention_heads
|
||||
self.decoder_ffn_dim = decoder_ffn_dim
|
||||
self.decoder_layers = decoder_layers
|
||||
self.decoder_attention_heads = decoder_attention_heads
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.activation_dropout = activation_dropout
|
||||
self.activation_function = activation_function
|
||||
self.init_std = init_std
|
||||
self.init_xavier_std = init_xavier_std
|
||||
self.encoder_layerdrop = encoder_layerdrop
|
||||
self.decoder_layerdrop = decoder_layerdrop
|
||||
self.num_hidden_layers = encoder_layers
|
||||
self.auxiliary_loss = auxiliary_loss
|
||||
self.position_embedding_type = position_embedding_type
|
||||
self.backbone = backbone
|
||||
self.use_pretrained_backbone = use_pretrained_backbone
|
||||
self.backbone_kwargs = backbone_kwargs
|
||||
self.dilation = dilation
|
||||
# Hungarian matcher
|
||||
self.class_cost = class_cost
|
||||
self.bbox_cost = bbox_cost
|
||||
self.giou_cost = giou_cost
|
||||
# Loss coefficients
|
||||
self.mask_loss_coefficient = mask_loss_coefficient
|
||||
self.dice_loss_coefficient = dice_loss_coefficient
|
||||
self.bbox_loss_coefficient = bbox_loss_coefficient
|
||||
self.giou_loss_coefficient = giou_loss_coefficient
|
||||
self.eos_coefficient = eos_coefficient
|
||||
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
|
||||
|
||||
@property
|
||||
def num_attention_heads(self) -> int:
|
||||
return self.encoder_attention_heads
|
||||
|
||||
@property
|
||||
def hidden_size(self) -> int:
|
||||
return self.d_model
|
||||
|
||||
@classmethod
|
||||
def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs):
|
||||
"""Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration.
|
||||
|
||||
Args:
|
||||
backbone_config ([`PretrainedConfig`]):
|
||||
The backbone configuration.
|
||||
Returns:
|
||||
[`DetrConfig`]: An instance of a configuration object
|
||||
"""
|
||||
return cls(backbone_config=backbone_config, **kwargs)
|
||||
|
||||
|
||||
class DetrOnnxConfig(OnnxConfig):
|
||||
torch_onnx_minimum_version = version.parse("1.11")
|
||||
|
||||
@property
|
||||
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||||
return OrderedDict(
|
||||
[
|
||||
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
||||
("pixel_mask", {0: "batch"}),
|
||||
]
|
||||
)
|
||||
|
||||
@property
|
||||
def atol_for_validation(self) -> float:
|
||||
return 1e-5
|
||||
|
||||
@property
|
||||
def default_onnx_opset(self) -> int:
|
||||
return 12
|
||||
|
||||
|
||||
__all__ = ["DetrConfig", "DetrOnnxConfig"]
|
|
@ -0,0 +1,48 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Feature extractor class for DETR."""
|
||||
|
||||
import warnings
|
||||
|
||||
from ...image_transforms import rgb_to_id as _rgb_to_id
|
||||
from ...utils import logging
|
||||
from ...utils.import_utils import requires
|
||||
from .image_processing_detr import DetrImageProcessor
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def rgb_to_id(x):
|
||||
warnings.warn(
|
||||
"rgb_to_id has moved and will not be importable from this module from v5. "
|
||||
"Please import from transformers.image_transforms instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
return _rgb_to_id(x)
|
||||
|
||||
|
||||
@requires(backends=("vision",))
|
||||
class DetrFeatureExtractor(DetrImageProcessor):
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
warnings.warn(
|
||||
"The class DetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
||||
" Please use DetrImageProcessor instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
__all__ = ["DetrFeatureExtractor"]
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
1692
venv/Lib/site-packages/transformers/models/detr/modeling_detr.py
Normal file
1692
venv/Lib/site-packages/transformers/models/detr/modeling_detr.py
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue